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PREFACE

It is well known that the dynamical system theory (DST) starts from the following

equations:
dﬁff) = f(z(t),u1(t),t), (0) =x¢ ---(state equation),
5T - .

y(t) = g(z(t), ua(t), t) (measurement equation)

where u; and uy are external forces (or noises). Also recall that quantum mechanics is

formulated as the following form:

quantum mechanics ‘ = [the rule of time evolution] + [measurement]

(Schrodinger equation) (Born’s quantum measurements)

(Q)

The above two theories (D) and (Q) are, of course, fundamental and famous. Thus, a
quarter of a century ago, I already knew them. However, about fifteen years ago, I was

suddenly surprised by the similarity between (D) and (Q), particularly, the fact that:

(F) the term “measurement” is common to both dynamical system theory (D) and

quantum system theory (Q).

This surprise urged me to propose “measurement theory”. I want to share my surprise

with all people.! This is the reason for this book.

Shiro ISHIKAWA?

21st, October, 2006

1Some sections of this book were lectured in the master-course program: “Advanced study of mathe-
matics A” at Keio university (three-hour lecture every week from April to July in 2006).
2For the further information of our theory, see “http://www.keio-up.co.jp/kup/mfomt/”
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It is recommended to read this book as follows:
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| Chap. 8 |

’ Chap. 9 ‘

’ Chap. 11 ‘

’ Chap. 12 ‘

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

Chapter 1

The philosophy of measurement
theory

The purpose of this book is to propose “mathematical foundations of measurement theory”. The
statement:

“There is no science without measurements” (1.1)

is an old famous saying, which of course emphasizes the importance of “measurement”. We believe
in the saying, i.e., the concept of “measurements” should be the most fundamental in science.
However, it is certain that we do not have an authorized “measurement theory” in science yet.
Thus, we think that it is worthwhile proposing the mathematical foundations of “measurement

theory” 1:
Chapters 2, 3, 8 ---Mathematical foundations of measurement theory
Chapter 4 .-+ An application (of measurement theory) to statistical mechanics
Chapters 5~12 - --Several theories (e.g., statistics, classical and quantum system theories,

etc.) in measurement theory

It should be noted that “measurement theory” and “theoretical physics” are different. In par-
ticular, their philosophies are completely different. Although it is a matter of course that it is
impossible to understand the philosophy of measurement theory without the complete knowledge
of measurements (i.e., the contents of Chapters 2 ~ 12), the philosophy of measurement theory is
also indispensable for the understanding of measurement theory. Therefore, in this first chapter,
we devote ourselves to the philosophy of measurement theory.

1.1 How to construct “measurement theory”

It is well known that the dynamical system theory (DST, classical system theory)

!The measurement theory is proposed in the references [41]~[48],[55] in this book. We devote ourselves
to the mathematical aspect of “measurement theory”. For the other aspects (e.g., practical and general
aspects), see [30], which is educational and enlightening.
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starts from the following equations:

dflgt) = f(x(t),u1(t),t), z(0) = x¢ ---((stochastic) state equation) 2

= { (1.2a)

y(t) = g(@(t), uz(t), 1) (measurement equation)

where u; and ug are external forces (or noises),
or more precisely,

= “Apply (1.2a) to every phenomenon by an analogy of Newtonian mechanics and

the coin-tossing problem”? (1.2b)

That is, DST is usually believed to be a kind of epistemology called “the mechanical
world view”, namely, an epistemology to understand and analyze (moreover, control)
every phenomenon — economics, psychology, engineering and so on — by an analogy of
Newtonian mechanics (and coin-tossing).

Also recall that quantum mechanics is formulated as the following form (¢f. von

Neumann [84]):

’ quantum mechanics = [measurement] +  [the rule of time evolution]

(Born’s quantum measurement) (Schrodinger equation)

(1.3)
which was discovered by W. Heisenberg, E. Schrodinger, M. Born in between 1924 and
1926.

Here, it should be noted that the term “measurement” appears in both (1.2) and (1.3).

7
Y

Thus, our proposal, i.e., “measurement theory (=MT)”, is constructed as follows:

(I;) Quantum mechanics (1.3) is formulated in B(H), the algebra composed of all
bounded linear operators on a Hilbert space H (¢f. von Neumann (1932: [84])).
Thus it is easy to generalize quantum mechanics in C*-algebra A (C B(H), cf.
Definition 2.1 in §2.1) such that it includes DST (1.2) as a special case. Namely,
(1.2)+(1.3)C “MT".

That is, as a kind of generalization of quantum mechanics (1.3), we can propose as follows:

2A stochastic differential equation (or stochastic difference equation) in dynamical system theory is
usually called a stochastic state equation.

3That is, DST is, from the mathematical point of view, based on “the theory of differential
equations” and “probability theory”. Thus, I think that I.Newton (¢f. [66]) and A.Kolmogorov (cf.
[56]) are greatest in DST.
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1.1, HOW TQ CONSTRUCT “MEASUREMENT THEOR 3
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“measurement theory (or in short, MT)”
=[measurement| + [“the rule of the relation among systems”| in C*-algebra A
“Axiom 1 (2.37)” “Axiom 2 (3.26)”
(1.4a)

or more precisely,

=“Apply (1.4a) to every phenomenon by an analogy of quantum mechanics”  (1.4Db)

(For the details, see Chapter 2 [Axiom 1 (2.37)], and Chapter 3 [Axiom 2 (3.26)]). Here
it should be noted that MT (= Axiom 1 4+ Axiom 2) is composed of a few key-words i.e.,

(I3) system, state, observable, measurement, measured-value, probability, Markov rela-

tion, sequential observable, Heisenberg picture, etc.

and Axioms 1 and 2 explain how to use these words. Roughly speaking, Axioms 1 and 2
say “Use these words by analogy of quantum mechanics”*

We have the classification of MT as follows:®

| “classical MT” | in a commutative C*-algebra C(9)

= (15)

’ “quantum MT” | in a non-commutative C*-algebra B(H)

where a C*-algebra is either commutative or non-commutative. Also, as mentioned in

(1), we consider the following correspondence:

“classical MT” in (1.5) | «| DSTin (1.2)

= (1.6)

“quantum MT” in (1.5) | < | quantum theory in (1.3)

4Thus, our approach is, from the philosophical point of view, characterized as so called foundational-
sm.

5As seen later (i.e., Chapter 8), we also have the classification of MT), i.e., “(pure) measurement theory
(= PMT)” and “statistical measurement theory ( =SMT)”. That is,

PMT (=“(pure) measurement theory”) in Chapters 2 ~ 7
MT (=“measurement theory”)

SMT (=“statistical measurement theory”) in Chapters 8 ~)

PMT is essential. That is, we can say that there is no SMT without PMT. (Cf. Chapter 8.)
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1.2 What is measurement theory?

We think that the question “What is measurement theory?” is much more difficult

than the question “How is measurement theory constructed?”.

As mentioned in (/) in §1.1, MT is the mathematical generalization of quantum me-
chanics (1.3). That is, MT is not quantum mechanics but “something beyond mechanics”.

Thus, we can assert that

(I3) MT is the mathematical representation of the epistemology called “the mechanical

world view” (just like DST(1.2) is).
Also, it should be noted that MT is quite a wide theory, that is, we assert:

(1) MT is the most fundamental theory of so-called “theoretical informatics”, including
dynamical system theory, quantum system theory, practical logic, statistics, circuit
theory, control theory, chaotic system theory, multivariate analysis, information

theory, automata theory, OR, game theory, etc.

This will be discussed in Chapters 5 ~ 12. Also, note that the above (I;) should be

regarded as the same as the following assertion:

(I5) The term: “theoretical informatics” is defined as the academic discipline that is
composed of all theories understood in MT. That is, “theoretical informatics” =

LLMTW.

We assert that

the most fundamental theory of theoretical physics = ‘TOE (string theory(?))®
the most fundamental theory of theoretical informatics = MT

And therefore, we can present the following table, which indicates where MT is in science.

6The string theory (cf. [28]) is not necessarily authorized yet. Thus, in this book, the term ‘TOE
(Theory of Everything)’ is used as the symbol of the most fundamental theory of theoretical physics.
As emphasized in this section, the philosophy of theoretical physics is different from that of theoretical
informatics. And thus, the meanings of “the most fundamental theory” are respectively different in
theoretical physics and in theoretical informatics.
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Table (1.7)

Mathematics

“Cantor’s sots theory” mathematical logic, algebra, geometry, analysis, etc. (Ch)

Newtonian mechanics

quantum mechanics

Theor. Physics M'axwe.zll’s elect'ro.magnetic theory
- - Einstein’s relativity theory (Cs)
TOE Weinberg-Salam theory

quantum chromodynamics

etc.

[My proposal in this book]

dynamical system theory
- quantum system theory

S M%tﬁl' Sci. practical logic (Cs)

Theor. o statistics, circuit theory

I Theor. Informatics I control theory

MT (=measurement theory) | multivariate analysis

information theory

chaotic system theory

automata theory

OR, game theory, etc.

I The third mathematical scientific theory

(C4)

(undiscovered)

economics, chemistry, biology, medicine, psychology,
I Usual Sci. Theor. I statistical mechanics, fluid mechanics,
engineering (also, see (I7) and (Ig) later), etc. (C5)

That is, the mathematical structures of all theories in (C3) are common, and thus, they
are discussed in the framework of MT.

We add the following remark.
Remark 1.1. (About Table (1.7)).
(a). Note that the class (C3) (= (1)) is usually called “applied mathematics”. In this
sense, we think that MT is the main part of so-called applied mathematics.
(b). For example, if electromagnetic theory and relativity theory can not be unified, we
must consider two categories (e.g., “Theoretical physics (I)” and “Theoretical physics
(IT)”) in theoretical physics. However, most physicists believe that physics consists of only
one category, that is, the theories in (Cs) must be unified in the most fundamental theory

(= ‘TOE’). The purpose of this book is, of course, to show that the theories in (C3) are
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mathematically understood in MT. Also, in this book, “Newtonian mechanics” [resp.
“quantum mechanics” | in MT is called “classical system theory (= dynamical sys-
tem theory)” [resp. “quantum system theory” ] (though the addition of “measurement
equation” to DTS(1.2a) should be regarded as the act of genius (since there is no concept
of “measurement” in Newtonian mechanics)). That is, the two (i.e., Newtonian mechan-
ics and quantum mechanics) are common in both “theoretical physics” and “theoretical
informatics” (cf. §10.5).
(c). The purpose of theoretical physics is to represent “natural forces” in terms of mathe-
matics. On the other hand, as mentioned in (I3), MT is a kind of epistemology called “the
mechanical world view”, namely, an epistemology to understand and analyze (moreover,
control) every phenomenon — economics, psychology, engineering and so on — by an
analogy of mechanics. That is, MT is the mathematical representation of “the mechani-
cal world view”. Or, precisely speaking, the definition of “the mechanical world view” is
given by MT.
(d). From the mathematical point of view, the difference between “theoretical physics” and
“theoretical informatics” is that of “differential geometry” and “the theory of Hilbert
spaces (or operator algebras)”. Cf. Remark 8.26.
(e). It is a matter of course that the theories in theoretical physics (= (C3) in (1.7))
should be tested by experiments. For example, the question: “Is electromagnetic theory
experimentally true or not?” is meaningful. In fact, serious experiments have been often
conducted as big projects (such as SERN, Kamioka Observatory (Japan), etc.) in theo-
retical physics. On the other hand, the experimental tests of the theories in theoretical
informatics (= (C3)) are nonsense. For example, the experimental test of statistics is
meaningless just like that of mathematics (e.g., linear algebra) is obviously meaningless.”
Thus, we think that the question: “Is statistics experimentally true or not?” is mean-
ingless. However, it should be noted that the question: “Is statistics convenient (=
useful)?” is meaningful.
(f). We hope that some will find and propose “The third mathematical scientific theory
in (Cy)".

|

"There may be some truth in the assertion that statistics is a kind of mathematics. However, as
mentioned in Table (1.7), we think that “statistics” = “mathematics + something”.
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Summing up, we assert the following table:

Table

(1.8a)

Theoretical Physics

Theoretical Informatics

(1). the theories
in this field

classical and quantum mechanics,
electromagnetic theory,

dynamical system theory, statistics,
logic, quantum system theory,

meaningful

meaningless

5). experimentally
rue or false
cf. Remark 1.1 (e))

(¢f. Remark 1.1 (b)) Weinberg-Salam theory, etc. (¢f. (C2)) | information theory, etc. (cf. (C3))

(2). the most fundamental theory || ‘TOE (Theory of Everything)’ MT (measurement theory)

(¢f. Remark 1.1 (b)) (will be proposed in the future) (proposed in this book cf. [41]~[48],[55])
(3). the purpose the mathematical representation the mathematical representation

(¢f. Remark 1.1 (c)) of “force” of “the mechanical world view”

(4). mathematical language differential geometry (gauge theory) operator algebra

(¢f. Remark 1.1 (d)) (functional analysis, real analysis)

(

t

(

Next let us consider the following problem.
Problem 1.2. (“experimentally true or false” and “theoretically true or false”). Consider
the following problems (i) and (ii).
(i) Assume that someone proposes “psychokinetic theory” as a theory of theoretical

physics. Determine whether his/her theory is true or false.

(ii) In [93], Zadeh proposed “the fuzzy sets theory” as a theory of theoretical informatics.

Determine whether his theory is true or false®

[Answer (i)].
If it is OK (i.e., if it is experimentally true), “psychokinetic theory” should be accepted

The problem (i) is solved by two methods. One is the experimental test.

as a physical theory. Also, if we have the most fundamental theory (= ‘TOE’), we can
determine whether “psychokinetic theory” is theoretically true in ‘TOE’. If it is OK (i.e.,
if it can be understood in ‘TOE’), the “psychokinetic theory” should be accepted as a
physical theory. Of course, it always holds that “experimentally true” = “theoretically

true”.

80mne of our motivations for this research may be inspired by the fashion of Zadeh’s fuzzy sets theory
(cf. [93], which is the most cited paper in all fields of 20th century science) in 1980s ~ 1990s. We had a lot
of arguments about “Is Zadeh’s fuzzy sets theory true or false?” or “Can it be justified?” However, these
arguments may be fruitless. That is because all controversies were engaged without the understanding
of the meaning of “true” (or “justification”). It should be noted that we do not only have the answer
to the question: “Is Zadeh’s fuzzy sets theory (theoretical) true or false?” but also “Is Fisher’s statistics

(theoretically) true or false?”. (These will be respectively answered in Chapter 5~7.) In this sense,

we can say that the purpose of this book is to introduce the criterion: “theoretically true or false” into
theoretical informatics. (Cf. Declaration (1.11) later). Here, two criterions of “theoretically true or
false (in theoretical informatics)” and “useful or not (in informatics-related engineering)” should not be
confused. Throughout this book we are not concerned with “useful or not” but “theoretically true or
false”, though we, of course, know that the criterion “useful or not” is also quite important.
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[Answer (ii)]. On the other hand, the problem (ii) is solved by one method. If we have the
most fundamental theory (=‘measurement theory’), we can determine whether “Zadeh’s
fuzzy sets theory” is theoretically true or false in the most fundamental theory. If it can
be understood in the most fundamental theory, “Zadeh’s fuzzy sets theory” should be
accepted as a theory of theoretical informatics. Our answer will be presented in Chapter
7. However, as mentioned in Remark 1.1 (e), it should be noted that the question: “Is

Zadeh’s fuzzy sets theory experimentally true or not?” is nonsense.
|

Remark 1.3. (What should measurement theory be applied to?). Recall that MT is
a kind of epistemology called “the mechanical world view”, namely, an epistemology to
understand and analyze (moreover, control) every phenomenon by an analogy of mechan-
ics. In this sense, MT may be applied to everything. However, it is certain that some
problems (or phenomena) are fit for “the mechanical world view”, but others are not.

Thus, we have the following question.
(Ig) What phenomenon should measurement theory be applied to?

The following fields are generally believed to be fit for “the mechanical world view” to

some degree.

(I7) the fields in informatics-related engineering, e.g., information engineering, admin-
istration engineering, mathematical psychology, statistical medicine, mathematical
economics, financial engineering, cognitive engineering, quality control engineering,

chaotic engineering, electrical circuit engineering 9 etc.
And further, we add
(I3) statistical mechanics, fluid mechanics, etc®

though the two are usually believed to belong to theoretical physics. As mentioned later
(i.e., the footnote under (Iy3)), the theories in (C5) in Table (1.7) should be studied by

several methods (and not only by “the mechanical world view” (= MT)). Also, we say

9For example, the distinction between “electrical circuit engineering” in (I7) and “circuit theory” in
(I4) may be ambiguous. However, we want to say “MT itself is not engineering but the mathematical
representation of “the mechanical world view”.

0Boltzmann’s statistical mechanics will be discussed as one of applications (of MT) in Chapter 4.
Therefore, there is a reason to call “theoretical physics” [resp. “theoretical informatics”| “the first
physics” [resp. “the second physics”] .
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(Iy) It is too optimistic to consider that the completely precise theory exists in (1) and
(Is). However, the theories in (I7) and (/g) may be “almost experimentally true” to
such a degree that they are assured to be “useful”. That is, every theory in (1) and
(Ig) is, more or less, ambiguous. Although the challenge to make a precise theory
should be worthy of praise, what is most important is not “precise” but “useful” in

engineering.

Remark 1.4. (Aristotles and Plato). As mentioned before, theoretical physics must be
always checked by experimental tests. That is, it is based on realism (i.e., the Aristotles
spirit). On the other hand, recall that the experimental test for MT is nonsense. There-
fore, we can not deny MT by any experimental tests'! Thus, we may agree to the

opinion that

“MT is self-righteous”.

In this sense, we cay say that MT is based on idealism (i.e., the Plato spirit)!? However,
it does not imply “unfair”. That is because, if some want to deny MT, it suffices to

propose another fundamental theory better than MT. Here,
(I10) the question:“Which is better?” is decided by majority (or popularity).

Here it should be noted that to win popularity is as difficult as to find the truth. Also, as
mentioned in (Iy), we can expect that every theory in (I;) and ([g) is “almost experimen-
tally true” That is because, if it is not “almost experimentally true”, it can never win
popularity.

|

UThus, T assume that MT itself is a kind of metaphysics (and not science in the sense of Popper [70],
“falsifiability” ).

121f T were familiar with the history of philosophy, I could stress the correspondences: “theoretical
physics (realism) < Aristotles” and “theoretical informatics (idealism)«—Plato”
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Summing up, we assert the following table:

Table (1.8b)
Theoretical Physics Theoretical Informatics
(6). important criterion experimentally true or false useful or not, likes or dislikes
(cf. Remark 1.1 (e), Remark 1.4) objective popularity, economical, subjective
(7). theoretically meaningful in ‘TOE’ meaningful in MT
true or false
(¢f. Problem 1.2 (i),(ii))
(8). what to be applied to physical phenomena all phenomena (particularly,
(¢f. Remark 1.3) appearing in (I7) and (Ig))
(9). fundamental spirit realism (due to Aristotles) idealism (due to Plato)
(¢f. Remark 1.4) Theory is dominated by experiment. Theory is free from experiment.

1.3 Measurement theory in engineering

As mentioned in (/) in §1.2, MT plays an important role in engineering. The theo-
retical physics (= ‘TOE’) itself may be worthy even if it has no applications. However,
MT is not so. Thus, in this section, we consider the relation between engineering and
MT. Here, engineering is usually considered to be composed of physics-related engineering
(e.g., laser engineering, etc.), chemistry-related engineering (e.g., chemistry engineering,
etc.), informatics-related engineering (e.g., financial engineering, etc.), etc.

The area of physics-related engineering is clear. That is because the physics-related
engineering is generally believed to be supported by “physics” as the theoretical backbone.
We studied physics as one of the important subjects in high-school, and therefore, we
believe that theoretical physics is only one discipline, i.e., classical mechanics, relativity
theory, electromagnetic theory and so on that should be unified. That is, physics-related
engineering has the authorized root (= physics). Also, note that the circumstance of
chemistry-related engineering is similar to that of physics-related engineering.

On the other hand, the area of informatics-related engineering may be vague. This
is due to the fact that we do not know the most fundamental root in informatics-related
engineering. Note that there is a possibility that informatics-related engineering has
two (or more than two) fundamental roots. If it is so, we must consider “informatics-
related engineering (I)” and “informatics-related engineering (II)” (¢f. Remark 1.1 (b)).

Therefore, we must answer the following question:

(I17) What subject is the most fundamental in informatics-related engineering? (Or, is

theoretical informatics the only one?)
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Of course, our answer is
(I12) MT is the most fundamental theoretical backbone in informatics-related engineering.

MT (or, theoretical informatics) is not studied in high-school. However, statistics and
differential equations (which are closely related to MT (i.e., Axioms 1 and 2 in (1.4a)))
are studied as mathematics in high-school. In this sense, theoretical informatics is not
underestimated in high-school education.

Thus we have the following table.

Table (1.9)

\ H fundamental subject \ area (applications) \

physics-related physics | (mathematical) semiconductor engineering,

engineering experimental test is possible laser engineering, etc.

chemistry-related chemistry | (non-mathematical) | chemical engineering

engineering experimental test is possible

informatics-related || |MT| (mathematical) Cf. (I7) and (Iy)

engineering experimental test is meaningless

Thus we conclude that

(I13) The area of informatics-related engineering is roughly'3determined by MT (= “the-
oretical informatics” ), just like the area of physics-related engineering is roughly

determined by physics. Also, recall (I5).

That is, we say:

Appl
’ physical phenomena‘ M?% ‘ theoretical physics (=‘TOE’) A%ET’ physics-related engineering‘
(1.10)
- . R . : Appl : —
’ mechanical world view ‘ :}g theoretical informatics (= MT) AZEET ’ informatics-related engineering ‘
where “M.R.” = “mathematical representation”, “ET” = “experimental test” (cf. Prob-

lem 1.2 (i)), “Appl” = “Applications” (¢f. Table (1.9)), “PP” = “popularity” (c¢f. (I10)),
“AET” = “almost experimentally true” (cf. (Io) in §1.3).

13For example, mechanical engineering is closely related to physics. However, control theory (in (Cs)
of Table (1.7)) plays an important role in robot engineering (which is a kind of mechanical engineering).
Also, electrical circuit engineering may be close to electromagnetic theory as well as dynamical system
theory. Thus, such a classification of engineering (presented in Table (1.9)) is somewhat forcible. That
is because “Use everything available” is the engineer’s spirit. Thus we must say that physics (as well as
measurement theory) is more or less influential to every field in (I7) and (Is). However we can, at least,
assert that physics, chemistry and MT are the most fundamental subjects in the faculty of engineering.
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Here again note that

(I14) Theoretical physics has to be precise. On the other hand, engineering has to be
useful rather than precise. Since ambiguous statements can not be tested “exactly”,

we use the term : “AET (= almost experimentally true)” in the above (1.10).
Thus we see

(I15) There is a possibility that a phenomenon has two (or, more than two) explana-
tions in MT. And moreover, in this case, we may not choose one from the two by

experimental tests but a sense of beauty (= like or dislike).

1.4 The spirit of “the mechanical world view”

We think that “measurement”, “its philosophy” and “its applications (& informatics-
related engineering)” should be regarded as “the Trinity” And we assert the following

declaration, which was essentially proposed in [Ishikawa, 2002, [48]].

Declaration (1.11)

We assert the following (i) ~(iii), which should be understood as the different represen-
tations of the same thing:

(i) MT is the most fundamental theory of theoretical informatics, which is regarded as
the theoretical backbone of informatics-related engineering.

(ii) MT is the ultimately generalized form of the dynamical system theory (1.2). Thus,
MT is regarded as the mathematical representation of the epistemology called “the
mechanical world view” And thus, MT is sometimes called the general dynamical
system theory (or in short, GDST).

(iii) MT is entitled to check all theories in theoretical informatics. In other words, we can,
by using MT, introduce the criterion: “(theoretically) true or false” into theoretical
informatics.

Here, note that:

e in this book, “the mechanical world view” means “the quantum mechanical world

view” and not “the Newtonian mechanical world view”.
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We might say too much in this chapter. It may suffice to say

The spirit of “the mechanical world view” (1.12)

e Mind Declaration (1.11) and Tables (1.7) and (1.8). And further, at
any rate (= setting aside the reason), study every (physical or non-
physical) problem in the framework of MT.!

Summing up, we have “the Trinity” as follows:

the mechanical world view
(philosophy)

the Trinity

measurement theory informatics-related engineering
(mathematical theory) (applications)

Here, again note that the philosophy of “theoretical informatics” is completely different
from that of “theoretical physics”, Although it is a matter of course that it is impossible
to understand the philosophy of measurement theory without the complete knowledge of
measurements (i.e., the contents of Chapters 2 ~ 12), the philosophy of measurement

theory is also indispensable for the understanding of measurement theory.

Remark 1.5 (Another important problem)  The problem:

(I16) “Propose ’The third mathematical scientific theory‘ in (Cy) of Table (1.7)”

14 As mentioned in Remark 1.4, we do not necessarily need a perfect reason in theoretical informatics.
In this sense, the term: “extensive interpretation” is one of the most important terms in theoretical
informatics.
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may be the most important. I think that the above problem (Iy6) is so difficult. Thus I

may prefer waiting the appearance of a genius to doing it ourselves'®

15 As mentioned in this chapter, our purpose may be, briefly speaking, to study all fields which can be
understood in terms of “measurement (i.e., Axioms 1 and 2)” In this sense, Frieden’s challenge [24] is
also interesting. His purpose seems to study all fields (of physics) which can be understood in terms of
“Fisher information” Although we do not completely understand his theory, we expect that his theory
may be one of the candidates of ’ The third mathematical scientific theory ‘ We never hope that MT is
the only one mathematical theory that belongs to the category of “idealism”
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Chapter 2

Measurements (Axiom 1)

Measurement theory (MT) is classified two subjects, i.e., “(pure) measurement theory (PMT)” and

“statistical measurement theory (SMT)” That is,

MT (=“measurement theory”) {

PMT (=*“(pure) measurement theory”) in Chapters 2 ~ 7

SMT (=“statistical measurement theory” in Chapters 8 ~)

PMT is essential, and it should be noted that there is no SMT without PMT (c¢f. Chapter 8). In

Chapters 2 ~ 7, we devote ourselves to PMT, which is formulated as follows:

PMT = measurement + the relation among systems in C*-algebra

[Axiom 1 (2.37)] [Axiom 2 (3.26)]

In this chapter we intend to explain “measurement (= Axiom 1)? (In Chapter 3 we will devote

ourselves to Axiom 2 (i.e., “the relation among systems”).)

2.1 Mathematical preparations

The theory of operator algebras (i.e, C*-algebra and W*-algebra) is a convenient

mathematical tool to describe both classical and quantum mechanics (cf. [76]).

our theory is described in terms of C*-algebras. Since our concern in this book is mainly

concentrated on classical systems and not quantum systems, it may suffice to deal with

only commutative C*-algebras. In fact, most of our main results are related to classical

systems. However, recall (1.4), that is:

=“Apply Axioms 1 and 2 to every phenomenon by an analogy of

quantum mechanics”

15
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Thus we think that the essence of measurements can not be appreciated deeply without
the knowledge of quantum measurements. In fact, the concept of measurements was first
discovered and formulated by M. Born [13]' as the most fundamental concept in quantum
mechanics. Thus, we begin with general C*-algebras, in which both classical and quantum
systems are formulated?

Let A be a linear associative algebra over the complex field C. The algebra A is called
a Banach algebra if it is associated to each element T" a real number ||T'||, called the norm

of T, with the properties:

(i) ||| =0, (ii) ||7]| = 0 if and only if T' = 0, (i.e., the O-element in A),
(i) 7+ S < ITI+[1S1, - @) AT = AT, A € C,
V) |TS]| < |||l - ||S]l, (vi) A is complete with respect to the norm || - ||.

A mapping T — T* of A into itself is called an involution (and T* is called the adjoint

element of T) if it satisfies the following conditions:
(i) (T")* =T, (i) (T+S)"=T*+ 5%, (iii) (T°9)* = S*T™,
(iv) (\T)* = \T*, X € C.

A Banach algebra with an involution * is called a Banach *-algebra.
Definition 2.1. [C*-algebra, identity, commutative C*-algebra]. A Banach *-algebra A
(with the norm || - ||a) is called a C*-algebra if it satisfies the C*-condition, i.e., ||[T*T|| =
|T||? for any T € A. A C*-algebra A does not always have the identity element I (i.e.,
IANT =TIn =T for all T € A), though in this book we usually suppose that a C*-algebra
A has the identity element In. A C*-algebra A is called unital, if it has the identity
element In. Also, a C*-algebra A is called commutative, if it holds that T\Ty = TyT)
(VI1, T, € A).
|
An element F'in A is called self-adjoint if it holds that F' = F™*. A self-adjoint element
F in A is called positive (and denoted by F' > 0) if there exists an element Fy in A such

'He proposed his theory in 1926, and he won the Nobel prize of physics in 1954.

2 am afraid that the mathematical preparation (in this section) discourages readers to want to read
this book. Thus, it may be recommended to skip to Example 2.16 firstly. In order to read this book, it
suffices to understand Example 2.16.
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that F' = F{jF, where F{ is the adjoint element of Fp,. Also, a positive element F is called
a projection if F' = F? holds. Let A* be the dual Banach space of A. That is,

A*={p|p: A— Cis continuous linear }

with the norm ||p|la« ( = sup{|p(F)| : ||F|la < 1}). <The linear functional p(F') is

sometimes denoted by ,. <p, F>A> Define the mized state space &™(A*) such that:

&"(A") = {pe A [l

a- =1 and p(F) > 0 for all F' > 0}. (2.4)

A mixed state p ( € ™ (A*)) is called a pure state if it satisfies that “p = 0p; + (1 — 0)ps
for some pq, ps € 8™ (A*) and 0 < 6 < 17 implies “p = p; = py”. Define

SP(A") = {p’ € G"(A") | p¥ is a pure state}, (2.5)

which is called a state space (or pure state space, phase space). Note that &™(A*) is
convex and compact in the weak* topology o(A*;A). Also, GP(A*) is characterized as
the set of the extreme points of &™(A*). (Cf. [92, 76]). Since &G”(A*) is the closed set of
S™(A*), the GP(A*) is also compact in the weak® topology.

The following Examples 2.2 and 2.3 will promote the understanding of Definition 2.1.
Example 2.2. [Commutative C*-algebras; C'(Q2), or generally, Cy(Q2)]. When A is a
commutative C*-algebra, that is, T} - To = Ty - T} holds for all T}, T, € A, by Gelfand
theorem (cf. [74, 76]), we can put A = C(Q), the algebra composed of all continuous
complex-valued functions on a compact Hausdorff space (). <If the commutative C*-
algebra A is not necessarily assumed to be unital, we can put A = Cy(€2), the algebra
composed of all continuous complex-valued functions vanishing at infinity on a locally
compact Hausdorff space Q> The norm || f|lc) is, of course, defined by ||f|c) =
max{|f(w)| : w € Q} (Vf € C(2)). Also, we can easily see that it satisfies the C*-
condition, i.e., || f - f*|lcw@) = HfH?C(Q) where f*(w) (= m) is defined by the conjugate
“Re[f(w)] — Im[f(w)]i” (Vw € Q) (where Re is “real part”, Im is “imaginary part”). It
is well known (i.e., Riese Theorem) that C'(2)* = M(2), i.e., the Banach space composed

of all regular complex-valued measures on €. And therefore,

" (M) = {p e M(Q) | p = 0, [Ipllme) = 1}, (2.6)
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which is denoted by M7, (€2). Also, it is clear that
SP(M(2)) = {5w € M(9) | 0, is a point measure at w € €2 } (2.7)

(i.e., M(Q><5w>f>cm) = f(w) (Vf € C(Q), Vw € Q)), which is denoted by M¥ (), and
called a state space. And therefore, we have the identification: Q ~ M%,(Q) in the sense

of
Q3w 6, € M7,(Q). (2.8)

Thus the compact Hausdorff space {2 may be also called a state space.

|
Example 2.3. [Non-commutative C*-algebras; B(V') and C(V')]. Let V' be a (separable)
Hilbert space with the inner product (-,-);,. Here we always assume that (vq, avq)y =

alv,va)y (Yo, ve € Via € C). (Cf. [4, 71].) Put
B(V)={T : T is a bounded linear operator from a Hilbert space V into itself }.?

Define |T||pvy = sup{||Tv||v : |jv|lv = 1}, and (T171%)(v) = T1(Tov) (Vv € V). And
T* is defined by the adjoint operator of 7. Note that it holds that | T*T'|| gy = |||
(VI € B(V)). Thus, we can easily see that the B(V') is a non-commutative C*-algebra.
Also note that

C(V)={T € B(V):T is a compact operator } (2.9)

is a C*-subalgebra of B(V'). If the dimension of V is infinite, this C*-algebra C(V') has
no identity I. We see that

e(V) =Tr(V)(={T € B(V) : |Tll < o0}). (2.10)
Here Tr(V) is the class of trace operators with the trace norm || - || such that:
Il = S {ens V7 €nly
n=1

where {e,,}5°, is the complete orthonormal system in V. It is well known that the value
||l is independent of the choice of a complete orthonormal basis {ex|A € A} in V. And

we see

S™(E(V)) = Tr (V) = {p € Tr(V) - p 2 0, pllr) = 1. (2.11)

3“hbounded linear operator” = “continuous linear operator” (cf. [92])
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And further,
(Tr(V))" = B(V).

Also, it is well known that
“pe &P(C(V)")" & “there exists Y € V (||¢|, = 1) such that p = [¢)(¥|7  (2.12)
where the Dirac notation “|¢y)(¢2|” < € B(V)), Y1,1y € V, is defined by

([L1)(Ya])p = (2, )1 forall g € V.

The state space &P(C(V)*) is denoted by T, (V'), that is,
SPEeV) ) =Tt (V).

Also, it is well-known that “p € &™(C(V)*)” < “there exists an orthonormal system
{tn}22, in V and non-negative real numbers {\,}22, (where > >, A\, = 1) such that
b= X5 Al (W
|

The following theorem is one of the most important theorems in the theory of operator
algebras.
Theorem 2.4. [GNS-construction, Gelfand, Naimark, Siegel, ¢f. [50, 76]]. Let A be a
C*-algebra. Then there exists a B(V') such that:

AC B(V). (2.13)

That is, A can be identified with the norm-closed C*-subalgebra of a certain B(V).
|
Example 2.5. [Commutative C*-algebra MatP(n; C) as the subalgebra of B(C")]. Let

C" be an n-dimensional Hilbert space with the inner product (-,-)c» (that is, ||z]cr =
V2 opey 262 (V2 = (21, 22, ..., 2,) € C")). Consider the non-commutative C*-algebra

B(C") ={T : T is a (bounded) linear operator from a Hilbert space C" into itself },
which is clearly equal to

Mat(n; C) ={T : T is a complex (n X n)-matrix }. (2.14)
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That is,
B(C") = Mat(n; C).
Put

MatP(n; C) = {T : T is a complex (n x n)-diagonal matrix }, (2.15)

which is clearly a commutative C*-subalgebra of B(C™). Also, it is obvious that the
MatP(n; C) is equivalent to C'(€2), where Q is the finite state space ({1,2,...,n}) with the

discrete topology* That is, we see the following identifications:

MatP (n; C) ~ C({wi,ws, ...,wn}) = C"

max

where C™ is assumed to have the max-norm ||z || &% < =maxy_12..n |2k (V2= (21,22, ..., Z0)

€ C”)) Also, the multiplication (z{, 23, ..., 2}) - (2%, 23, ..., 22) is defined by (z{2%, 2323, ...,

cy A cy A

[ |
Remark 2.6. [(i): The identity]. Let Aj be a non-unital C*-algebra. Theorem 2.4 (The
GNS-construction) says that there exists a B(V') such that Ay C B(V'). That is, A can
be identified with the norm-closed subalgebra of B(V'). Thus we can define the C*-algebra
Ay such that it is the smallest algebra that includes {/} U Ay ( € B(V)). Therefore, we
can always add the identity I to Ag, and construct the new unital C*-algebra A;. This
argument implies that the “unital condition” is not so strict. Thus, throughout this book,
we usually deal with a unital C*-algebra, though the Cy(£2) is sometimes used.
[(ii): Minimal tensor C*-algebras]. Here consider the minimal tensor C*-algebra as follows:
Let A ( = Ax ) be the tensor product C*-algebra of {Aj : k=1,2,...,n}. This can
be easily constructed as follows: Since we can see, by Theorem 2.4 (GNS-construction),

that
Ar CBWVy)  (k=1,2,...n), (2.16)

we can define ),_, Ay, such that the smallest norm-closed sub-algebra (of B(Q);_, Vi))

that contains
{@Fk<eB(®Vk)> (Fk eAk,kzl,Z,...,n} (2.17)
k=1 k=1

4Throughout this book, we assume that a finite state space Q (= {w;,ws,...,w,}) has the discrete
metric dp (i-e., dp(wy,w2) =1 (w1 # wa), =0 (w1 = wa)).
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where @;_, Vj, is the tensor Hilbert space of {V} | k = 1,2,...,n}. Though the general

21

theory of tensor product C*-algebras ),_, Aj is not easy, we only use the following

properties (i)~(iii) of the tensor C*-algebras:
) Tehw---T, A for any T, € A, k=1,2,...,n,
(il) p1 @ pa @ @ p, € GP(A*) for any py, € SP(A;), k=1,2,...,n,

(i) (MM ®pa®@-Qpy) (MMRTL®@---®T,) =i pr(Tk) for any p, € A; and any
T, € A, k=1,2,...,n.

If we focus on only commutative cases, it is sufficient to know the fact that

n

QRCu)=C(X Q) and QM) =M( X ), (2.18)
k=1 k=1
k=1 k=1
where X Z:l Q) is the product topological space of €2,...,82,,. Therefore, for example, the

above (iii) implies the elementary property of product measure (Fubini’s theorem), i.e.,

/ fi(w1) - fa(wa)(p1 @ pa)(dwidws) = [ fi(wi)pi(dwr) - [ fa(wa)pa(dws)
Q1 xQo 921 Qo

(Vi€ C(th), Vfr € C()). (2.19)

For the deep studies of “tensor C*-algebra’, see [50].

2.2 Observables

Let X be a set. Let 2% (or, P(X)) be the power set of X. ie., 2¥ = {=2| = C X}.
A set F( C 2%) is called a field if the F is closed under the intersection (i.e., N) and the
compliment (i.e., [ - ]°), that is, if “Z;, 5 € F” implies “=; N Ey € F’ and “=f € F7,
where Z{ = X \Ey = {z |z € X Az ¢ Z;}. Note that Z U=y = (E{NE5)°, =1 \ Zp =
E1NE§and Z) AZy = (21 UEy) \ (21 NEy). Thus the field F is also closed under the
operations U, \ and A.

Also, a set R( C 2%) is called a ring if the R is closed under the intersection (i.e., N)

and the symmetric difference (i.e., A), that is, if “Z;, Z5 € R” implies “=; NZEy € R” and
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“Z, AZ, € R7 Note that 5, UZ, = (5, AS) A (E1N5,), 51\ 5 = 5, A (51N 5y).
Thus the ring R is also closed under the operations U and \ (¢f. [29]).

Motivated by the Davies’ idea (in quantum mechanics, ¢f. [17]), we propose the
following definition.
Definition 2.7. [ C*-observables in a unital A]. A C*-observable ( or in short, observable,
fuzzy observable) O = (X, F, F) in a unital C*-algebra A is defined such that it satisfies
that

(i) [field]. X is a set (called a “measured value set” or “label set” ), and F is the subfield
of the power set P(X) (={2: = C X}),

(i) for every Z € F, F(Z) is a positive element in A such that F(()) =0 and F(X) = Ia
(where 0 is the 0-element in A),

(iii) for any countable decomposition {Z;, =2, ...,Z,, ...} of Z, (i.e., =2, e FU E, =

L E, N E, = 0(ifn # m)), it holds that p(F(E)) - limN_)oop<ZT]:7:1F(En))
(Vp € 8™(AY)).

[1]

Also, if F(Z) is a projection for every = ( € &), a C*-observable (X, J, F') is called a crisp
C*-observable (or, a crisp observable, an idea).

|
Remark 2.8. [(1): The case that X is finite]. In chapters 2~8, we will usually deal
with the case that X is finite. When we want to stress that X is finite, the (X, F, F') is
often denoted by (X, 2%, F) or (X, P(X), F'). Thus, in this case, the (iii) in Definition 2.7

means
F(E,USy) = F(Z)) + F(Z) (VE1,VZ,(€ 2%) such that 2, N Zy = ().

[(2): C*-observables in general C*-algebras|. Although we are usually concerned with
unital C*-algebras, we add the generalization of Definition 2.7 as follows: Let A be a
C*-algebra, which does not necessarily have the identity I. A C*-observable ( or in short,
observable, fuzzy observable ) O = (X, R, F) in a C*-algebra A is defined such that it
satisfies that

[1]

(i) X is a set, and R is the subring of the power set P(X) ( ={

¢

: 2 C X}), that is,
‘21,29 € R” implies “Z1NZy € R” and “Z1 A2y € R7]
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(i) for every = € R, F(Z) is a positive element in A such that F(()) = 0 (where 0 is the
0-element in A),

23

(iii) for any countable decomposition {Z1,Zs, ...,Z,,...} of Z, (£, =, € R), it holds that
p(F(3) = limyocp( )1 F(E0)) (¥ € G7(A7)),

(iv) there exists a sequence {Z°}°° | in R such that =9 C =) C --- and X = U2 =0

and limn_,oop<F(59L)> =1 (Vpe &m(AY)).

Also, if F(E) is a projection for every = ( € R), a C*-observable (X, R, F') is called a crisp
C*-observable.

Definition 2.9. [Image observable]. Let O = (X, JF, F') be an observable in a C*-algebra
A. Let G be a subfield of 2¥. Let h : X — Y be a measurable map, i.e., h"(T') € F
(VI' € §). Then, we can define the observable Oy, (= (Y,G,F o h™')) in A such that:

(Foh™H)(I)=F(hYI) (T'€9). (2.20)

The Oy = (X, F,Goh™) is called the image observable of O = (Y, G, G) (in a C*-algebra
A) concerning the map h : X — Y. The image observable Oy, is also denoted by h(O).

|
Definition 2.10. [Quasi-product observable]. For each k = 1,2,...,n, consider an ob-
servable Oy = (X, Fy, Fy) in a C*-algebra A. Define the field @, _, Fr ( C 2X::1X’€)
such as the smallest field (on X _, X)) that contains X,_,Zy, Z, € F. The prod-
uct field Q,_, Fi, is usually denoted by Xy T (Throughout this book, the nota-
tion X, _, F;, does not mean the set { X, _|Z; : Zx € Ty }) An observable O =
(X7, X, X, Fi, F) in A is called the quasi-product observable of {Oy : k = 1,2, ..., n}
<or, quasi-product observable with marginal observables {Oy : k = 1,2, ..., n}> if it holds
that

~

F(Xl X oo X Xk—l X Ek X Xk-‘,—l X X Xn) = Fk(Ek) (VEk € 9k,Vk = 1,...,”).

(2.21)
The quasi-product observable O (of {Ox}}_,) is denoted by
ap $ " ap § = ap
X Ok, or, < X X5, X gjk, X Fk>, or ( X Xk7®§k> X Fk>, (222)
k=1,2,...,n k=1 k=1  k=12..n k=1 = k=l2en
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i.eA., 0 = (;?k:m ,,,,, 2Ok, F = (;?k:m ,,,,, wFl. Also, (;Ek:m ,,,,, oFy 1s sometimes written by
xk0=1,2 ..... nF-

]

Note that the existence and the uniqueness of the quasi-product observable of {Oy, :

k =1,2,...,n} are not guaranteed in general. However, when Oy, k = 1,2, ..., n, commute,

ie.,
Fk(Ek)Fk/(Ek/) = Fk/(Ek/)Fk(Ek) for all =, € F, = € Fyr such that k 75 K , (223)

we can construct the quasi-product observable ( X _; X5, X _; Fy, F ) in A such that:

F(El X EQ X e X En) = Fl(El)FQ(EQ) s Fn(En> (224)

This kind of quasi-product observable is called a product observable and denoted by

k:172 ..... n = = k=1

>< Ok <: X Ok, or, ( >< Xk, >< 9:]“ X Fk), or, ( X Xka®9:k; >< Fk),>
k=1 k=1 k=1 k=1 el
(2.25)

X h_, is sometimes written by []r_,, and thus, we write: X,_, Op = [[r_; O, X4 Xi
= [],_, X, etc. Also, note that the product observable X _; Oy, always exists for any
O in a commutative C*-algebra C(2).

Summing up the above arguments, we can state the following theorem.
Theorem 2.11. Foreachk € K = {1,2,...,|K|}, consider an observable Oy = (Xy, Fy, F)

in a C*-algebra A. If the commutativity condition:
Fkl (Ekl)sz(Ek2> = sz (Ek2)Fk1 (Ekl) <VEk1 € 351617 VEkz € gjkzu k1 7£ k2) (2'26)

holds, then we can construct a product observable 0 = ( Xrer Xk, Xper Fr, F =

X ek Fy) such that:

F(E1 X Ep X X Ejg)) = Fi(E1) Fa(Z2) - - Fig)(Exy)- (2.27)
Note that the uniqueness (of quasi-product observables) is not guaranteed even under the
above commutativity condition. Also, note that the product observable X ,_, Oy, always
exists for any Oy, in a commutative C*-algebra C({2).
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Theorem 2.12. Let O = (X, R, F) be a C*-observable in a general C*-algebra A (i.e.,
it does not necessarily have the identity). Let A, be a C*-algebra with the identity [

25

(generated by the A such as in Remark 2.6(i)). Then, there uniquely exists the observable
(X, 9, F) be a C*-observable in Ay such that:

(i) F=RU{X\T|TeR}

) ~ F(Z) (EeR)
(1) FE) = { I-F(E) E=(X\E)eR)

Proof. 1t suffices to show that F is the field. Let =; € Rand =5 € {X \ ' | I' € R}.
Thus Z5 = X \T' ( for some I' € R). Then, wesee Z;N=Zy =Z,N(X\I) ==ZN(E\TI)
€ F. Also, 51 UEy = (E{NES° = (E5ND) = (I'\E)° € F. Also, it is clear that
“ZeF = “E°e€ F? Thus, we see that F is the field. n

The following theorem (and Theorem 9.8) will be often used throughout this book.
Theorem 2.13. [cf. [42]]. Let A be a C*-algebra. Let O = (X1,31, F}) and Oy =
(Xo, Fa, Fy) be C*-observables in A such that at least one of them is crisp. (So, without

loss of generality, we assume that O is crisp). Then, the following statements are

equivalent:

(i) There exists a quasi-product observable O3 = (X7 X Xo,F; X Ty, Fy gg Fy) with

marginal observables O and Os.
(11) 01 and 02 commute, that jS, F1<51)F2(52) = FQ(EQ)Fl(El) (\VIEl S 3717VEQ < ?2)

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product
observable Oy of Oy and O, is guaranteed.

Proof. 1t suffices to prove it in the case that A has the identity. When Oy = (X1, 1, F1)
and Oy = (Xy, Fy, Fy) are both crisp observables, it is proved in [17]. By the same way, we
can prove this theorem. It is clear that (ii) = (i) since we can construct a C*-observable
(X1 x Xo,F; X Fy, H) such that:

H(El X Eg) = Fl(El)FQ(EQ) (VEl c 9:1,V52 S 9:2)

Thus, it suffices to prove that (i) = (ii). Assume that (i) holds. Let =, and =5 be any
element in F; and F, respectively. Put =} = =}, 22 = X|\Z;, =1 = =5 and 23 = X,\Z,.

Put H = F} gg F,. Note that:

0< H(E x =) < H(X, x E) = Fy(Z)) (= “projection”). (2.28)
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This implies that H(Z} x Z3) and F5(Z}) commute, and so, H(Z} x =) and I — Fy(Z))
commute. Hence, Fy(Z;) (= H(Z} xZ1) + H(Z] xZ2)) and F5(Z,) (= F»(Z})) commute.
Therefore, we get that (i) = (ii).

Next we prove the uniqueness of H under the assumption (i) (and so (ii)). Note that
0 < H(ZE! x ) < H(Z! x X5) = Fy(Z%). This implies, by the commutativity condition
(ii) and (2.28), that

0< H(Z! x B)) < Fy(E))FL (B2 Fy(Z)) = F1(Z2) Fa(Z)). (2.29)

Therefore we see that I = -, ., , H(Z] x =) < D =12 Fi(Z)Fy(Z)) = I. Then, we
obtain that H(Z; x Z3) = F1(Z1)F5(=Z2), that is, H is unique. Therefore, we finish the
proof. O

2.3 The meanings of observables and crisp observ-
ables

In the conventional classical [resp. quantum]| mechanics, the term “observable” usually
means a real valued continuous function on a state space Q0 [resp. a self-adjoint opera-
tor in B(V')]. Thus, the “observable” (defined in Definition 2.7) should be a kind of
generalization of the above conventional “observable” In what follows we will see it.

Now we shall consider the several aspects (and properties) of the observable O =

(X,F,F) in a C*-algebra A. Examining Definition 2.7, we can easily see

(A1) An observable O (= (X,J,F) ) in A can be regarded as the A-valued probability

space’, i.e., the additive set-function:

Fo=Ew— F(E) e A

Also, we may find the similarity between an observable O and the resolution of the identity
I in what follows. Assume, for simplicity, that X is countable (i.e., X = {x1,x2,...}).

Then, it is clear that

5In this book, the term “probability space” is used as “a positive measure space whose total measure
is equal to 17 That is, the term “probability space” is used as the pure mathematical concept, and thus,
it is not always assured to be related to the concept of “probability”
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(i) F({zx}) > 0forall k =1,2,...
(i) Y ope, F({xk}) = Ia in the sense of weak topology of A,

which imply that the [F({z;}) : k= 1,2,...,n] can be regarded as the resolution of the
identity element In. Thus we say that

(A2) An observable O ( = (X,J,F) ) in A can be regarded as

“the fuzzy decomposition” (2.30)

that is, the resolution of the identity Ia, i.e., [F({zx}) : k=1,2,...,n].

“The figure of O = ({1, 7y, x5}, 2IFL2273}  F) in O(Q)”

[F({21 D)) P (e} () [F({w3 })](w)

Also, we note that

(A3) Anobservable O (= (X,, F) ) in A can be characterized as a kind of generalization

of a self-adjoint element in A.

This is shown as follows: For simplicity, assume that A = B(C"). And put

1 0 0
0 1 0
€1 = . 3 €y = . ) Ty EN = . (23]‘>
0 0 1
Thus we see that
1 0 ... 0 00 ... 0 00 ... 0
00 ... 0 o1 ... 00
lex)(ex] = ST I |e2)(ea] = Coe ;s lew)(en| =
0 0 0 0 0 . 0 00 1
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The spectral theorem says that a self-adjoint matrix F' ( € B(CN)) can be represented
by

MO .0

. 0 A ... 0
F=u|. '~ U

0 0 ... Ay
=U

VRS

Mler){er] + dalea) (eal + -+ + Awlew) (enl ) U

= M|Uen)(Ue,| (2.32)

where \, € R (Yn = 1,2,....N) and U is a unitary matrix in B(C"). For any =
(€ Br = “Borel field” )%, put
F(E) =Y |Ue)(Ueyl. (2.33)

An€2
Here it should be noted that F'(Z) is a projection for all = ( € Bgr). This implies the the
following identification:
F — (R,Bg,F) in B(CN)
(self-adjoint operator) (crisp observable) ’

(2.34)

That is because F is represented by (2.32), i.e.,

F= / AF(dN).
R
Next assume that A = C(2), where € is, for simplicity, assumed to be the finite set

{w1, ws,ws, ...,wy } with the discrete topology. Consider a real valued continuous function
F :Q — R. Define the observable (R, Br, F) in C(Q2) such that:
1 ifwe F Y3
[F(E)](w) = (Vw € Q, VE € Br). (2.35)
0 ifwegFY(Z)

Note that
~ N A~
F(w) = 3 Flwn) (IF{wnhl@) = S AFENI@) (=1 /R AF(@N)w)) (Y € Q).
n=1 AER
This implies the the following identification:
F — (R, Bgr,F) inC(Q) ‘ (2.36)
(real valued function on ) (crisp observable)

Therefore, we say, by (2.34) and (2.36), that

6«Borel field” = “the smallest o-field that contains all open sets”
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(Ay) “crisp observable (R, Bgr, F)” in A

oo “self-adjoint element” in A.
identification

<Where A = B(C") or A = C({wy,ws, ...,wN})>. Here, the “self-adjoint element” in A
( i.e., “crisp observable (R,Bg, F)” in A) is sometimes called a “quantity (or, system
theoretical quantity”) in A.

Remark 2.14. [OR (= operation research) and game theory]. In OR [resp. game
theory [85]], we are mainly concerned with the problem: “Study the maximal point [resp.

the saddle point] of F
|

2.4 Measurement (Axiom 1)

Under the mathematical preparations in the previous sections, now we can describe
the fundamental concepts of measurement theory (2.2) (=(1.4)).

With any system S, a C*-algebra A can be associated in which measurement theory of
that system can be formulated. A state of the system S is represented by a pure state p?
(€ BP(A*), i.e., a state space ). Also, an observable is represented by a C*-observable O
= (X,J, F) in the C*-algebra A" The measurement of an observable O for the system
S with (or, in) the state pP is represented by MA(O7 S[pp]) in the C*-algebra A. Also, we
can obtain a measured value x ( € X) by the measurement Ma (O, S[pp]).

The axiom presented below is analogous to (or, a kind of generalizations of) Born’s
probabilistic interpretation of quantum mechanics [13]. We of course assert that the axiom

is a principle for all measurements, i.e., classical and quantum measurements. Cf. [41, 42].

AXIOM 1. [Measurement axiom|. Consider a measurement M A(O =
(X,F,F), S[pp]) formulated in a C*-algebra A. Assume that the measured
value = ( € X) is obtained by the measurement My (O, Sy). Then, the
probability that the x ( € X) belongs to a set = ( € F) is given by pP(F(Z))

(= A*<pp,F(E)>A ). (2.37)

"I like to image the following correspondence (measurement theory and philosophy):

“state” < “matter” “observable” « “idea” (= “form” )
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We introduce the following classification in measurement theory:
classical measurement theory (for classical systems)
measurement theory (2.38)
quantum measurement theory (for quantum systems)

where a C*-algebra A is commutative or non-commutative.

Recall the (1.3), that is, quantum mechanics (cf. [71]) is formulated by

“quantum mechanics” ‘ = measurement + the rule of time evolution

(“Born’s quantum measurements” ) (“Schrodinger equation”)

(1.3)
Of course, Axiom 1 corresponds to “Born’s quantum measurements”. Note that quantum
measurement theory is well authorized as a principle of quantum mechanics (cf. [17, 34,
84]). Our interest in this book is mainly concentrated on classical systems. Therefore, in

most cases, it suffices to assume that A = C(€2).

2.5 Remarks

In this section we add some remarks concerning Axiom 1.
[(I): Probability]. It should be noted that the term “probability” appears in Axiom
1. Following the common knowledge of quantum mechanics (c¢f. [71, 84]), we believe
that any scientific statement including the term “probability” is meaningless without the

concept of “measurement”. That is, we say that
(8) “There is no probability without measurements”.

Throughout this book, the above spirit (#) is quite important.

[(IT): It is prohibited to take measurements twice|. The quasi-product observable
(or, the product observable) is used to represent “the measurement of (more than one )
observables” as follows: For example, consider “the measurement of O1 and Oy for the
system with the state pP (€ &P(A*))” If the quasi-product observable Oy (;302 of Oy and
0O, exists, the measurement is represented by MA(O]_;%)OQ, Sipr) <and not “Ma(Oy, Syr))

+ MA(OQ,S[pp})”>. If the quasi-product observable O; X 0O, does not exist, the mea-
surement does not also exist. That is, the symbol “Ma(O1, Sjr)) + Ma(Og, Spr)” is

nonsense. Thus we can say that
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(#) only one measurement is permitted to be conducted even in the classical measurement

31

theory.

qp
which is the well-known fact in quantum mechanics. The measurement Ma (01x 0,, 5 [pp])
is sometimes called a simultaneous measurement (or iterated measurement) of two ob-
servables O; and O,. That is, it is prohibited to take measurements twice in measurement

theory. For example, the following statement:
e “Take two measurements MA(Ol, S[pp]) and Ma (02, S[pp}).”

is prohibited.

[(IIT): Sample space]. Let p™ be a mixed state, i.e., p™ € &™(A*). Applying Hopf
extension theorem (cf. [92]), we can get the measure space (X, F, pm(F(-)) ) such that
P (F(2)) = p™(F(Z)) for all £ € F where F is the smallest o-field that contains F. For
simplicity, the p™(F(-)) is also denoted by p™(F(-)) or ,. <pm, F(- )> A- Axiom 1 makes
us call the measure space (X, F, pP(F(-)) ) <or in short, (X, JF, p?(F(-)) )> a sample
space concerning a measurement Ma(O = (X, F, F), Sir ).

[(IV): Conditional probability]. Let O = (X, F, F)) and O’ = (Y, G, G) be observables
in A. Let O be a quasi-product observable of O and O’, that is, 0=0 gg O =
(X XY, ¥ XG, F;lgG). Assume that we know that the measured value (z,y) (€ X xY)
obtained by a measurement Ma (O, Sier)) belongs to = x Y (€ F X G). Then, it is clear

that the unknown measured value y (€ Y) is distributed under the conditional probability

P=(-), where
o AP FEXGD), [ FFE)XGD)
EO=T e, \T e e

[(V): Commutativity and simultaneous measurability]. Let p” be a pure state,
ie., pP € GP(A*). Let O = (X,F, F) and O’ = (Y, G, G) be crisp observables in A. Now

we have the following problem:
e What is the simultaneous measurability condition of O and O’ for the fixed pP?
This is answered in [39] as follows:

e pP-commutativity, i.e., F(2)G(I")p? = G(I')F(Z)p?  forall= € F T €G.
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However, in this book we are not concerned with such arguments.

[(VI): Schrodinger’s cat paradox]. Note that Schrodinger’s cat does not appear in
the world of MT. Let us explain it as follows: In 1935 (cf. [77]) Schrédinger published
an essay describing the conceptual problems in quantum mechanics. A brief paragraph

in this essay described the cat paradox.

e Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a
poison gas bottle; further suppose that the atom in the cage has a half-life of one
hour, a fifty-fifty chance of decaying within the hour. If the atom decays, the Geiger
counter will tick; the triggering of the counter will get the lid off the poison gas
bottle, which will kill the cat. If the atom does not decay, none of the above things

happen, and the cat will be alive. Now the question:
(Q) We then ask: What is the state of the cat after the hour?
The answer according to quantum mechanics is that

(A) the cat is in a state which can be thought of as half-alive and half-dead, that
“Fig.(a)” +L(Fig'(b)77

2

is, the state such as

Fig.(a) Fig.(b)

I
poison gas tick !

Of course, this answer (A) is curious. This is the so-called Schrédinger’s cat paradox.

This paradox is due to the fact that micro mechanics and macro mechanics are mixed in
the above situation. On the other hand, as seen in (2.38), micro mechanics (= quantum
measurement theory) and macro mechanics (= classical measurement theory) are always
separated in MT. Therefore, Schrodinger’s cat does not appear in the world of MT, though

this may be a surface solution of Schrodinger’s cat paradox.
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2.6 Examples

Again recall the (1.4), i.e.,

“measurement theory (or in short, PMT)”

=[measurements| 4+ [the relation among systems| in C*-algebra A (2.39a)
“Axiom 1 (2.37)” [Axiom 2 (3.26)] (=(1.4a))

or more precisely,

= “Apply (2.39a) to every phenomenon by an analogy of quantum mechanics”

(2.39b)
(=(1.48))

Thus, in order to understand PMT, we need a little knowledge of quantum mechanics.
The following example is enough tested & and thus, it is the most firm in PMT
Example 2.15. [(i): The spin observable concerning the z-axis, Stern and Gerlach’s
experiment]. Assume that we examine the beam (of silver particles) after passing through
the magnetic field. Then, as seen in the following figure, we see that all particles are

deflected either equally upwards or equally downwards in a 50:50 ratio.

“Stern and Gerlach’s experiment (1922)”

S T2
silver particle
®
7 = |Gl
N L
screen

Consider the two dimensional Hilbert space V' = C?, And therefore, we get the non-

commutative C*-algebra A = B(V'), that is, the algebra composed of all 2 x 2 matrices.

8A lot of tests of quantum mechanics have been conducted. Especially Aspect’s experiment [8] is
well authorized. (Cf. §2.9 Bell’s inequality)  Recall that “quantum system theory” C “PMT” Thus,
quantum mechanics must be enough tested though the experimental test of PMT is generally meaningless.
(Cf. Remark 1.1(e).)
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Note that A = B(V) = (V) = €;(V) (¢f. Example 2.3 and Remark 2.6 (i)) since the
dimension of V is finite. Define O = (Z,2%, F'%), the spin observable concerning the

z-axis, such that, Z = {1, |.} and

P =g o] b= Y- (2.40)
. 0 0 . 1 0]
Fo -y o Fan =y .

For example, consider the measurement M p(c2) (OZ = (Z ={1.,1.},2%, F?), S[pp}), where

7=

the measurement MB(Cz)(OZ = (Z={1.,1.},2%,F?), S[pp})

, |a|* + |B|> = 1. That is, consider

( = “the measurement of the observable O* for a particle with the state p?” )

Then, the probability that the measured value “1,” [resp. “].”] is obtained by the mea-
surement Mp(c2)(O?, Spr) is given by pP(F*({1.})) = |af? [resp. p?(F*({l.})) = |8]*.
Thus, if 7 = [}j Vel ) Ej“fi we see that p(F*({1.})) = 1/2 fresp. p(F*({1.})

= 1/2]. For the further argument, see §2.9 (Bell’s thought experiment).
[(ii): The other spin observables]. Also, we can define O = (X, 2%, F'?), the spin observ-

able concerning the x-axis, such that, X = {1,, |.} and

P = Ve ) T = | 1] 2.1

And furthermore, we can define QY = (Y,2Y, F¥), the spin observable concerning the
y-axis, such that, Y = {1,, |,} and

Py =2 Vel =11 TR 2.2

where 1 = /—1.
[ |

The following example (= “urn problem” ) is the most important in the classical PMT,

though it is somewhat artificial. That is, we believe that it is not too much to say that

e the probability in Axiom 1 for classical systems is essentially the same

as the probability in the following urn problem. (2.43)
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However, it should be noted that no serious test for the urn problem has been conducted?
It is generally considered to be self-evident without serious experiments. Recall that
theoretical informatics does not require serious experiments (cf. §1.4).

Example 2.16. [The urn problem (i)]. There are three urns Uy, Us and Us. The urn U,
[resp. Us, U;] contains 8 white and 2 black balls [resp. 4 white and 6 black balls, 1 white
and 9 black balls]. That is,

’ H white balls ‘ black balls ‘
urn U 8 2
urn Us 4 6
urn Us 1 9

(2.44)
Here, consider the following measurement M:
M5 = “Pick out one ball from the urn Us,, and recognize the color of the ball”

In measurement theory, the “measurement” Ms is formulated as follows: Define the state

space €2 by Q = {w;,ws,ws}. Here,
wi=1[8:2], we=[4:6], ws=[1:9]

Thus, we see that

Uy --- “the urn with the state w,”
U, --- “the urn with the state wy”
Us --- “the urn with the state ws”

In this sense, we have the identification;
Uy mw, UymRwy, Us=ws.

That is,

°l

Fuzzy statement and precise statement]. Such a test (i.e., the experimental test of an urn problem)
is usually considered to be no more than the good theme of a child’s homework. However, the question
“Why is a serious test (concerning the urn problem) not required?” may be profound. The reason can be
understood if we think that the urn problem is a model within theoretical informatics. Cf. §1.4. That is,
any model, represented by a precise statement, must be tested in theoretical physics. On the other hand,
a model in theoretical informatics is not required to be tested, that is, it suffices to be useful. Cf. (I14) in
§1.3. We can say that the urn problem is as true as the statement “A cat is stronger than a mouse” It
should be noted that the statement “A cat is stronger than a mouse” is “almost experimentally true” (cf.
(Iy)) in §1.2, though it is ambiguous, fuzzy, vague, etc.
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Ul = w; Us = wsy Us =~ ws

0000 e
oJolole)

And further, define the observable O = ({w, b}, 2{"*} F) in C(Q) such that

F{w})(ws) = 0.1, F({b})(w3) = 0.9, (2.45)
where ‘w’ and ‘0’ mean white and black respectively. Then, we see that
M3 = Mgo)(0, Sps..,))- (2.46)

Of course, the probability that a measured value w [resp. b] is obtained is, by Axiom 1,

given by
F({w})(w2) = 0.4 [ resp. F'({b})(w2) = 0.6] (2.47)

[The urn problem (ii)]  Further, assume that the (white or black) balls in the urns Uy,
U and Us are also made of “stone” or “metal” For example, assume that the urn U
[resp. Us, Us] contains 4 stone and 6 metal balls [resp. 5 stone and 5 metal balls, 1 stone

and 9 metal balls|. That is,

’ H stone balls \ metal balls ‘
urn Uy 4 6
urn Uy 5 5! (2.48)
urn Us 7 3
Here, consider the following measurement MJ":
M3" :== “Pick out one ball from the urn U,, and recognize the materials of the ball”

The measurement Mj" is formulated as follows: Define the state space Q by Q = {wy, ws, w3 }.
Here,

wp =[4:6], w=1[5:5], wy=][7:3]
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“the urn with the state w;”
“the urn with the state wy”

“the urn with the state ws”

In this sense, we have the identification;

Uh=w, Us=Rwy, Us=uws.

And further, define the observable O’ = ({s,m},2t*™ @) in C(Q) such that

Thus, we see:

Mz = Moo) (0, Sps,,))-

37

(2.49)

(2.50)

For example, the probability that a measured value s [resp. m] is obtained is, by Axiom

1, given by
G({s})(ws) =0.5 [ resp. G({m})(w2) = 0.5].

[The urn problem (iii)]

(2.51)

However, it should noted that some information is not rep-

resented in the tables (2.44) and (2.48). That is, the situation is, for example, stated

precisely as follows:

(1) the urn U; contains 10 balls such as

|

H

stone balls

metal balls

white balls

4

4

black balls

0

2

(2) the urn U contains 10 balls such as

|

H

stone balls

metal balls

white balls

4

0

black balls

1

5
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(3) the urn Uz contains 10 balls such as

’ H stone balls \ metal balls ‘
white balls 1 0 (2.54)
black balls 6 3

Here, consider the following measurement M5™:

M35™ := “Pick out one ball from the urn U, and recognize the color and

materials of the ball”.

The measurement M, is formulated as follows: Put Q = {w;,ws,ws}. Define the state

space Q by Q = {w;, ws,ws}. Here,

4 4 40 10
R O O R

Thus, we see that

U, --- “the urn with the state w;”
Uy --- “the urn with the state wy”
Us --- “the urn with the state ws”

In this sense, we have the identification;
Ui w, Uymwy, Us=ws.

That is,
Ulzwl Ugwu)l U3%W1

stone| metal stone| metal stone| metal
o000 e oJoll X X J 0000
O000e oJox J X J 00000

And further, define the observable O = ({w,b} x {s,m}, 2(wdxtsm} f( = F X G)) in
C(£2) such that

H({(w, S)})(wl) = 0.4, H({<w7m)}>(w1) = 0.4, H({<b7 3)})(("}1) = 0.0, H({(b7 m)})(wl) =02,
H({(w,s)})(w2) = 0.4, H({(w,m)})(w2) = 0.0, H({(b,s)})(w2) = 0.1, H({(b,m)})(w2) = 0.5,
H({(w,s)})(ws) = 0.1, H({(w,m)})(ws) = 0.0, H({(b,s)})(w3) = 0.6, H({(b,m)})(ws) = 0.3,
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which is, of course, constructed by (2.52) + (2.53) + (2.54) . Then, we see that
Mz = Me)(O, Sis.,)- (2.56)

Of course, the probability that a measured value (w,s) [resp. (w,m), (b,s), (b,m)] is
obtained is, by Axiom 1, given by

F({(w,s)})(w2) = 0.4
[ resp. F({(w,m)})(wz) = 0.0, F({(b, s)})(w2) = 0.1, F({(b, m) })(w2) = 0.5].  (2.57)

Example 2.17. [Gaussian observable!”. [(i): Gaussian observable in C(Q)]. Put Q =
[a,b] (C R, the real line), i.e., the closed interval And let o be a fixed positive real. Define
the normal observable (or Gaussian observable) Ogs = (R, Br, G?) in C(Q) such that:

7=\ (w) = 1

which will be often used in this book.

_(z—w)?

202 dx (VE S BR,VW €= [a7b]>7

Y

o o 20 T
Q 68.3% 7
95.4%

f e 2v2da: = 0.683...

922
7 ¢t dr = 0.954... Also, note that

1
Here, \/7 and \/T7 f720'

1.960 1650
e 202 dx =~ 0.95, e 22 dx ~ 0.95 2.58
V2ro? J_ 1960 V2mo? / ( )

10Why is the Gaussian observable fundamental? ~ We should not be too serious with the question.
That is because we do not necessarily need a complete reason in theoretical informatics (¢f. Chapter 1),
though the differential geometrical reason must be indispensable for theoretical physics. In informatics,
what is important is “useful or not” And we know that the Gaussian observable is quite useful. Also
recall that every equation (e.g., Boltzmann’s kinetic equation, Navier-Stokes equation, etc.) in theoretical
informatics is somewhat empirical. As mentioned in (Ig) in §1.2, we think that “useful” — “almost
experimentally true”
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[(ii).Gaussian observable in Cy(R?)]. Consider a commutative C*-algebra Cy(R?) and the

Borel ring (R?, BY,), where B, = {= € Bga : = is a bounded Borel set in R }. And

define the d-dimensional Gaussian observable Os, = (R%, B, F*) in Co(R?) such that:
1 1

[F=(2)|(J) = —— / exp| — ~ (7 - @) HF - d)di (V€ By, V& €RY),

(2.59)

where the ¥ is a covariance (d X d)-matrix, i.e., a positive definite (d x d)-matrix. Of course,
the probability that a measured value obtained by the measurement M, gra)(Ox, S [5%})
belongs to = (€ BRy) is given by [F¥(Z)] ().

|

Example 2.18. [Discrete Gaussian observable]. Put Q = [a,b] ( C R, the real line),
the closed interval. Let ¢ > 0. And let N be a sufficiently large fixed integer. Put
Xy = {% | k =0,£1,£2,...,+£N?}. And define the discrete Gaussian observable O,z y
= (Xy, 28, F, y) in the commutative C*-algebra C([a, b]) such that:

[Fon ({E/N})](w)
o x—w2
v Iy el = gl (k= N2 Vo€ fo,0),
k 1 2
= L [N exp[ - B de (VE=0,41,42,.., £(N? — 1), Vw € [a,b]),

Venat i~ 2
s [ PV exp[ = Y5 (k= —N?Vw € [a,b]).

(2.60)

And thus, for any = ( C Xy), we define [F, x(Z)](w) = Z%eE[FO’N({k/N})] (w). This
O,2 v, as well as the d-dimensional Gaussian observable Oy (in Example 2.17), is the

most important observable in classical measurements. |

Example 2.19. [Fuzzy numbers observable (= triangle observable = round error observ-
able)]. Let A be any positive number. Define the membership function (i.e., triangle
fuzzy number) Z, ( € Co(R), where R is the real line with the usual topology > such
that:

1-% 0<w<A
Zyw)y=¢ X+1 -A<w<0
0 otherwise .
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Put Z, = {Ak: ke Z = {O,il,iZ,...}}. Define the C*-observable Oz, =

(ZA,?O(ZA),C(A.)) in the commutative C*-algebra Cy(R) such that (g (w) = Y opes Zon(w
—z) (V2 € Py(Z,), Yw € R). This C*-observable is called a fuzzy numbers observ-

able in Cy(R). Putting A = 1, we frequently use the fuzzy numbers observable Oz =
(Z,Po(Z), () in this book.

Example 2.20. [(i): Exact observable]. Let Z be the set of all integers, i.e., Z =
{0,£1,£2,...}. And put Po(Z) = {A( C Z) | A is finite }. Consider a commutative
C*-algebra Cy(Z). And define the exact observable Ouxs = (Z, Po(Z), E(.)) in Cy(Z) such
that:

1 neZ(eP(2))
B=(n) = (2.61)
0 n¢Z(€P(2))

which is called the exact observable (or, fundamental observable) in Co(Z). Of course we
want to define the exact observable in Cy(R) (or, C([a,b])). However, it is impossible
in the C*-algebraic formulation. For this, we must prepare the W*-algebraic formulation
(cf. Chapter 9).

[(ii): Approximate exact observable]. Though the exact observable in C(]0, 1]) can not be
defined, we have the approximate exact observable OZ, in C([0,1]) as follows: Let N be

EXA
a sufficiently large integer. Put Xy = {+,%,+,...,%( = 1)}. Define the approximate

exact observable O4,, = (X, P(Xy), F) in C([0,1]) such that:

. 1 O<w<§—5)
FUFHIW) = ~Fw-3+} G-m<w<i+h)
0 (++3 <w<l)
_1_L
N 9\72 N—1 1 (?Viw_lT NQN)fl 1
[F({N})](W)Z Fw—"5)+3 (j—?SwSNN ﬁm)
L ¥ twswsy—w)
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up/mfom
Forn=2,3,... N —1,
0, Osesteom)
n T+ P omsesiFtm)
[F(yDiw) = b 1 (%Jrlmgwg%_lm)
—Fw-%)+; (F—wSwS§+5)
0 (§+7= <w<1)

Note that the observable (i.e., fuzzy numbers observable) in Example 2.19 is also regarded
as “approximate exact observable”, if A is sufficiently small.

|
Example 2.21. [Null observable]. Define the observable O™ = ({0, 1}, 2{%1} F@)) in
A such that:

FOY@)y =0, FO{0}) =0, FOY{1}) =1a, FW{0,1}) =1a in A, (2.62)

which may be called the null observable (or, existence observable). Then, we have the

measurement Ma (O™ = ({0, 1}, 208 F&D) g ). Note that:

(#) the probability that measured value (by Ma(O®™, S),1)) is equal to 1 ( € {0,1}) is
given by 1. That is, the measured value is always equal to 1 ( € {0,1}).

Thus, we think that “to take the measurement Ma (O™, Sipry)” is the same as “to assure
the existence of the system”

2.7 Operations of observables

Recall the identification (2.36), that is, we have the following identification:

ﬁk — Ok = (R,BR,Fk) in C(Q)

(real valued function on Q) (crisp observable)

(k=1,2,...,n). (2.63)

Note that F. 1+ }/7\2, ﬁl . F\g, etc. are meaningful in the ordinary sense since ﬁl and ﬁz are

real-valued functions. This makes us ask the following question.

e For each k = 1,2, ...,n, consider an observable Oy = (X, F, F;) in a C*-algebra
A. Are O1 4+ Oy, Oy - Og, etc. meaningful in general? Or, how the operations of

observables are defined?
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This will be answered in what follows.

For each k = 1,2,...,n, consider an observable Oy = (Xj, F, Fi) in a C*-algebra A.

-----

G of 2¥. Then we can define the observable (Y, G, G), which is symbolically represented
by g(01,Og, ..., O,), as follows:

e the (Y, G, G) is the image observable of the quasi-product observable O = ( X _; X,
X _ F, F) concerning g (if it exists). That is,

(Y.5,G) =4(0) (2.64)

GI)=F(g\(T)) (V[ €9). (2.65)
Example 2.22. [The addition of triangle observables]. Let Oz = (Z,P(Z), () be
the fuzzy numbers observable in Cy(R) (¢f. Example 2.19). Now let us calculate Oz +

Oz as follows: Note that the product observable Oz X Oz = (22, Py(Z?), (1) x () is
represented by

(i) m — n| > 2

[Cmy X Gnyl(w) =0 (2.66)

(i) Im—n| =1

0 w < min{m,n}
[Comy X Gyl (w) = w min{m,n} <w < max{m,n}
0 w < min{m,n}

(iii) m=n

w<m-—1

0
[Comy X Gl (w) = Ei _ E: N };;i " < iififf (2.67)
0

m+1<w
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Thus we see

€+ Oy (w)

( 0 w<m-—1

) (w—(m—1)) m—1<w<m
Cadem) =) o me1))  m<w<mtl

—
—(

IS

0 m+1<w (2.68)
0 w<m
(C+C){2m+1}(w){ —(w—=02m+1)/2)?>+1/2 m<w<m+1
(when n =2m+1) 0 m+1§w

m—1 m m—+1
m m —+

n=2m-+1

w
1 w

Therefore we get the Oz + Oz = (Z,Po(Z), (¢ + {)¢y) in Co(R), where

(C+Q=z(w) =D C+Omw) (EeP(Z)weQ).

neo

|
Example 2.23. (x*observable).  Consider the (1-dimensional) Gaussian observable
0,2 = (R, BY,G°) in A = Cy(R) such that:

1 (2=
G° (= = /e 202 dx Vi € RVE € B,
[ ( )](M) \/W = ( 2 R)

(where o2 is a variance). And further, for each ¢ (= 0,1,2, ...), define the product observ-

able (Q,2)?*! such that
(0,27 = (R* By, (G7))  (inA = Co(R)
where

(GU)QH_I(El X Eg X X E¢+1) = GU(El) X GU(EQ) X e X GU(E¢+1).
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Define the map g : R**! — R such that

45

o+1 (xk i Zj}i_ll x; )2
RS (21,20, 73, .., Tgp1) — Y 02¢+1 cR
k=1

The image observable g((O,2)?*1) is called the y?-observable with ¢, the degree of freedom.
|

2.8 Frequency probabilities

The meaning of “probability” in Axiom 1 seems to be a matter of common knowledge
in quantum mechanics. However, we, in this section, study the relation between “the
probability in Axiom 1”7 and “frequency probability”

For each k = 1,2, ..., n, consider a measurement Ma, (O, = (X, P(X), F}.), S[ﬂi]) in a
C*-algebra Ay, where we assume, for simplicity, that X is finite. Put A= R Ax, Le.,
the tensor product C*-algebra of {Ay : k =1,2,...,n}. Here, consider the tensor-product
C*-observable @Q),_, O, = (X", P(X™), F = X, Iy ) in A (= @;_; A ) such that:

FEI xSy x X)) =F () Q@ F(30) ® - @ Fu(E,) (V2 € P(X), k=1,2,...,n).

(2.69)
Therefore, we get the measurement Mga, (@y_, Ok, Sigr_, ) in &;_; Ak, which is
also denoted by @),_, Ma, (O, S[PZ]) and called the repeated measurement (or, “parallel
measurement”) of Ma, (Oy, Sppp)’s. Put M4 (X) = {v : v is a positive measure on X
such that v(X) =1 } and define the map g : X™ — M, (X) such that:

{k:xp € 2}

[9(x1, 29, ...y ) |(E) = f (V= € P(X)), (2.70)

where f[B] = “the number of the elements of a set B”.

Then we have the following proposition.
Proposition 2.24. [The weak law of large numbers, cf [56]]. Suppose the above nota-
tions. For any ¢ > 0 and any Z ( € P(X)), define D=, (€ P(X™) ) by

~

Dsc = {7 = (21,02, o) € X" 1 |[g(@)(E) - %Zpg(pk(z))‘< e} @
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Then we see that

1—

< (@ ) (F(D=) < 1, (VE € P(X),¥e > 0, V). (2.72)

4e2n

Proof. We easily see that [¢(Z)](Z) = £ Y x=(me(Z)) (VZ = (21, 22, ...,x,) € X7),
where 7, : X™ — X is defined by 7 (Z) = (a1, 22y ooy Tk ooy ) = 2 and xo : X — R
is the characteristic function of Z (i.e., xo(z) =1 (z € Z), = 0 (x ¢ Z) ). Using the

terms in Kolmogorov’s probability theory, we can say that x_(mx(-)), k =1,2,...,n, are

independent variables on a probability space (X”, P(X™), P(-) = (&), pi)(ﬁ( . ))) Also
it is clear that [\, < (7x(2))P(dZ) = [y [x=(mu@)2P(dT) = pL(Fu(T)) (k=1,2,...,n).
Therefore, by Cebysev inequality, we see
5(xn\ B 5( e yn . |2rm Xe (@) Dy AEFR(E))
=c] = : ——— — — >
P(x"\De) = P({Fex" « |==2 a o 2)
1 . ~ —_ 2D/ g~
<z /] ;(xm(x)) — AL(FL(E))) PP(d3)
1 O . 2D~
=Y [ @) - AFE) P
k=1
1 _ _ 1
< o max (A - AEE)]S o (273
which implies (2.72). This completes the proof. ]

Now we can show the following theorem as an immediate consequence of Proposition
2.24. Tt clarifies the “probability” in Axiom 1 from the statistical point of view.
Theorem 2.25. [Frequency probability, cf. [42] |. Put A, = A, pj = p? and Oy = O
= (X,P(X),F), k=1,2,....,n, in Proposition 2.24. Consider the repeated measurement
Mea( @y O, Sien_ 1) in @)._y A. Then, we see that

B t{k : z, € 2}

n

1—461% < (@ Pp)((®F)({§eX”:}p”(F(E)) ]‘ <€})> <1,

(VE € P(X),Ve > 0,Yn).

Here note, by Axiom 1, that (®}_, p*) (( R F) (E)) is the probability that a measured
value by Mga(@;_, O, S@Z:lpp]) belongs to =. Therefore, if n is sufficiently large, for a

measured value T (= (21,2, ..., ¥,) € X") by Mga(@j_; O, Sien_ 1), we can consider
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(in the sense of (2.72)) that
p'(F(2)) ~ LLE gf: €=H (2.74)
[
The (2.74) says that
e “probability in Axiom 1”7 = “frequency probability”.

Thus, there is a reason that the probability space (X, F, pP(F(-)) ) is called a sample

space obtained by a measurement Ma (O, S[pp]).

Remark 2.26. [“repeated measurement = iterated measurement” for Sis, j]. As seen in
this section, we think that

“take a measurement M, N times” <« “take a measurement Mgy ) ( ®N |0, Sien_s.1) 7

n=1"w0
Thus, in classical measurements, we have the following identification:

2 »

“take a measurement M®N:1c(Q)( ®N_, 0, S[®N:15WO]) & “take a measurement MC(Q)(ON, S[%o])

That is because it holds that

N N = -~ N e
R 1M(®) <®n:16w0’ ®”:1F(u")>®ﬁ’zlc(m o M(Q><5‘U0’ Xn:lF(“n)>C(Q)'

However, it should be noted that it does not always hold that “repeated measurement =
iterated measurement” in statistical measurement theory (mentioned in Chapter 8) and
quantum measurement theory.

|
Definition 2.27. [Semi-distance, moment method (inference for a pure state in repeated
measurement)].

[(1): Semi-distance]. Let Y be a set. If the map A : Y xY — R satisfies the following
(a)~(d):

(a): A(z,y) >0 (Ve,y€Y), (b): “e=y" = A(z,y) =0,

(¢): Alz,y) = Aly,z) Va,y €Y),  (d): Alz,y) < Alz.z) + Az,y) (Vo,y,2 €Y),

then, the A is called a semi-distance on'Y'. In addition, if “(b’): x =y < A(z,y) =07 is

assumed, then the A is called a distance ( or metric ) on'Y .
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[(ii): Moment method]. Assume the pf) (in Ma(O = (X, 5, F), S[pg])) is unknown. And
further, we get the sample space (X,JF, 1) from the measured value T (= (x1,xo, ...,
z,) € X") obtained by Mga(@j_; O, Sign_ n). That is, v(Z) = w Note, by
(2.74), that pP(F(Z)) =~ 1y(E) (V2 € F). Let A be a semi-distance on M, (X)'! Then,
there is a very reason to infer the unknown pf, ( € &”(A*)) such that

Ao, po(F(+))) = min Alwo, p"(F(-)) ).

pPPESP(A*)

This method is called “generalized moment method” or “moment method” Cf. §9.4.
Note that the “semi-distance A on M7 (X)” is not always unique. In this sense, the
moment method is somewhat artificial.

|
Example 2.28. [The urn problem by the moment method]. There are two urns w; and
wy. The urn w; [resp. ws] contains 8 white and 2 black balls [resp. 4 white and 6 black
balls]. Assume that they can not be distinguished in appearance. Choose one urn from the
two. Assume that you do not know whether the chosen urn is w; or ws. Now you sample,
randomly, with replacement after each ball. In 7 samples, you get (w,b,b,w,b,w,b) in

sequence where “w” = “white”] “b” = “black”

(Q) Which is the chosen urn, wy or we?

w1

0000 e
0000 e

[Answer]. We regard Q ( = {wi,w2}) as the state space. And consider the observable
O( = (X = {w,b},2!"" F)) in C(Q) where

[F({w})](wr1) =08, [F({b})](w1) = 0.2,

[F({w}))(w2) = 0.4, [F({0})](w2) = 0.6.
Note that we have the real sample space (X = {w, b}, 2{*? 1) such that:
VO(Q) =0, VO({w}> = 3/7’ VO({b}) = 4/77 VO({w’ b}) =1

1 The definition of the semi-distance A may be too strong for the generalized moment method. How-
ever, in this book we focus on the above definition.
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Also, note that the measurement
Me@)(0; Sps,,))  [resp. M) (O, Si,,)]
has the sample space
(X = {w, 0}, 20 [F()](wr))  [resp. (X = {w, b}, 20 [F(-)](wa))].
Thus, it suffices to compare
Avo, [F(-)l(wr)) and  Awo, [F(-)](w2)),

where A is a certain distance on M7, ({w, b}). For example define the distance A such

that:

Ay, 1) = m({w}) — va({wh)| + i ({0}) — ({0} (Y1, v5 € MY ({w, b})).

Then, we see
A(vo, [F()](wr)) = [3/7 — 8/10] + |4/7 — 2/10| = 52/70
and
A(vo, [F()](ws)) = [3/7 — 4/10] + |4/7 — 6/10| = 10,70.

Thus, we can, by the moment method, infer that the unknown urn is ws.

2.9 Appendix (Bell’s thought experiment)

(Continued from Example 2.15. Also see the footnote below!?)
2.9.1 EPR thought experiment

Although the original “EPR experiment (c¢f. [22])” was proposed in the framework of
classical mechanics (¢f. Chapter 12), the following argument is the quantum form of the

“EPR experiment”.!3

12 A1l appendixes in this book can be skipped.
13The argument in §2.9.1 is essentially the same as EPR-experiment (i.e., EPR-paradox,cf. [22]), which
will be again discussed in §12.7.
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Now consider the quantum system composed of two particles with the singlet state p;
(concerning z-axis) formulated in B(C? @) C?), where C? Q) C? is the tensor Hilbert space
of C? and C?. The singlet state p; is represented by ps = |1s) (15| ( € SP(B(C*Q C?)*)),

where

1
ws = E(é& R €y — €y ® 51) ( € C? &® CQ) €] = |:é:| S CQ, €y = |:$1 € C2 (275)

And consider the measurement M p(c2)sp(c2) (OZ ®O0* = (2% ={1.,1.}% 27 F* @ F?),
S[ps]), where

Fay =g o] b= Y.
2 0 0 . [1 0]
Fo -y o Fan=|y .

Taking the measurement Mp(c2)ep(c2) (0° ® O = (22 = {1., |} 27° F* @ F*), Sipa))s

we see that

(a) the probability that a measured value (., T.) is obtained is equal to

—p.(F*({1-) ® F*({1.}))

~cse( (6 9 @ - @ o ). [F{1Y @ FUTLIS

G 51)>02®C2

S

=0

(b) the probability that a measured value (7., |,) is obtained is equal to

—p.(F*({1:) & F*({1.})

—ce( 75 (69 B -6 0 6).IF(1) © P

(51 ® €y — € ® 51)>02®C2

Sl

2
=1/2

(c) the probability that a measured value (|, T.) is obtained is equal to

=ps(F*({1.}) ® F*({1.}))

1 — — — — z z 1 = = = >
:CQ®CQ<E(61 Ker —er® 61); [F*({l.})) ® F ({Tz})]—2(61 Ker —er® 61)>C2®C2
—1/2
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(d) the probability that a measured value (|, |.) is obtained is equal to

=po(F*({L-h & F*({L.}))
1

_CQ®CQ<E(51 6 —606), [F (LYo (L)) —=@E 06 -6e a)>02®02

=0.

Here, it should be noted that we can assume that the z; and the zy (in (z1,29) € {
(12,12), (12, 12), (15, 72), (12, 12)}) are respectively obtained in Tokyo and in New York

(or, in the earth and in the polar star).

(probability ) (probability )
(b) (c)
Tz 1z 1z T2
o o or o o
Tokyo New York Tokyo New York

This fact is, figuratively speaking, explained as follows:

e Immediately after the particle in Tokyo is measured and the measured value T,
[resp. |.] is observed, the particle in Tokyo informs the particle in New York “Your

measured value has to be |, [resp. 1.]”

Therefore, the above fact implies that quantum mechanics says that there is something
faster than light. This is essentially the same as the de Broglie paradoz (cf. [20]. Also see
§9.3.3). That is,

e if we admit quantum mechanics, we must also admit the fact that there is

something faster than light. (cf. [18, 78]). (2.76)

Of course we admit PMT, and therefore, we believe that there is something faster than

light.

2.9.2 Bell’s thought experiment

In this section, we review Bell’s thought experiment in (quantum) measurement theory.
(Cf. [9, 18, 78].) All the idea is, of course, owed to J.S. Bell [9]. Thus, we do not intend to
assert our originality in this section. The argument is divided into two steps (i.e., [Step:

I] and [Step: II]). [Step: ] is essentially the same as the previous section (i.e., §2.9.1).
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[Step: I]. Let a = (a1, as) be any element in R? such that ||al|ge = (o[> + |aa|?)/? = 1.
Put

. 0 061—062\/—1 2 - 1 2 _ 0 2
Ua—|:a1+a2\/_—1 0 EB(C)7 61—|:0:|€C, 62—|:1:|€C

It is easy to see that the self-adjoint matrix o, : C*> — C? has a unique spectral represen-
tation : o, = Y- Fé_l), where FY and F{™Y are orthogonal projections on C? such

that

F(l) _ 1 1 a; — Qg -1 F(,l) _ 1 1 —o1 + Qo -1
@ 2 o + o/ -1 1 ’ @ 2 | —a1 — g/ -1 1 .

Define the observable O, = (X = {1, -1}, P(X), F,) in B(C?) such that F,({1}) = Y
and F,({-1}) = F. "V

Now consider the quantum system composed of two particles with the singlet state p;
(concerning z-axis) formulated in B(C? @) C?), where C? Q) C? is the tensor Hilbert space
of C* and C?. The singlet state p, is represented by p, = [¢5) (¢s] ( € GP(B(C*Q C?)*)),

where

1
V= —(E®é—é®e) (€C*@C?).

S

Put a = (ag,a9), b = (81, 32) € R? where |la||gz = ||b]|lrz = 1. And define the tensor
product observable O, (= 0, ® O) = (X%, P(X?), F, ® F;) in B(C? ® C?) such that

(Fo @ ) {(21,22)}) = Fal{m}) @ Fo({z2})  (V(1,22) € X7 = {=1,1}7).

Thus we get a measurement Mpc2gc2)(Oab, Sp.)) in B(C* @ C?). Axiom 1 says that
the probability that a measured value z ( = (z1,72)) € X? (= {1,—1}?) obtained by
the measurement M p(cz2gc2)(Oa, Sjp,]) belongs to a set B ( € X?) is given by v, (B),
where vy (B) = 32— (41 an)en ps((Fo ® Fy)({(z1,72)})). Therefore, we see, for example,

that

EPR (

(1) if we know that x; = 1, quantum mechanics says that the probability that zo = 1
[resp. xo = —1] is given by

VEPR({]‘} X {1}) |:1"6Sp VEPR({l} X {_1}) ]
VEPR({l} X {1’ _1}) .VEPR({]‘} X {1’ _1})

and further, if we know that z; = —1, the probability that x5 = 1 [resp. z3 = —1]

is given by

VEPR({_l} X {1})
VEPR({_]‘} X {17 _1}>

VEPR({_]‘} X {_1}) ]
.VEPR({_]'} X {17 _1}) .

[resp

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

9 A 'S THOUG,
For Clear2lgrin’fi3r1;5],\] Ige(B %tjb:/ VI\I{W\(IJV er‘rigffjpglg)ﬂﬂ%ﬁrﬂp/mfomt/ >

[Step: II]. Let a' (= (af, a3)), a®(= (a2, a2)), b (= (61, 53)) and b*(= (3%, 33)) be elements
in R? such that ||a'||g2 = [la*||r2 = [|b"||r2 = [|b?||rz = 1. Further, consider the parallel
measurement ), ._; , Mp(czoc?) (Ogivi; Sp,)) in @, ,_,,B(C?® C?) (= B(®,,_,, (C*®
C?))), that is,

® MB(C2®C2) (Oaib.i> S[ps])

ij=1,2

(C2®C2))(( X X27fP( X X2)7 ®(Fai®Fbj)),5[®i’j:172p5}).

$3=1,2 i,j=1,2 i,j=1,2 1o
,)=1,

Here note that ®, ,_, ,ps = ps @ ps @ ps @ ps = s @15 @ s @ 1Ys) (s @ Vs @ D5 ® 1] and

X X?5 ((xil,xél), (212, 22%), (221, 22, (x?wgz)) —reXt= {-1, 1}8.
ij=1,2

Axiom 1 (2.37) says that the probability that a measured value z € X® (= {1,-1}%)
obtained by the parallel measurement ®i,j:1,2 Mg (c2ec2)(Ogivi, S|p,)) belongs to a set B

( < Xs) is given by VBTE<B)? where Verg (B) = erB Hi,j:1,2 p8(<Fai ®Fbﬂ>({($llj7$l2])}))
That is, we have the sample space (X% P(X?®),v,..), which is induced by the parallel
measurement &), i, , Mp(czgc?) (Oaivis Spp,))-

Define the {—1, 1}-valued functions g,ij on X8, (i,7,k =1,2), such that

97 (21t o3h), (1%, 28?), (27',23Y), (22, 23%)) = o)) (Vi,Vj,Vk e {1,2}).  (2.77)

Note that it holds that

Vare ((917) 7 ({1})).
vars ((937) 7 ({11)).

Ve ((917) 7 ({1D) = Varn ((927) 7 (1) v ((97) 7 ({13))
Vars ((921) 7 ({11) = v ((927) T ({1}1), - Ve ((921) 7 ({1})

Here note that (c¢f. (3.42) in §3.7 later)

gt #E gt B # 9 nt#9t g # g (2.78)

Moreover, define the correlation functions P(g¥, ¢5) (1,7 = 1,2) by

Pt = [ o0(@): 65 @)y (da) (2.79)
which may be also denoted by P(a’,d’). A simple calculation shows that P(a’, V) =
—(ad B + ab). Thus, putting

a' =(0,1), b =( 1,0) and b* = (

1 2
2?%)7 a _(

-
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we see that
|P(a',b") — P(a",b%)] + |P(a®b") + P(a®,0°)] = 2V2. (2.80)

This is precisely Bell’s calculation concerning Bell’s thought experiment.
The (2.80) can be tested by the repeated measurement ®sz1( i j=1.2 MB(c2ac2)
aibis Let T = { (21, w9y ), (15, T57), (75, 5,), (275, @ ', be a measure
O Slps) Let T %1k %lk ﬁ %Zk %1k glk %Zk 321@ i1 b d

value of the repeated measurement. Then, we see that

for sufficiently large K. Thus, the experimental test: “2v/2 or not?” is possible. In fact,
Aspect’s experiment [8] is generally believed to guarantee the (2.80). It is, of course,
important since quantum mechanics must be always tested.

(Continued in §3.7 (Appendix(Bell’s inequality)))
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Chapter 3

The relation among systems (Axiom
2)

As mentioned in Chapter 1, (pure) measurement theory (PMT) is formulated as follows:

PMT = measurement + the relation among systems in C*-algebra (3.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

In Chapter 2 we studied “measurement (= Axiom 1)? In this chapter we intend to explain “the

relation among systems (= Axiom 2)”

3.1 Newton Equation and Schrodinger equation

In this section, we review the Newton equation and Schrédinger equation.
[I: Newtonian Mechanics]

Put A = Cy(R; xR;) and A* = M(R; xR;), where Ry xR, = {(¢,p) = (¢1, %2, , ¢,
p1, D2, ,Ps) | 4,0 €R,G=1,2,--- s} and (R; x R;) is the 2s-dimensional space (cf.
Example 2.2). It is well known that the Newton equation is mathematically equivalent

to the following Hamilton equation:

G = S @OPO0. T = T @000, =125 (32)

(¢(0),p(0)) € R} x R;,. (3.3)

where H : Ry x R) X R — R is a Hamiltonian. Using the solution of Newton equation

(i-e., Hamilton equation (3.2)), we define the continuous map v, 4, : Ry x R, — Ry xR,

95
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Vt; < Vi, such that:

¢t1,t2 (Q(tl)’p(tl)) = (q<t2)7p(t2)) (V<Q(t1)7p(t1)) € R; X Rf))v (34)

which is equivalent to (3.2).
Put @ = RS x RS, Also, put Q, = Q (vt € R), and wy = (¢(0),p(0)) ( € Q). Thus,
the pair [wl, {t¢, 1, : Qy, — Q, hy <1, can be considered to be equivalent to “(3.3)+(3.2)”
Using the continuous map vy, 4, : Qi — Q, (Vt1 < Vito), we define the continuous

linear operator @y, 1, : Co(§2t,) — Co(2,) such that:

[(btlyt2 (ft2>](wt1) = ft2 ((btl,tz (wtl)) (vftQ € CO(Qt2>7th1 S Qtl)‘

And therefore, we can consider the following identifications:

“(3‘3>+(3'2)” A [w(())v {¢t1,t2 : Qtl - Qt2}t1§t2] A [5w87 {®t17t2 : OO(Qt2) - 00<Qt1)}t1§t2]

where 0,9 is the point measure at wg. The pair [0, {®s, 1, : Co(Qr,) — Co(Qy) iy <,] Will
be called “general system” (c¢f. Definition 3.1), and will play an important role in our
theory, that is, it is a special case of “the relation among systems” in (3.1).
[I1:Quantum Mechanics in C(L*(R,, dq))]

We begin with the classical mechanics. For simplicity, consider the one dimensional
case, i.e., R, = {¢ | ¢ € R}. Thus ¢(t), —oo < t < 0o, means the particle’s position at
time ¢, and thus, p(t) ( = mdz—(f)) means the particle’s momentum at time ¢. Let RZ
(={(q,p) | g,p € R} be a phase space. Define a Hamiltonian H : R?Lp — R such that:

2
H(q,p) = 2p—m(:kinetic energy= %m(d’é—(p)Q) + V(g (zpotential energy). (3.5)

Thus we see

o =oen=- L 1 ve (3.6)

(total energy) (kineti%ﬂ;nergy) (potential energy)

Put H = L*(R,,dq), that is, the Hilbert space composed of all complex valued L*-
functions f on Ry, ie., ||fllr2m,d0 = [J o |f(q)dg]'/* < co. And put A = €(H) =
C(L*(R,,dq)), (i.e., the algebra composed of all compact operators on H, ¢f. Example
2.3). Applying the quantumization:

E — ih%, P —ihag, g q (wherei=+/—1, h = “Plank constant” /2m) (3.7)
q
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to the (3.6), we obtain the Schrédinger equation:
0 0 h%o?
or precisely
.0 h*9?
tho¥(g,t) = —2maq2¢(q, t) +V(g)¥(q, 1) (3.9)

This solution is, formally, written by

Wl t) = e FH@=mE g 0).

Put U(t) = eiéH(q’fma%)t, and (-, t) = 1;. Then, we see,

e =U)ho  ([[Yollr = 1).

Thus, the time-evolution of the state |1) (1| ( = (\I’?)*(|w0><¢0\)> is represented by

gl = (99)" (100} (ol ) = U @) (U@l (€ Tra(m)).

Let U9 : G(H) — C(H) be the pre-adjoint operator of (¥9)*. Let Oy = (X, F, Fy) be
a C*-observable in C(H). Then, the time-evolution of the observable O; = (X, J, F}) is
represented by

(X,F,F) = (X, 5, U RU®)) = (X,F,VF).

PUtting (I)t1,t2 = \I}gg—t17 we get the pair H¢0><77Z)0|a{(1)t1,t2 : G(H) - G(H)}tlﬁtz]' AISO,
it should be note that the above F; is the solution of the following Heisenberg kinetic

equation:

dF,
zhd—tt = F,H — HF, in C(H) , (3.10)
which is equivalent to the Schrodinger equation (3.9). (Cf. [84].) The pair ||to) (%],
{®4, 4, : C(L*(Ry,dq)) — C(L*(Ry, dq)) }t,<t, | Will be called “general system” (c¢f. Defini-

tion 3.1), and will play an important role in our theory, that is, it is also a special case of

“the relation among systems” in (3.1).
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3.2 The relation among systems (Definition)

By the hint of the arguments in the previous section, we shall devote ourselves to “the
relation among systems (i.e., Axiom 2)” in PMT (3.1) (=(1.4)).
Let A; and Ay be C*-algebras. A continuous linear operator ¥, 5 : Ay — A; is called

a Markov operator, if it satisfies that
(i) Wy2(F2) > 0 for any positive element F in Ao,
(ii) Wy9(l2) = I1, where I is the identity in Ay (k = 1,2).

Here note that, for any observable (X, F, Fb) in Ay, the (X, F, U o F}) is an observable in
Ay, which is denoted by W1,05. For example, it is easy to see that

[\I/LQFQ](E U E/) - \Pl’g(FQ(E U E/)) - \Ill’g(Fg(E) + FQ(E/>)
=[U1o(F)]|(E) + [T12(R)](E)  (for all ,Z'(€ F) such that N =0).  (3.11)

Also, a Markov operator U5 : Ay — A, is called a homomorphism (or precisely, C*-

homomorphism), if it satisfies that
(1) \11172(F2)\111,2<G2) = \11172(F2G2) for any FQ and G2 in .AQ,
(11) (\11172(F2))* = \11172(F2*) for any F2 in .AQ.

Let Wi, : A} — Aj be the dual operator! of a Markov operator ¥y 5 : Ay — Ay, that is,
it holds that

N <p1, \1:1,2F2>A1 - A§<\If;2p1,F2>A2 (Vp1 € ALV, € Ay). (3.12)
Then the following mathematical results are well known (cf. [50, 76, 82]).
(a) Wio(6™(A])) € 6™(A3), (3.13)
(b) W7,(6P(A})) C &P(A3) if Wy 0 Ay — Ay is homomorphic.

Suppose that A; and A, are commutative unital C*-algebras, i.e., A; = C(€) and A,
= C(€s). Then, under the identification that GP(A}) = M~ (1) = @ and &™(AS) =
M (Q2) (cf. §2.1), the above (a) implies that the dual operator W7 , of a Markov operator

IThe symbol * is used in the three following ways (i) ~ (iii) in this book. (i) involution operator (e.g.,
F*), (ii) dual operator (e.g., ¥*), (iii) dual space (e.g., A*).
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U1, can be identified with a transition probability rule M(wq, Bs), (w1 € 1, By € Bg,),
such that M(wi, By) = (V] 5(dw,))(B2). Also, under the identification that M%, (€2;) = O,

99

and M ;(£22) = €y, the above (b) implies that the dual operator W7 , of a homomorphism

U, 5 can be identified with a continuous map 9, » from € into {25 such that:

(U12f2)(w1) = fo(thr2(wr)) (Vw1 € D,V Sy € C(()). (3.14)
h w1 Y1.2(w1) {2,

Let (T, <) be a tree-like partial ordered set, i.e., a partial ordered set such that “t; < t3
and ¢, < t3” implies “t; <ty or to < " Put T2 = {(t1,t2) € T? : {1 < t5}. An element
to € T is called a root if ty < t (Yt € T) holds. Since we usually consider the subtree
Ti, ( € T) with the root ty3, we assume that the tree-like ordered set has a root. In
this chapter, assume, for simplicity, that T is finite (though it is sometimes infinite in

applications).

Definition 3.1. [Markov relation among systems, General systems, Sequential observ-
able].  The pair S

with an initial state py, if it satisfies the following conditions (i)~ (iii).

= [S[pfo}, { Py, 4, + A, — -At1}(t1,t2)eT§] is called a general system

(i) With eacht (¢ T), a C*-algebra A; is associated.

(ii) Let ty (€ T) be the root of T. And, assume that a system S has the state p} (€
GP(A;))) at to, that is, the initial state is equal to pj,.

(iii) For every (t1,t2) € T2, a Markov operator @y, 4, : Ay, — Ay, is defined such that
étl,t2®t2,t3 = étl,tB hOldS fOf aH (tl, t2>, (tz,tg) e Té

The family {®y, 1, : At, — Atl}(tl,tg)eTE is also called a “Markov relation among systems”.
Let an observable O; = (X, 2%, F}) in a C*-algebra A; be given for eacht € T. The pair

[{O:}ier, { Pt o+ Aty = Aty by a)erz | I8 called a “sequential observable”, which is
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denoted by [OT], 7;.6., [OT] = [{Ot}tET7 {q)tth . Atz — "At1}(t1,t2)€Té ]

3.3 Examples (Several tree structures)

Before we propose Axiom 2 (3.26), we prepare some notations and examples. For
simplicity, assume that T is finite, or a finite subtree of a whole tree. Let T ( =
{0,1,...,N}) be a tree with the root 0. Define the parent map © : T \ {0} — T such
that 7(t) = max{s € T : s < t}. It is clear that the tree (T" = {0,1,...,N},< )
can be identified with the pair (T" = {0,1,...., N},7 : T\ {0} — T). Also, note that,
for any ¢ € T\ {0}, there uniquely exists a natural number h(t) (called the height of
t ) such that 7"®(t) = 0. Here, 7%(t) = =n(n(t)), 7°(t) = 7w(7%(t)), etc. Also, put
{0,1,...N}2 = {(m,n) | 0 < m < n < N}. Thus, the general system S = [Sfpg],
{0, Aty = At} m)eion.. N}2<] is sometimes represented by [S[Opg], AP0t Ay (
t€{0,1,..., N}\{0})]. Let O, = (X3, F, F}) be an observable in A; (Vt € T'). The “mea-

surement” of {O; : t € T} for the S[pfo} is symbolically described by 9({O}ier, S[pfo]).

@,
The Markov relation {®y, ¢, : Ay, — Atl}(tl,tg)eTi is also denoted by {A; S Az beer\ (0}

The following Examples 3.2, 3.3 and 3.4 will promote the understanding of Axiom 2
later.
Example 3.2. [Series structures?]. Suppose that a tree (T = {0,1,..., N}, 7) has a
“series” structure, ie., m(t) =¢—1 (vt € T\ {0}). Consider a general system S, =
[S[(;;g]’ AP0t Ay (¢ € T\ {0})] with the initial system Sﬁ)g], that is,

D01 D19 Do 3 Sy_2,N-1 PN_1,N

A0<_A1<_A2<_ ......... — -AN—I — -AN (315)

For each ¢t € T, consider an observable O, = (X;, &, F}) in a C*-algebra A;. Thus,
we have a sequential observable [{O;}ier, {Pir@) @ Ar — Ar@ brer\ioy |- Put Oy (=
(Xn,Fn, Fy)) = Oy (= (Xn, Fn, Fy)). According to the Heisenberg picture (cf. §3.5),
the observable Oy in Ay can be identified with the observable @N_LN(N)N in Ay_1. Thus,

~ ap
we can consider the quasi-product observable Oy_; = On_1X®n_1 yOn = (Xn_1 X

2Most problems in dynamical system theory are formulated as the general systems with series trees
(i.e., T=“time”) Cf. Kalman filter in §8.4.
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XNang—l X S:n,ﬁ]v_l) in ‘AN—ly that iS,
~ — — qp — _
FN—l(:*N—l X :*N) = (FN_lx (@N—I,NFN))(*:N—l X .:N), (316)

(though the existence and the uniqueness are not guaranteed in general). By a similar way,
we can define the quasi-product observable Oy_y = On_oXPy_o y_10n_1 = (Xy_2 X

XN,1 X XN, ?N,Q X ng,1 X ?717 ﬁN72> in .AN,Q, that iS,
- _ _ ap ~ _ _ _
Fn_2(En—a X En_1 X En) = (Fn_aX(Pn_on—1FN-1))(En—2 X En_1 X Ey).  (3.17)

Iteratively we get as follows:

3 il

@
Aol  ——— [Ad] [An—2] ——  [Anv—1]  —— [AN]
Ey Fy Fn_2 Fn_1 Fn
ap ap - ap - ap -
(FoX ®F1) & (F1X $F2) o o (FN—2X®FN_1) @ (FN-1 X ®FN) & (Fn)
=Fo =F =FnN_2 =Fn_1 =Fn

~ ap ~
And finally, we get the quasi-product observable Oy = O¢xP®;0; = (X i\;o X, X i\io Fi,
ﬁo) in .Ao, that iS,

~ qp ~
FO(EO X El X EQ X oo X EN) = (Fox((I)O’lFl))(EO X E’l X EQ X X EN) (318)

Here Oy is a realization of the sequential observable [{O;}rer, {Prr@) : Ar = Ar) hrer\ (0}

]. Then, we have the “measurement” M ({O;}er, Sip)) such as

M({O,}rer, Siyp) = Mag(Op = (X Xy, X Fy, Fy), SO (3.19)

teT teT

Also, note that the above arguments can be executed under the hypothesis that quasi-
product observables (i.e., 6n, n=0,1.,,,.N) exist. In other words, the existence of the
“measurement” IM({O}ser, Syp)) is equivalent to that of the observable O,.

[
Example 3.3. [Parallel structures®]. Suppose that a tree (T = {0,1,..., N}, 7) has a
“parallel” structure, i.e., w(t) = 0 (vt € T\ {0}). Consider a general system Sj,r; = [S&g},
AP0t Ay (t € T\ {0})] with the initial system SEO’S]’ that is,

3Most problems in statistics are formulated as the general systems with parallel trees. Cf. Figure
(6.12) in regression analysis.
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Doy Ai
(I)O,Z 2

Vcb\AN (3.20)

For each ¢t € T, consider an observable O; = (X, F;, F}) in a C*-algebra A;. Thus, we
have a sequential observable [{O:}ier, {®i @) © At — Ar@ teer\foy |- Then, we get the
quasi-product observable O = (Xi\io X, Xi\;o F,, Fy) in Ag such that:

~ ap
F()(EO X Hy X9 X -+ X EN) = (té(T@O’tFt))(EO X Hy X 29 X -+ X EN) (321)

Here Oy is a realization of the sequential observable [{Oy}ier, { @i : At — Ar) brer\ {0}
J. Then, we have the “measurement” M({O¢}ier, Syp)) such as
m({ot}teT, S[pg]) == MA0<60 = (X Xt, >< ?t, ﬁo), S&p}) (322)
teT teT 0
Also, note that the above arguments can be executed under the hypothesis that quasi-
product observables exist. In other words, the existence of the “measurement” M ({O}scr,
S[pg]) is equivalent to that of the observable 60.
|
Example 3.4. [A simple general system, Heisenberg picture]. Suppose that a tree
(T" = {0,1,...,6,7},m) has an ordered structure such that (1) = n(6) = 7(7) = 0,
7(2) =n(5) =1, 7(3) =7(4) = 2. <See the figure (3.23).) Consider a general system

. Qi) “th the initial
Sipr) = [S[pg}, {A: =" Az ber\joy) with the initial system Sipn)-

(1)071 A 2.4
/ ! ‘%5
‘AO \ -AG -AE)
%
Qo™ A,

(3.23)
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Also, for each t € {0,1,...,6,7}, consider an observable O, = (X, 2%t F}) in a C*-algebra

A;. Thus, we have a sequential observable [{Oy}ier, {®ire) : At — Az beerjoy |- Now

63

we want to consider the following “measurement”,

¢7r
(#) for asystem Sp,p), take a measurement of “a sequential observable [{Oy}er, {A4 @

Az her\foy] 7 ie., take a measurement of an observable Og at 0( € T'), and next,
take a measurement of an observable O; at 1( € T), ------ , and finally take a

measurement of an observable O at 7( € T),

which is symbolized by DM({O;}wer, Sipr)). Note that the M({O}ier, Sppry) is merely a
symbol since only one measurement is permitted (c¢f. §2.5 Remark(II)). In what follows

let us describe the above (#) (= 9MM({O¢}rer, Sipr))) precisely. Put
0,=0; andthus F,=F (t=3,4,56,7).

First we construct the quasi-product observable O, in A, such as
ap  ap

62 = (XQ X X3 X X4,2X2XX3XX47ﬁ2) where ﬁg =) X (Xt:374 (I)Q’tﬁ;f)7

if it exists. Iteratively, we construct the following:

®o,1 d1 0

Ao — Ay — As
qp ~ qp ~ qp ~
Fy x CI)O,GF(; X @077F7 Fi x @175F5

l l (3.24)
~ ®o,1 ~ D12 ~
Fo — F — Fy
ap _ ap _ ap ~ ap _ ap ~ ap _ qp -
(FoX ®0,6F6X Po,7F7r X P 1F1) (F1X®15F5X ®12F») (FoX ®3 3F3X P 4 Fy)

That is, we get the quasi-product observable 61 = (H?:l X, 2H5?:1Xt7 ﬁl) of Oy, @17262
and @17565, and finally, the quasi-product observable 60 = (H;O Xy, olli—o Xt }70) of Oy,
@07161, @0,666 and (130,767, if it exists. Here, (N)O is called the realization (or, the Heisenberg
picture representation) of a sequential observable [{Oy}ier, { Ay e Ar@ her\joy)- Then,

we have the measurement

MA0(60 = (H Xt7 QHtET Xta ﬁO)a S[pg])7

teT
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which is called the realization (or, the Heisenberg picture representation) of the symbol
m({ot}teTa S[pﬁo})-

|
Remark 3.5. Let (T' = {0,1,....N},m : T\ {0} — T) be any tree with the root 0.
Let 7 be any element of 7. Consider a series structure 7 such that T, = {x*(7) | k =
0,1,2,....,h(7)} ( € T), where h(7) is the height of 7, i.e., 7"(7)(7) = 0. Note that Example
3.4 (i.e, diagram (3.24)) means that any general system (with a tree structure 7') can be
regarded as a general system with a series structure i.

3.4 The relation among systems (Axiom 2)

Examining Example 3.4, we see as follows: Let (T'={0,1,...,N},7: T\ {0} — T) be
a tree with root 0 and let Sy = [Spp), Ay Prie Az (t € T\ {0})] be a general system
with the initial system S[pg]. And, let an observable O, = (X, ¥, F;) in a C*-algebra A,
be given for each t € T'. Thus, we have a sequential observable [{O¢}ier, { Pt rr) : Ar —
Az bter\foy |- For each s (€ T'), define the observable 0, = (ILer, Xo, Tier, T, F,) in

A, such that:

O, = ap ap (3.25)

_ 0, (if s € T\ (T))
O.X ( Xier1((s)) Pr(1y,Or) (if s € 7(T))

if possible. Then, if an observable 60 (i.e., the Heisenberg picture representation of the
sequential observable [{O;}ier, {Prre) @ Ar — Az brer\yoy |) in A exists (such as in

Example 3.4), we have the measurement

MA0(60 = (H Xt7 H 371:7 ﬁ0)7 S[pg])a
teT el
which is called the Heisenberg picture representation of the symbol M({Oy }ier, S[pfo}).

Summing up the essential part of the above argument, we can propose the following
axiom, which corresponds to “the rule of the relation among systems” in PMT (1.4). Cf.

[43, 44, 46).
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AXIOM 2. [The Markov relation among systems, the Heisenberg picture]
The relation among systems is represented by a Markov relation {®y, ,, :
A, = Ap Yty yerz - Let Oy (= (X4, Fy, Fy)) be an observable in A, for each
t (€ T). If the procedure (3.25) is possible, a sequential observable [Or]
= [{Os}ters { Pty + At, = At f(4,1,)er2 | can be realized as the observable

00 = (ILer Xo [Lier F1, Fo) in Ao. (3.26)

It is quite important to note that Axiom 2 is stated in terms of A (and not in terms of

A*)* Also, we must add the following statement:

o Let Spp) = [S[pfo},{d%l@ D A, = AbFamerz] be a general system with an
initial state pf, (€ G&P(A;)). Then, a measurement represented by the symbol
‘Jﬁ({Ot}teT,SMO]) can be realized by MA0(60 = ([Ler Xe: [ Ler fﬂ,ﬁo),S[pg}), if

Oy exists.

which explains the relation between Axiom 1 and Axiom 2.

Now we get the PMT (1.4). We have the following classification in PMT:

deterministic PMT = “measurement” + “the deterministic relation among systems”.
[Axiom 1 (2.37)] [ each ®¢, ¢, is homomorphic in Axiom 2 (3.26)]
stochastic PMT = “measurement” + “the Markov relation among systems”.
[Axiom 1 (2.37)] [Axiom 2 (3.26)]
(3.27)

Remark 3.6. (i). Roughly speaking, Axiom 2 asserts ®,0; is more fundamental than

O; in the following identification
@0,101 (m .Ao) — 01 (ln .Al)

where O, is an observable in A; and ®¢; : Ay — Ag is a Markov operator.

(ii). Also, it should be noted that Axiom 2 says that the time evolution of a system
satisfies the Markov property. Thus, automata theory and circuit theory are characterized
as special cases of measurement theory (especially, Axiom 2).

(iii). Axiom 2 has a great descriptive power. Note that “hysteresis” and “multiple Markov

properties” can be described in the framework of Axiom 2.
|

4This fact makes us apply Axiom 2 to “statistical measurement theory” (in Chapter 8) as well as
“PMT” (in this chapter).
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3.5 Heisenberg picture and Schrodinger picture

Now let us mention something about the relation between Heisenberg picture and
Schrodinger picture.

Suppose that a simplest tree (7" = {0,1},7) has a “series” structure, i.e., m(1) = 0.

Consider a general system Sy = [S]p, A1 * Ag] with the initial system Sipp), that is,
Ay &L A, (3.28)

Let O; = (X3, 51, F1) be an observable in A;. Now we consider

(M) the measurement of the observable Oy = (X1, 5, F1) for the general system Sy =
[Sieg)s AL Ad]

Under the following identification:

@0’101 in .AO — (329)

we think that
(M) = Ma,(®0,101, Sip))- (3.30)

This viewpoint is standard, and it is called the Heisenberg picture representation of (M).

Axiom 1 says that

e the probability that the measured value of the measurement (M) (i.e.,Ma,(®¢101, S[(jop]))
0
belongs to Z; ( € ) is given by

(@01 F(E1))(= A6<pg, @0,1F(51)>A0). (3.31)

On the other hand, under the following identification:

poin S(Ag) || BGupp in S(A]) |

we also consider that
(M) = MAl(Oh S[@alpg}) (332)

<though ® 15 is not in GP(A*) but in &™(A*) if &g, is not homomorphic. Cf. Chapter
8 (statistical measurement theory),) This viewpoint is called the Schréodinger picture

representation of (M). We of course think that
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e the probability that the measured value of the measurement (M) (i.e.,Ma, (O1, Sgx 7))

67

belongs to =; is given by
(@01 F(20)(= a (Biurh, FE1) ), ) (3.33)

It should be noted that (3.31) = (3.33) holds. Thus it is usually and roughly said that

e Heisenberg picture (i.e., observable moves) and Schrédinger picture (i.e., state moves)

are equivalent,

though the Heisenberg picture is fundamental (and the Schrédinger picture representation

should be regarded as a kind of prescription). For the further arguments, see §6.2.

3.6 Measurability theorem

The following theorem is the most fundamental in classical PMT.
Theorem 3.7. [The measurability theorem of a general system, cf. [43]]. Let (T
{0,1,..., N}, m : T\ {0} — T) be a tree with root 0 and let S =[S, Ay .
Axr) (t € T\{0})] be a general system with the initial system Sj,p). And, let an observable
O, = (X}, 5, Fy) in a C*-algebra A; be given for each t € T. For each s ( € T), define

the observable (N)S = (HteTs X, HteTs F:, ﬁs) in A, such that:

_ { 0, (ifs e T\ n(T))

o~

O, = ap qp ~ ,

OSX( Xt@rq({s}) Cbﬂ(t)’tot) (lfS € W(T))

if possible. Then, if an observable CN)O (i.e., the Heisenberg picture representation of the
sequential observable [{O;}ier, {Pirw) : At — Az ber\yoy ) in A exists, we have the

measurement

MAO((N)O = (HXt,HfTrhﬁo),S[pg]), (334)

teT  teT
( &, It is sometimes denoted by [[,cr I+, ¢f. Definition 2.10), which is called the
Heisenberg picture representation of the symbol M({ Oy }rer, S[pgo}). If the system is classi-
cal, i.e., Ay = C(§) (Yt € T'), then the measurement always exists, while the uniqueness

is not always guaranteed. Also, it should be noted that, for each s( € T), it holds that
q)ﬂ(s)ﬁFS(HteTs Zi) = FW(S)((HteT,r(S)\TSXt) X (HteTs =) (V2 eF (VvteT)).
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Proof. Tt suffices to prove it in classical measurements. However it is clear since, in
classical measurements, the product observable of any observables always exists. There-

fore the construction mentioned in Example 3.4 is always possible in classical systems.
O

Example 3.8. [Random walk]. Suppose that a tree ("= {0, 1, ..., N}, 7) has a “series”
structure, ie., 7(t) =t —1 (Vt € T\ {0}). Consider a general system S5, = [S[s),
AP0t Ay (¢ € T\ {0})] with the initial system Sj5,), that is,

Do,1 D19 Do 3 Sy 2 N-1 PN_1,N

.AQ(_-A1<_’-A2<_ ......... — -AN—l “— ‘AN (335)

Let Z be the set of all integers, i.e., Z = {0,4+1,£2, ...}. Consider a commutative C*-
algebra Cy(Z). Here, put

A, =Co(Z) (Vte{0,1,..,N})

and define a Markov operator ®;_1,( = ®) : A;( = Co(Z)) — Ai—1( = Cy(Z)) such that:

@F)(n) = (yrpf)(m) = LT : fln—1)

Also, foreacht = 0,1,2, ..., N, consider the exact observable O, = (X, Ry, E) = (Z,Po(Z), E)
in A;( = Cy(Z)) such that, (¢f. Example 2.20),

1 neZ(ePy(z))
[EE)](n) = (3.36)
0 n¢Z=Z(ePo(Z)).

Vf e Al(=Co(Z)),¥n € 7).

Thus, we get the product observable Op = (X, Xy, X1y Fy, Fy) = (ZN+1, Po(ZN+),
Fy) in Ag (= Cy(Z)), that is,

ﬁo(Eo X El X EQ X X EN) = E(Eo) X (I)(E(El) X (I)( """ (I)(E<EN—1) X CDE(EN)) tet ))
Then, we have the “measurement” M ({O;}er, Sis)) such as
m({ot}tETa 8[50]) = MC(Z)<60 = (ZN+17 ?O(ZN+1>7 ﬁO)J S[§0])

where dy is the point measure at 0 ( € Z). The sample space <ZN+1, Po(ZNTY), [ﬁo()](O))
is usually called a random walk.
|

For the further arguments, see §10.4 (Brown motion).
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3.7 Appendix (Bell’s inequality)

(Continued from §2.9 (Bell’s Thought Experiment))?

3.7.1 Deterministic evolution or Stochastic evolution?

Recall the following classification (3.27) in PMT:

deterministic PMT = “measurement” + “the deterministic relation among systems”.
[Axiom 1 (2.37)] [ each ®¢, ¢, is homomorphic in Axiom 2 (3.26)]

stochastic PMT = “measurement” + “the Markov relation among systems”.
[Axiom 1 (2.37)] [Axiom 2 (3.26)]

However, we know that in classical (or quantum) mechanics, the general system Sy
= [Sprpy ATt Ay (¢ € T\ {0})] is always deterministic, that is, W), is always
homomorphic. (¢f. “Newtonian mechanics and quantum mechanics” in §3.1.)

Recall (2.76), i.e., the de Broglie paradox (cf. [20]. Also see §9.3.3). That is,

e if we admit quantum mechanics (: “Axiom 1 + Axiom 2 (homomorphic time

evolution)”), we must admit the fact that there is something faster

than light. (cf. [18, 78]). (3.37)
(=(2.76))

Of course we admit quantum mechanics, and therefore, we believe that there is something
faster than light. However, most people may hope that quantum mechanics is not true

rather than admit the fact that there is something faster than light. That is,

(#) Using the Schrodinger picture representation, they may assert that the singlet state
ps is not fixed, but the Markov time evolution (i.e., “the Markov relation
among systems (Axiom 2)” and not “the homomorphic relation among systems
Axiom 2)”):

PPy (3.38)

should be considered.

5 Although Bell’s inequality is generally said to be one of the most profound discoveries in 20-th century
science, I could not understand the arguments (in [9, 18, 78, 8]), particularly, I had the question: “In
what framework is Bell’s inequality discussed (in [9, 18, 78])?? I wonder if these arguments are confusing
physics with mathematics. Thus, I add this section, in which all arguments are discussed in the framework
of PMT (Axioms 1 and 2).
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The purpose of the following section (i.e., §3.7.2) is to show that we must admit that
there is something faster than light, even under the above assumption (f). That is, if

we assert that PMT (: “Axiom 1 4+ Axiom 2 (Markov time evolution)”, i.e., quantum

mechanics with Markov (and not homomorphic) time evolution> is true, we must admit
the fact that there is something faster than light.
3.7.2 Generalized Bell’s inequality in mathematics

First we prepare some mathematical inequalities. Of course, what is most important
is how to interpret these theorems in physics. This will be discussed in the next section.
In order to avoid to confuse physical results and mathematical ones, in this §3.7.2, we
devote ourselves to mathematical arguments.

Theorem 3.9. [Bell’s inequality, cf. [9, 78]]. Let (Y, G, m) be a probability space. Let g},
g2, g+, g3 be {—1,1}-valued measurable functions on Y. Define the correlation function

P'(g!, g}) such that:
Pgio) = | si)gilo) midy) (339
Y
Then, it holds that

1P (g1, 93) — P'(g1,93)| + | P (g3, 93) + P'(g3,95)| < 2. (3.40)

Proof. For completeness, we add the proof in what follows.
[P (g1,92) — P'(g1,92) + | P' (g7, 92) + P'(g1, 2]
< [ 16l 19}) ~ s3lmtan) + [ 13001 - b0 + g3w)lm(a)
< [ | 1936) = 3] + lob(0) + ) im(cy) =2
This completes the proof. O
Corollary 3.10. [Bell’s inequality]. Let (Y,G,m) be a probability space. Let gi', gi2,

g, g%, g3t 932, g3t and g32* be {—1,1}-valued measurable functions on Y. Define the

correlation function P(gY”,g5) such that

P(g, g¥) = /Y 49 (y)g5 (y) m(dy). (3.41)
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Further, assume that

11 _ 12 21 22 11 21 12 22
9 =9, 9 =9, 9 =%, G =9 (ae m)

ie,m({yeY : gi'(y) = gi*(y)})=1, etc. Then, it holds that

[Pt 92") = P(gr”, 92")| + | P(g7", 95") + Plgi” 97)| < 2.

Proof. It immediately follows from Theorem 3.9.

71

(3.42)

(3.43)

Next we present the following theorem, which can be regarded as a generalization of

the above corollary (c¢f. Remark 3.12 later).

Theorem 3.11. [Generalized Bell’s inequality|. Let (Y,G,m) be a probability space.

Let gi', gi%, g, g2, git, 942, g3' and ¢3* be {—1,1}-valued measurable functions on Y.

Assume that these satisfy

ml(g7,95) " (B1 x By)] = Z&é 15 o(B1) 15,,(Bs)  (VB1, By € {—1,1}, Vi, j =1,2)

lel

(3.44)

for some probability measures ,u};’@, (k,i=1,2,0 € L), on {—1,1} and some nonnegative

sequence {ay}er, such that ), , a, = 1. Then, it holds that
[Pl 92") = P(o1* )| + [P(ai 92") + Ploi 93) < 2,

where the correlation functions P(g¥, ¢5) are defined by (3.41).

Proof. A simple calculation shows that

Plolgf) = acl Y awwe i ({ra )i, ({w))]

el (x1,22)e{—-1,1}2
= Z (Al i g + 1= 2085 0 — 2413, ),
leL
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where pg , = i, ,({1}). Thus, we see that

[P(91",95") = Plor*,92°)| + P91, 95') + P97, 95°)|

=| Z aé(4lllieﬂ§,e +1- 2:“%,( - 2#51) - Z aé@ﬂieﬂ%z +1- 2#%,@ - 2#3,@”
leL leL

+ | Z 04@@#%,2#5,4 +1- 2#?,5 - 2#%,@) + Z 046(4!&4#3,@ +1- 2#?,@ - 2M§,z)|

leL leL
=| Z p(Apa gy g — 2ptg g — A1 o3 0 + 2113 )]
el
+ | Z 04@@#%,@#5,5 +2 - 4#?,5 - 2#5,@ + 4#%,5#%1 - 2#372)‘ = |A]l + | B,
el

and consequently,

B { | D ver e[2 — 4(#?,@ + M%,e + M%,M%,e - M%,zﬂ%,e - Mieﬂ%,e - N%,M%,e)]

< { > ver |2 — 4(#;,3 + Né,é + N;M%,e — Nieﬂé,e - M;Mé,e - M;,W%z)‘ (if A-B>0)
T 2rer |2 = A(pT g+ 1o+ B elin e — B el — ko — Hiekag)|  (EA-B <0).

Hence, it suffices to prove that 0 < C(z,y,2z,w) < 1 (V(z,y,2,w) € [0,1]?), where

| D ver 0el2 = 40T g + po g+ 11083 0 — B pla e — B etz e — 1Tk ,)]|  (f A- B >0)
| (fA-B<0)

C(z,y,z,w) = y+ z+zw— xz —yz — yw. This is shown as follows:

[Case 1; w — z > 0].

0<y(1

yl—w)+z01—y)+zx(w—2)=C<C+ (w—2)(1—2x)
y(1 -

w)+w—yz<1l—yz<1.

[Case 2; w — z < 0].

0<yl—-2)+w(l—-y)=y+z2z+(w—2)—yz—yw

<y4z4zw—2z2)—yz—yw=C<y+z—yz—yw<y(l—z)+2z<1.

This completes the proof. n

Remark 3.12. It is interesting to see that Corollary 3.10 can be regarded as a particular
case of Theorem 3.11. This can be easily shown as follows: Let (Y, G, m) and g,ij be as in
Corollary 3.10. Thus, we assume that the condition (3.42) holds. Put L = {-1,1}%
For each £ ( = (61,01,65,03) € L), define the ay ( € [0,1]) such that a2 s =
m((git, 9% 93", 93%) 7" ({(41, 83, 03,03)})). Clearly it holds that > ,.; a, = 1. Define
the probability measures fi; and fi_; on {—1,1} such that i ({—1}) = 0, 1 ({1}) =1
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and :a—l =1 _ﬁl' It is easy to see that m((g%17 9%27 géla 932)71({(,%%, CE’%, ZL’%, 27%)})) = ZEGL
ar fig ({21 ie ({21 ({z2}) g ({23}) (V(z1, 2,23, 23) € {~1,1}"). Thus, putting
1 @2 = ﬁ%, we can immediately see that the {a,}ser and the {ut , i,k =1,2,0 €
NS RASEADE) B}
L} satisty the condition (3.44).
|

3.7.3 Generalized Bell’s inequality in Measurements

Put X = {—1,1}. Consider a measurement Ma( O = (X P(X*®),G), S,,) formu-
lated in arbitrary C*-algebra A. Putting 2 (-) = po(G( - )), we have the sample space
(X®,P(X®),12 ), which is induced by the measurement Ma( O, Sj,;). Consider the
{—1,1}-valued functions g,ij on X8 (i,7,k = 1,2). And define the correlation functions
P(g?,95) (i,5 = 1,2) by (3.41). Assume the condition (3.44) in Theorem 3.11. Then, we
see, by Theorem 3.11, that the following inequality holds:

P91, 93") — P91, ¢3°)| + |1 P(g7", 93") + P(gi?, 95°)| < 2. (3.46)

Therefore, it may be viable to compare the measurement Ma( O, Sj,,)) with the measure-
ment ®i,j:1,2 Mg c2gc?) (Ogivi, Spp,)) in Bell’s thought experiment, though it is also sure
that these are not connected with each other. For example, some may, by some reason,
consider that the singlet state ps in Bell’s thought experiment (cf. the formula (2.75)) is
reduced to a certain state py ( € &(B(C? ® C?)*)) such as

ps~ po = 8@ f){E® f] (3.47)
for some €2 f ( € C2®C2) such that ||é]|cz = || f]jcz = 1. Ifso, instead of the measurement
®Z.7j:172 Mg c2ec2)(Ogivi, Sp,)), We must consider the measurement ®i’j:172 Mg c2ac2)
(Ouivi, Sipo]), which has the sample space (X*®, P(X?®),v) such that:

V({(x%lj xélv :UP’ ',Lé27 x%l> '77317 w?? 3:%2)}> = H pO((Fai ® Fbj)({<xij> -CEIQJ)}))

1,7=1,2

= I L@ Rl DA oD )]

ij=1,2
Or more generally (or, in the sense of “ensemble”), using the adjoint operator ®* of a
Markov operator ® : B(C? ® C?) — B(C? ® C?), we may consider the following Markov
evolution:

2 2
i R - /= g
0 =30 e @ Fo) o ® Fol. (3.48)

n=1 m=1
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where {€,,}2,_; and { fm}le are respectively the complete orthonormal basis in C?, and
0 < aypy < 1 such that Zi:l anzl mn = 1. Thus we have the (statistical) measurement
;. i—1.2 Mp(ceoc?) (POqi, S),,)). Thus, we may have the sample space (X®, P(X*®),v)
such that:

v({(ar 2yt o 2y’ ot a3t 2P ) = [ pc((@Fw @ Fo)({(at,25)}))

= I @) ((Fu (@ a)h)= 1] b ((Fu @ F) (@Y, 2)})

2 2

= TL I Y ol e D) (o B (5 D).

i,j=1,2 m=1n=1

Note that the probability space (X3, P(X?), v) and the g/’ defined by (2.77) satisfy the
condition (3.44) in Theorem 3.11. That is because it suffices to put L = {—1,1}? and

'U“i(m:”)( ' ) - <€m, Fal( ’ )€m>, 'U’i(m,n)( ) ) = <€ma Fa2< ’ )€m>a
'u%v(m»n)( ' ) - <f"’Fb1( ' )fn>; M%,(m,n)( ’ ) = <fn7 Fb2( ’ )fn>7
for each (m,n) ( € L = {—1,1}?). Thus, Theorem 3.11 says that such Markov evolution

as the above (3.47) or (3.48) does not occur in Bell’s thought experiment. Therefore we

can conclude that

e if we admit PMT (= “Axiom 1 + Axiom 2 (Markov relation)” ), we must also admit

the fact that there is something faster than light. (3.49)

Of course we admit PMT, and therefore, we believe that there is something faster than

light.
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Chapter 4

Boltzmann’s equilibrium statistical
mechanics

As mentioned in Chapters 2 and 3, we see that (pure) measurement theory (= PMT) is formulated
as follows:

PMT = measurement + the relation among systems in C*-algebra (4.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

The purpose of this chapter! is to understand Boltzmann’s equilibrium statistical mechanics ? (i.e.,
“the principle of equal a priori probability” and “the ergodic hypothesis”) as one of applications of
PMT. We believe that our approach completely justifies the the thermodynamical weight method
(i.e., the Gibbs method, cf. [26])3

4.1 Introduction

In spite that equilibrium statistical mechanics is generally believed to be based on
Newtonian mechanics, the term “probability” frequently appears in equilibrium statistical
mechanics. Therefore, if we want to understand equilibrium statistical mechanics in the
framework of Newtonian mechanics, a certain rule concerning “probability” should be

added. That is, we hope to understand equilibrium statistical mechanics such as:

'Tt may be recommended that this chapter is skipped if readers want to study statistics in the frame-
work of PMT firstly (¢f. Chapters 5 and 6).

2In this chapter readers are not required to have much knowledge of statistical mechanics.

3In this book, we think that statistical mechanics should be understood as one of applications of
measurement theory and not theoretical physics, (¢f. Table (1.7)). Thus, it should be noted that no
serious test has been conducted in statistical mechanics. What we know is nothing but the fact that
statistical mechanics is quite useful (¢f. Table (1.8)). Or, statistical mechanics is “almost empirically
true” to such a degree that statistical mechanics is assured to be useful in usual situations. Cf. the (Io)
in §1.2.

75
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“equilibrium statistical mechanics” = “Newton equation” + “probabilistic rule”

[Axiom 2 (3.26)] [Axiom 1 (2.37)]
(4.2)
in PMT.

First we must answer the following question:
(Q1) What is the “probabilistic rule” in (4.2)?

Recall Example 2.16 (the urn problem), which is the most fundamental in the classical
measurement. Thus in order to understand “probabilistic rule (=Axiom 1) in (4.2)”, it

suffices to note the following simplest example:

(A1) “Consider a box containing 7 x 10%* white balls and 3 x 10* black balls, and choose
a ball at random from the box. Then the probability that the ball is white is given as
0.7.7

Even without the knowledge of measurement theory (in Chapters 2 and 3), every reader
surely agrees that the probability appearing in urn (i.e., box) problems is most typical in
statistics.

Next we must refer to “Newtonian mechanics” in (4.2). Namely we must solve the

following question.
(Q2) What kinds of conditions are imposed on the Newton equation in (4.2)?

In equilibrium statistical mechanics, about 10** (=~ 6.02 x 10?3: “Avogadro constant”)

particles, of course, move hard in a box such as the following figure:

\ o
/

NOR IV NG

)
-~ s o
/ >(*0\0*\[\4—0.4—0
“
\,\q}fc« f.
> e o p \A—- Ll IV TN

(4.3)
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However it seems to be natural to think as follows:
(AY) All particles are even, or on a level.

(A2) The motions of particles are (almost) independent of each other. In other words,
the information about a subsystem composed of some particles is invalid for the

inference of the state of another subsystem.

This is our answer to the question (Qs). In §4.2, the (Al) and (A3) will be represented in
terms of PMT. Also, the (A;) will be discussed in §4.3.

Summing up, we think that equilibrium statistical mechanics is formulated as follows:

“equilibrium statistical mechanics” =  “probabilistic rule” + “Newton equation”
(the probability such as in (A1)) (the conditions (A3}) and (A2))

(. J/
e

(+ “staying time interpretation”)

(4.4)

in PMT. Or, equivalently,

e An equilibrium statistical system can be regarded as an urn containing about 10%*
particles. Also, the motions of particles are dominated by the Newtonian equation
with the conditions (A}) and (A3). Also, the “staying time interpretation” implies

the common sense such as it is almost impossible to find a rare event.

And moreover, two conventional principles (i.e., “the principle of equal a priori probability”
and “the ergodic hypothesis”) will be completely clarified in our proposal (4.4).

The first attempt to understand equilibrium statistical mechanics in the framework of
PMT was executed in [45]. The content in [45] will be slightly modified and improved in
this chapter.

Note, for completeness, that our purpose is to understand equilibrium statistical me-
chanics as one of applications of PMT and not to derive equilibrium statistical mechanics
from Newtonian mechanics (¢f. [75]). That is, we are in theoretical informatics and not

in theoretical physics?

4We have no experimental evidence that the ergodic approach to statistical mechanics is proper.
However, in theoretical informatics, it suffices to find a reason that many people do not doubt.
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4.2 Dynamical aspects of equilibrium statistical me-
chanics

In this section we shall devote ourselves to the mathematical description of the answers
(A}) and (A3) mentioned in Section 4.1. Readers should note that all arguments in
this section are within Newtonian mechanics. Namely, it should be noted that it is
prohibited to use the term “probability” in this section. For example, Lemma 4.9 (“the
law of large numbers” in §4.5 Appendix) is not only most important in Kolmogorov’s
probability theory but also in this section (i.e., the derivation of the ergodic hypothesis
(= Theorem 4.6)). Therefore, readers will see that Lemma 4.9 is used independently of
the concept of “probability”. This is the reason that the term “normalized measure” (and

not “probability measure” ) is used in Lemma 4.9.

Now let us begin with the well-known ergodic theorem (c¢f. [57, 83]). In Newtonian
mechanics, any state of a system composed of N( a 10?*) particles is represented by a
point (¢,p) (= (¢ins @2ns G3ns Pins P2n, P3n)h—y ) in a phase (or state) space RN (cf. the
formula (2.8)). Let H : R®Y — R be a Hamiltonian, i.e., a positive continuous function
on RSN, Define V(E), E > 0, by “the volume of the set {(¢,p) € R | H(q,p) < E}’,
and define the measure v, on the energy surface 8, (= {(q,p) € RN | H(q,p) = E})
such that

v, (B) = /B IVH(q,p)| tdmen_1 (VB € Bs,, the Borel field of §,,)° (4.5)

where dmgy_1 is the usual surface measure on §,. Note that v,(8,) = % holds. Let
{F } —so<t<oo be the flow on the energy surface 8 induced by the Newton equation with
the Hamiltonian H. Liouville’s theorem (cf. [11]) says that the measure v, is invariant
concerning the flow {f} _<icoo. Defining the normalized measure 7, such that 7, =
ﬁ, we have the normalized measure space (8, Bs_,7,).

In order that equilibrium statistical mechanics must hold, we first assume that the

Hamiltonian H satisfies the following ergodic hypothesis (EH):

(EH) The flow {¢f}_oo<icoo On the 8, is ergodic. That is, there uniquely exists an

normalized invariant measure 7, on 8, such that 7_(B) =7, (4(B)) (—oo <Vt <

5Or usually, v, (B) = 7557 5 [VH(q,p)|"'dmen—1, where h is the Plank constant. In this book, for
simplicity, the constant W will be omitted.
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o0, VB € 3SE)

The ergodic theorem (cf. [11, 57]) says that the normalized measure 7, represents the
normalized averaging staying time, i.e., it holds that

b (B) = lim (] Gaw € BR=12, K}

K—oo K

(Vw € §,,,Ve > 0).

or generally,

1t

/f(w)ﬁE(dw) = Thm T/ f(We(wo))dt (Vf e C(Q), Ywy € Q), (4.6)

Q —ee 0
(space average) (time average)

which is equivalent to the (EH). Thus the normalized measure space (8,,, Bs_,7,,) is called

the normalized averaging staying time space (cf. Remark 4.1 later).

We assert that

(STI) [Staying time interpretation of statistical mechanics]. Let N € Bs_ such that the
normalized averaging staying time U (N) is quite small (i.e., 7, (N) < 1). Then it
is almost impossible (or precisely, quite rare) to see that the state (q(t), p(t)) belongs
to the N.

We think that this (STT) is a common sense rather than a principle. The concept of “time”
(or precisely “non-relativistic time”) is within Newtonian mechanics, and therefore the
statement (STI) (or “staying time”) can be understood within Newtonian mechanics.

Remark 4.1. [The probabilistic interpretation of (8,,Bs_,7,)]. The probabilistic in-

terpretation is as follows:

(PI) [Probabilistic interpretation of statistical mechanics|. The normalized averaging

staying time space (8, Bs, v, ) is regarded as Kolmogorov’s probability space.

That is, the probabilistic interpretation, which is usually called “the principle of equal
a priori probability”, means that the probability that the state of the system belongs to
=( € Bs,,) is given by 7 (Z). If the probabilistic interpretation (PI) is assumed, the (STI)
obviously holds. However, the concept of “normalized staying time” is clearly different

from that of “probability”. Note that:

e the former (i.e., “the staying time interpretation”) is within Newtonian mechanics,

but the latter (i.e., “the probabilistic interpretation”) is not so.
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Thus, in this chapter we choose a common sense (i.e., “the staying time interpretation”)
rather than a principle (i.e., “the probabilistic interpretation”)$ This is the reason that
the (8, BSE,?E) is not called the probability space in this chapter. Again note that all
arguments in this section are within Newtonian mechanics. In this chapter the (STI) will
be used instead of the (PI).

|

We introduce the following notation:

Notation 4.2. [In the sense of (STI)]. Let P(q,p) be a proposition concerning a state
(q,p) ( € 8,) such that P(q(t),p(t)) is true for everyt € S, \N (={w |w € §,,w ¢ N}).
Assume that the normalized averaging staying time U (N) is quite small (i.e., 7_(N)

< 1). Then we write it as

P(q(t),p(t)) is true  (almost every t in the sense of (STI)), (4.7)
< Or, P(q(t),p(t)) is almost always true >

Also, when the probabilistic interpretation (cf. Remark 4.1) is added to the (8, Bs_,7V,),

we may write it as

P(q(t),p(t)) is true  (almost every t in the sense of (PR)).” (4.8)

|
As seen in Remark 4.1, it holds that (4.8)=(4.7). Throughout this chapter we, of
course, focus on the (4.7) and not (4.8).

Let € > 0, f1, fa, ..., [k € Co(R®). Define the 0-neighborhood U in M(RF) (in the
sense of weak* topology of M(R?®)) such that:

U( = U]il,...fK) = {P < M(RG)(: CO(RG)*) : |M(R6)<p7 fk‘>CO(RG)| <ek=12 ., K}
(4.9)

SWhat is the most important is to recognize that statistical mechanics belongs to the category of
theoretical informatics and not that of theoretical physics. (¢f. Table (1.7)). Thus, the present situation
is the same as the following situation. Two ready-made suits (A) and (B) are on sale. The (A) is
somewhat big, and the (B) is somewhat small. Which do you choose, (4) or (B)? Cf. (Iy5) in §1.3.
We must choose one from “the staying time interpretation” and “the probabilistic interpretation” In
theoretical informatics, it can not be decided by experimental test. What we can say is we believe that
“the staying time interpretation” will win more popularity than “the probabilistic interpretation”

"Note that this notation is different from that of Kolmogorov’s probability theory, in which we use
the phrase “almost every t in the sense of (PR)” when #(N) = 0.
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Put Dy = {1,2,..., N( ~ 10?")}. For each k ( € Dy = {1,2,..., N( =~ 10?*)}), define
the map X : 8, ( C RY) — RS such that

Xk((Q1m 42n; 93n; Pin, an,Psn)ﬁle) = ((hk, 2k 43k Pk, P2k, p3k) (4-10)

for all (¢,p) = (qins G2n> G3n> Pins Pan, Pan)h=y 0 8, ( C ROY). For any subset D ( C Dy =
{1,2,..., N( ~ 1029)}), define the map RY) : 8,( € R*N) — M™ (R) ( = {p € M(RS) :
p >0, p(R®) =1}) such that

R%}»p) - ﬁ Z 6Xk-(q,p) (v(%p) € SE( - RGN)): (4'11)

keD

where $[D] is the number of the elements of D and J, is a point measure at z ( € RS).
Let U be a 0-neighborhood in M(R?) such as defined in (4.9). For any (p,q) ( € Sg),
put

Hy(p, q) = kglog [vs({(,¢) € Sp | REY — RE-") e U})], (4.12)

(kp is the Boltzmann constant, i.e., kg = 1.381 x 1072J/K), which is called the U-entropy
of a state (p, q).

Let Dy C Dy. Define 7, o ((Xg)rep,) ™t (€ M™ (ROHD0D)) by the image measure
concerning the map (Xg)rep, : R®Y — RO¥HDol that is,

V0 ((Xikepy) 7 ( X Ax) =7,({(p,q) € S& | Xi(p,q) € Ax (k € Dy)}) (4.13)

keDg

for any open set Ay ( C RS) (k € Dy).

In what follows we shall represent the conditions (A}) and (A3) (mentioned in §4.1)
in terms of mathematics. Cf. [45].
Definition 4.3. [Thermodynamical condition, equilibrium state]? Let Dy be a set
{1,2,..,N(~ 10*Y)}. And let K, E, vg, Vg, X) : Sg — RS be as in the above. A
Hamiltonian H on R®Y (N ~ 10**) is said to be thermodynamical (concerning energy E)

if the following condition (T') is satisfied:

(T) {Xy: 8g — RO}, is an almost independent sequence with the identical distribution.

8 Although this condition may be superficial and not fundamental, we believe, from the measurement
theoretical point of view, that equilibrium statistical mechanics should start from this condition. Again
note that our purpose is to understand equilibrium statistical mechanics as one of applications of PMT
and not to derive equilibrium statistical mechanics from Newtonian mechanics.
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In other words, there exists a normalized measure p, on R® (ie., p, € M7, (R°)) such

that:
(T") [identical distribution, cf. (A}) in §4.1] it holds that

PV, 0 Xt (Vk=1,2,....,N(~10*)), (4.14)

(T?) [independence, cf. (A3) in §4.1] it holds that
® p,(: product measure) ~7,_ o ((Xi)reny) (4.15)
keDyn

though the condition (T?) is too strong to assume it literally, (see Remark 4.4).

Here, a state (q,p) (€ 8g) is called an equilibrium state if Rg;f) ~ pg.”
|
Let T be a sufficiently large number. Assume that the closed interval [0,7] has
the measure: dt/T (thus, the total measure of [0,7] is equal to 1). For each k ( €
Dy = {1,2,..,N( =~ 10*")}), define the map wy, : [0,7] — RS such that wy(t) =
(q1x(t), qor(t), g3k (t), P1k(t), par(t), par(t)) for all ¢ ( € [0,T]). Assume that

(8) {wk | k € Dy} is a set composed of almost independent functions with the identical

distribution.

This assumption () is essentially the same as (7) in Definition 4.3.

RG

almost independent
identically distributed

9In our formulation, we do not assume that the “equilibrium state” is defined by 7, since 7, is not
assumed to have the probabilistic interpretation (¢f. Remark 4.1).
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Remark 4.4. As mentioned in Definition 4.3, the condition (77?) is too strong. Thus,
it should be understood symbolically and not literally. Therefore, we actually assume

some hypotheses, which are weaker than the (73). For example we assume the following
conditions (7%?)" and (T?)":

(T?)" [independence] it holds that

Q) pe 27, 0 (Xi)keny) ™", (4.16)

k€Dg
(VDy C {1,2,..., N( ~ 10**)} such that 1 < #[D] < N).

This is needed for the derivation of the ergodic hypothesis (¢f. Theorem 4.6 later). Also,

we assume that

(T?)" |independence] it holds that

(72 0 (Xihep) ™) Q) (72  (Kidkens) ™) 27 0 (Xidrenions) s (417)
for any Dy, Dy (C D) such that D1 N Dy = () and 1 < §][D4],4[Ds] < N.

That is because, in equilibrium statistical mechanics, we usually assume that the inter-
action between the subsystem composed of the particles D; and that of the particles D,
can be neglected.

|
Remark 4.5. (i) If Ny is arbitrarily large (and thus N = 00) and if the approximation
symbol “~” is interpreted by the equality “="7 then (4.4) and (4.16) imply that the
sequence {X;}72, on the normalized averaging staying time space (8,,Bs_,7,) is an
independent sequence with the identical distribution p,. Thus, Lemma 4.9 (i.e., the law

of large numbers) says that

o }ji[g}) R = p_ (in the sense of the weak* topology of M(R®)) (4.18)
o= —00

holds for almost every (¢,p) in (8,,B(S,),7,). Note that Kolmogorov’s probability the-
ory [56] is mathematics, and therefore, it is valid even if the probabilistic interpretation
(¢f. Remark 4.1) is not added to the normalized averaging staying time measure space
(84, Bs, 7). For completeness, again note that the terms: “identical distribution” in
(T') and “independence” in (T?) are not related to the concept of “probability” (but that

of “staying time”).
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(ii) The reader may doubt if the concepts of “identical distribution” and “independence”
are meaningful without the probabilistic interpretation. However, the following example
shows that these concepts are not only meaningful on a measure space but also on a
topological space. Let f : 2 — R be a continuous function on a topological space (2.
For each n(= 1,2,..., N), define the function f, : Q¥ (= product topological space) — R
such that QY > (wy,wa, ..o, wp, ..., wy) — f(w,) € R. Then we may say that {f,}\_,
is “an independent sequence with the identical distribution”. In fact we often say “The

7

motions of two particles are independent” in Newtonian mechanics (and not in statistical

mechanics).

By an analogy of the arguments (i.e., the derivation of (4.18)) in the above Remark
4.5(i), we can assert that (4.14) and (4.16) imply that, if 1 < No( ~ $[Dy]) < N( =~ 10*1),

RUOHO) 5

v,0X, ' (~p,) ( almost every time ¢ in the sense of (STI) ) (4.19)

E

holds for any k (= 1,2,..., N( ~ 10**)). Here consider the decomposition {D 1, D), ...,
Dy} of Dy (={1,2,..., N( ~ 10*")}) such that §{Dy)] ~ Ny (I = 1,2,...,L). Then we
see, by (4.19), that

L (q(t),p(t))
y _ 2mliDo] X Rp, "1 YD) * o)
N N
( almost every time ¢ in the sense of (STI) )

RE™ =7, 0 X (~p,)

holds for any k ( =1,2,..., N( & 10%%)).

Summing up, we have the following theorem.
Theorem 4.6. (Ergodic hypothesis). Assume the thermodynamical condition (i.e., (T7)
in Definition 4.3 and (T?)" in Remark 4.4). Then it holds that

RED™ ~ v, 0 X (mpy) (k=12 N(~10*)) (4.20)

( almost every time t in the sense of (STI) )

Thus, the state of the system is almost always equal to the equilibrium state (cf. Definition

4.3). That is, we see:
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o RUPI) o plata)p(ea)

N N ( almost every time t; and ty in the sense of (STI)).

(4.21)

|
This says that

“the distribution of N( ~ 10**) particles at almost every time ¢’ (in the sense of (STT))

=“normalized averaging staying time of the k-th particle (Vk = 1,2,.... N ~ 10%%)”
(4.22)

We believe that this is just what should be represented by the “ergodic hypothesis” :*°
“population average of many particles” = “time average of one particle”, (4.23)

that is, we see that (4.20)=(4.22)=(4.23).
Remark 4.7. [Another formulation of equilibrium statistical mechanics]. For complete-
ness, note that the condition (7%)" in (4.16) is assumed in order that (4.21) holds. Thus
some may assert that it suffices to start from the 8g (with the measure v which induces
(STI)) and the (4.21). This formulation may be called the formulation without the ergodic
hypothesis. Also, see the formula (4.29) later.

[
Remark 4.8. (i). If the probabilistic interpretation (i.e., the principle of equal a priori
probability) is assumed, in (4.20) we can replace “almost every time ¢ in the sense of
(STI)” to “almost every time ¢ in the sense of (PR)”. However, if the (STI) is accepted as
a common sense, we can do well without this replacement, that is, the replacement does
not bring us any merit. Thus we think that the probabilistic interpretation is not needed.
Cf. Remark 4.5

(ii). We may still have a question:

o Why is the thermodynamical condition (i.e., (T) and (T?)) always satisfied in the

usual circumstance of equilibrium statistical mechanics?

Though we do not know the firm answer,!! we can easily show, by (4.20), that the thermo-

dynamical condition ((T") and (T?)) explains the following law (i.e., “the law of increasing

10Tn this book, the term “ergodic hypothesis” has two meanings. One is used in the sense of the formula
(4.6). And the other is used in the sense of the formula (4.23) (or, Theorem 4.6).

HTf we think that statistical mechanics belongs to informatics and not physics (¢f. in this book we
consider so), the firm answer may not be needed. If the thermodynamical condition is useful, it is enough.
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entropy” )12

(IE) the U-entropy Hy(q(t),p(t)), (cf. (4.12)), is increasing concerning t, that is
Hy(q(t),p(t)) Tloglv(8g)] (ift T oo) in the sense of (STI) (4.24)
for a suitable small 0-neighborhood U in M(R?).

That is because Hy(q(t),p(t)) =~ log[v(Sg)| holds for almost every time ¢ in the sense of
(STI) if the neighborhood U is chosen suitably. (How to choose the U suitably is our
future problem.)  Therefore we consider that the law of increasing entropy is hidden
behind the thermodynamical condition ((77) and (7%?)).

|

4.3 Probabilistic aspects of equilibrium statistical me-
chanics

In this section we shall study the probabilistic aspects of equilibrium statistical me-
chanics. Note that the (4.20) implies that the equilibrium statistical mechanical system

at almost every time ¢ (in the sense of the (STI)) can be regarded as:

(U) an urn including about 10?* particles such as the number of the particles whose

—_
—

states belong to = ( € Bge) is given by pg(Z) x 1024

Recall the (A;) in §4.1, that is, the probability appearing in classical systems (or particu-
larly, in the probabilistic rule in (4.2)) is essentially the same as the probability appearing

in urn problems. Therefore, we see, by the above (U),

(A}) if we choose a particle at random from the urn (=“box in Figure (4.3)”) at time ¢,

then the probability that the state of the particle belongs to = ( € Brs) is given by
pe(E).

127f my memory serves me right, in some book A. Einstein says: There is a possibility that someone
will find his relativity theory is not true, but there is no possibility that someone will find that the law
of increasing entropy is not true. We can understand what he wants to say, if we think that statistical
mechanics should be understood as an application of measurement theory, on the other hand, his relativity
theory belongs to theoretical physics. That is, we think that the law of increasing entropy is as “true” as
the statement “A cat is stronger than a mouse” (Cf. footnote[9] in Chapter 2.) It should be noted that
the statement “A cat is stronger than a mouse” is ambiguous, fuzzy, vague, etc, though it is “almost
experimentally true” (cf. (I14) in §1.3).
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In what follows, we shall represent this (A}) in terms of measurements. Define the ob-

servable O = (R® Bgrs, F) in C(8g) such that, (cf. (4.11)),

FENa) = rE)E) (= T E) (2 € B Vi) €8, R)
(4.25)

Thus, we have the measurement M¢(s,,)(O = (RS, Bgs, F), S| . Then we see that

5%((10,?0)})

(B}) the probability that the measured value obtained by the measurement M¢s,)(O =
(R6’3R6’F)’S[%(qo,po)]) belongs to Z(€ Brgs) is given by pg(Z). That is because
Theorem 4.6 says that

[F(2)](¢¥(q0,p0)) = pr(E) (almost every time ¢ in the sense of (STI))  (4.26)

which is just the measurement theoretical representation of the (A}).

Also, we see that

(A7) if we choose N’ particles at random from the urn (=“box in Figure (4.3)”), then
statistics say that the distribution of the states of these particles is almost surely

expected to be approximately equal to pg, where 1 < N’ < N( = 10%*).
Here, consider the product observable O = (RN Bpons, V') in C(8g). For each k
(€ Ky ={1,2,...,N'), define the map X, : R®"" — RS such that

’

Xi((T1: T2ns T3, Tans Tsn, Ten)ney) = (T1ks Tak, T3k, Tak, Tsk, Tok)
for all 2 = (T1, T2n, T30, Tan, Tsn, Ten) vy in ROV, Define the map Gyr : R%Y — M™, (RF)
(={peM(RF) :p>0, p(R®) =1}) such that
1
Gi(z) = Y Oxuw  (VzeRNV). (4.27)
n=1
Then we have the image observable Gy (OY') = (MTI(R6),3MT1(R6), Gy (FN"). And
we see, by Theorem 4.6, that

(BY) the measured value obtained by the measurement Mc(s,)(Gn(OV'), Slo s ta0w)) 19

approximately equal to pg.

which is just the measurement theoretical representation of the (AY).
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4.4 Conclusions

In this chapter we assert that equilibrium statistical mechanics is formulated as fol-

lows: 13

“equilibrium statistical mechanics” = “probabilistic rule” + “Newton equation”
((BY)(= Axiom 1)) ((T') and (T?)) under (EH))

J/

(+ STI)
(4.28)
(=(4.4))

in the framework of PMT.

It may be generally believed that the principle of equal a priori probability and the
ergodic hypothesis are two basic principles of statistical mechanics. However, our for-
mulation (4.28) says that the principle of equal a priori probability is not needed (cf.
Remark 4.5 and Remark 4.8(i)), and moreover, the ergodic hypothesis is a consequence
of the thermodynamical condition (i.e., (T") and (7?) under the (EH)), ¢f. the formulas
(4.20)~(4.23).

However we may assert that the following formulation is also possible:

“equilibrium statistical mechanics” = “probabilistic rule” + “Newton equation”
((BY)(= Axiom 1)) ((T1) and (T?)) under (EH))

(+ PI)
(4.30)

which is, strictly speaking, related to SMT (c¢f. Chapter 8, Statistical measurement the-
ory).

Thus we have the question:

e Which should be chosen, (4.28) or (4.30)7

130r simply (cf. Remark 4.7), we may consider that

“equilibrium statistical mechanics” = “probabilistic rule” + “Newton equation” (4.29)
((BY)(= Axiom 1)) vg (in (4.5)) and (4.21)

(+ STI)

We believe that the term “economical” is one of the most important key-words of theoretical informatics
(¢f- Table (1.8b)). In this sense, the (4.29) should be also admitted though we did not focus on the (4.29)
in this chapter.

14This situation is the same as the following situation. Two ready-made suits “the staying time
interpretation” and “the probabilistic interpretation” are on sale. The former is too weak, and so some-
what ambiguous. The latter may be too strong. However, we must choose one from “the staying time
interpretation” and “the probabilistic interpretation” In theoretical informatics, we believe that it can
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The reason that we choose (4.28) is as follows: Recall quantum mechanics, in which

39

it is often emphasized that the concept of “probability” is not related to “Schrodinger
equation” but “Born’s quantum measurements”. Comparing quantum mechanics (1.3) and
the above (4.28), we have the reason to emphasize that the concept of “probability” is
not related to the thermodynamical condition but “probabilistic rule in (4.28)”.  That
is because we want to believe in the spirit that the term of “probability” should be used
commonly in both classical and quantum systems, or, that there is no probability without

measurements. After all, we say that
e Our proposal (4.28) and quantum mechanics (1.3) are compatible.

On the other hand, the part “Newton equation ((7") and (7?)) under (EH))” in (4.30) is
related to the concept of “probability” under the assumption “probabilistic interpretation

of 7g”7 Thus, we think that
e The (4.30) and quantum mechanics (1.3) are not compatible.

Thus, we do not choose the (4.30). However, we may choose the following (4.18):

“equilibrium statistical mechanics” = “probabilistic rule” + “Newton equation”
((BY)(= Axiom 1)) ) S(Tl) and (72)) under (EH)z
(+‘1;I) (+§,TI)
(4.31)

This (4.31)" and quantum mechanics (1.3) are compatible. Thus, the following question

is meaningful in measurement theory.
e Which should be chosen, (4.28) or (4.31)7

This may be a matter of opinion (though it is not serious as statistical mechanics is
assumed to belong to theoretical informatics in this chapter). If we are required to say

something, we guess that the (4.28) will win more popularity than the (4.31). In fact,

not be decided by an experimental test. Or at least, we are convinced that it is not worthwhile deciding
it by an experimental test. That is because we believe that nobody wants to challenge the following
problem:

e Decide (4.28) or (4.30) (or (4.31)) by an experimental test!

Thus, “(4.28) or (4.30)” should be chosen from the philosophical point of view, if we are urged to choose
one. Cf. (115) in §13

15The part “probabilistic rule” in (4.31) is characterized as “Proclaim 1” in Chapter 8.
((BY)(= Axiom 1))

(PT)
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e we prefer (4.28) to (4.31),

since we do not want use the (PI) if possible!® This is our opinion, though, in theoretical
informatics, we must admit the case that opinion is divided.
We hope that our proposal (4.28) (or, (4.29), (4.31)) will be accepted as the standard

formulation of equilibrium statistical mechanics.

4.5 Appendix (The law of large numbers)

As a preparation of our main assertion (i.e., the derivation of the ergodic hypothesis
(4.20)), we add the following well-known Lemma 4.9.
Lemma 4.9. [The strong law of large numbers, cf. [56]]. Let (8, Bs,v) be a measure
space such that v(8) < oo. Let {X,}>2, be a sequence of bounded measurable (or
generally, L') maps X,, : 8§ — RP® such that there exists a normalized measure p on R®

(ie., p(R%) =1, p(T') > 0 (VI € Bgs)) such that:

e (identical distribution)

v({x e8| X,(x) eT})
v($)

=pI) (Yn=1,2,.., VI € Bgs),

e (independence) for any positive integer N, it holds that

p(T,)  (VD, € Bro).

v({x e8| Xu(x)el, (Yn=1,2,..,N)}) _ év<
v(8) n=1

Then, there exists a measurable set N( € Bgs) such that v(N) = 0 and

N
1
]\}1_{1(1)0 N ; dx,(x) =p In the sense of weak* topology of M(RP),

for all z € S\ N (= {z | x € 8,z ¢ N}). Here 6,,( € M7, (RP)) is a point measure at
w(€RY), e, 6,(I)=1(ifweTl €Bgrs), =0 (ifw ¢l € Bgs).
[
In the formula (4.18), readers should see that Lemma 4.9 is used in the part “Newton
equation” (and not “probability rule”) in our proposal (4.28), that is, Lemma 4.9 (the law
of large numbers) is used independently of the concept of “probability”.

16 Also, recall “Occam’s razor”, that is, “Given two equally predictive theories, choose the simplest”
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Chapter 5

Fisher’s statistics I (under Axiom 1)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:
PMT = measurement + the relation among systems in C*-algebra (5.1)

[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

In this chapter we intend to understand Fisher’s statistics in Axiom 1. The reader will see that
Fisher’s maximum likelihood method is a direct consequence of Axiom 1! And further, we discuss
“inference interval” and “testing statistical hypothesis” in Axiom 1. By the results obtained in
this chapter (and in the next chapter), we conclude that Fisher’s statistics is theoretically true.
(Cf. “Declaration (1.11)” in §1.4.)

5.1 Introduction

The first attempt of the measurement theoretical approach to statistics was proposed
n [44]. Although the argument in [44] is not deep, at least it convinces us of the good
possibility of the axiomatic formulation (i.e., the measurement theoretical formulation) of
statistics.

Most statisticians consider that statistics is closely related to “measurements”, or,
statistics is the study to analyze “measured data” for some purpose. Therefore, PMT
should be immediately examined in comparison with statistics. The purpose of this chap-
ter is to execute it, in other words, to propose a measurement theoretical formulation of
statistics. We think that statistics is mainly related to the following aspect of measure-

ment theory:

'Readers are not required to have much knowledge of statistics.

ZWe believe that the philosophy of statistics should be more discussed in statistics, (Cf. [61]). That is
because it is indispensable for the understanding of “statistics (= mathematics + something)” It should
be noted that “to formulate statistics in the framework of MT” implies “to introduce the philosophy of
MT into statistics”

91
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(#) how to derive some useful information from the measured data obtained by a mea-

surement.

Let Ma (O = (X,F, F), S[pp]) be a measurement formulated in a C*-algebra A. Recall
the (III) in §2.5 [Remarks], that is, the measurement Ma (O = (X, 5, F), S,») always
determines the sample space (X .7, A < P F(- )> A). Here note that the mathematical

structure of the sample space {A* <pp, F(E)>A} _ is the same as that of the
pPESP(A*),E€F

conventional formulation of statistics (i.e7 {P(E, 9>}06®,E€F’ where, for each 6 in a pa-
rameter space O, P(-,0) is a probability measure on a measurable space (X, F), cf. [86]).
Therefore, there is good hope that statistics can be described in terms of measurements.
Also, this is precisely our motivation in this chapter. Following the common knowledge
of quantum mechanics, we believe that any scientific statement including the term “prob-
ability” is not meaningful without the concept of “measurement”. (c¢f. §2.5. Remarks).
As mentioned in the above, the term “state” in measurement theory corresponds to the
term “parameter” in statistics. The reason that we use the term “state” is due to that

we want to stress that PMT is constructed modeled on mechanics3

5.2 Fisher’s maximum likelihood method

The purpose of this section is to study and understand “Fisher’s maximum likelihood
method” completely under Axiom 1 (of measurement theory). The following Problem 5.1

is the most typical in all examples of “Fisher’s maximum likelihood method”.

5.2.1 Fisher’s maximum likelihood method

Problem 5.1. [The urn problem by Fisher’s maximum likelihood method]. There are
two urns U; and U,. The urn U; [resp. Us] contains 8 white and 2 black balls [resp. 4
white and 6 black balls|.

3This means that we study statistics by an analogy of “mechanics” Note the following correspondence:

system Sj,r (in PMT) <= population (in the conventional statistics)

[represented by pure state] [represented by parameter]
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Here consider the following procedures (P;) and (P5).
(P1) One of the two (i.e., Uy or Us) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U; or Us.
(Py) Pick up a ball out of the urn chosen by the procedure (P;). And you find that the

ball is white.

You do not know which the urn behind the curtain is, U; or Us.

Assume that you pick up a white ball from the urn.
The urn is Uy or Us? Which do you think?
7 O
U1 II,
0o0OOCe ) — S = ~—
0000 @ \_ —

Now we have the following question:
(Q) Which is the chosen urn (behind the curtain), U; or Us?

This is quite easy. That is, everyone will immediately infer “the urn behind the curtain =
However, it is just “Fisher’s maximum likelihood method”. Cf. Example 5.8.
|

Uy
We begin with the following definition.
Consider a measurement Ma(O = (X, J, F), Si,r) for-

Notation 5.2. [Ma(O, Sp)]
mulated in a C*-algebra A. In most measurements, it is usual to think that the state
PP (€ BP(A*)) is unknown. That is because the measurement Ma(O, Si») may be taken
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in order to know the state p’. Thus, when we want to stress that we do not know the
state pP, the measurement Ma(O, Sy»)) is often denoted by Ma(O, Sp).
[

By using this notation, we can state our present problem as follows:

(I) Infer the unknown state [x| (€ &P(A*)) from the measured data obtained by the
measurement Ma(O = (X, J, F), S}y).

In order to answer this problem, in [44] we introduced Fisher’s method (precisely,

Fisher’s max mum likelihood method) as follows: (Strictly speaking, Theorem 5.3 should
not be called “theorem” but “assertion”, since it is not a purely mathematical result but
a consequence of Axiom 1.)
Theorem 5.3. [Fisher’'s maximum likelihood method in classical and quantum mea-
surements, cf. [44]]. Consider a measurement Ma(O = (X, T, F), S}y) formulated in a
C*-algebra A. When we know that the measured value obtained by the measurement
MAa(O, Sy) belongs to = (€ J), there is a reason to infer that the state [*] of the system
S is equal to ph (€ &P(A*)) such that:

AP0 F(E)) 0 = max . (p", F(Z)),. (5.2)

Here, note, for completeness, that the state [¥| (in Ma(O, S}y)) is the state before the
measurement Ma(O, Sp). <C’f. Corollary 5.6 ]ater.) Although the pf in (5.2) is not

generally determined uniquely, in this book we usually assume the uniqueness.

Proof (or, Ezplanation). Let p{ and ph be elements in GP(A*). Assume that “[*] =
pl 7 or “[x] = ph 7  And assume that p{(F(Z)) < p5(F(Z)). Then, Axiom 1 says
that the fact that the measured value obtained by the Ma (O, S[pzlo]) belongs to = happens
more rarely than the fact that the measured value obtained by the Ma(O, Si)) belongs
to = happens. Thus, there is a reason to regard the unknown state [#] as the state ph
and not as the state p]. Also, examining this proof, we can easily see that the state [x]
(in Ma(O, Sp,)) is the state before the measurement Ma (O, S},j). This completes the
proof. O

Remark 5.4. [Radon-Nikodym derivative]. Assume that there exists a measure v on
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(X, ) (cf. (III) in §2.5) and f(-, p?) € L' (Q,v) (Vp? € &P(A*)) such that:
p'(F(2)) = /:f(:v,pp)V(d:ﬂ) (VE € F,Vp" € G7(A7)). (5.3)

Then, even if = = {z} and p?(F({xo}) = 0 (Vp? € GP(A*) ) in Theorem 5.3, we may

calculate as follows:

AFUzd) . AFE) _ ) )
AE(a0}) ==t AEE)  flao )

In this sense (or, in the sense of “Radon-Nikodym derivative”), we can compare p} (F'({zo}))
with ph(F({z0})), even when p)(F({z0})) = p5(F({zo})) = 0. When we know that the
measured value o ( € X) is obtained by the measurement Ma (O, Sy,), by the same reason
in Theorem 5.3, we can infer that the state [%] of the system S is equal to pf (€ GP(A*))
such that:
o py) = max  f(zo, ).
Here, the map E : X — GP(A*), (e, X 3 xy — pf € G(A*)), is called “Fisher’s
estimator’,
|

We begin with the following corollary, which is used in the proof of Corollary 5.6 and
our main assertion (i.e., Regression Analysis II (in Chapter 6))
Corollary 5.5. [The conditional probability representation of Fisher’s method, cf. [55]].
Let O = (X,F,F) and O' = (Y, §,G) be observables in A. Let O be a quasi-product
observable of O and O, that is, 0=0 X O=XxY,FQRG,F X G). Assume that we
know that the measured value (z,y) (€ X x Y) obtained by a measurement Ma (O, S)
belongs to Zx Y (€ FQG). Then, there is a reason to infer that the unknown measured
value y (€ Y') is distributed under the conditional probability P=(-), where

qp qp

pr) - Al FEXCO), [ AFEXCM)) ke )

) a (00 F(E))a P(F(2)

where plf (€ GP(A*)) is defined by

(00 F(E))a =  max AT (0", F(2)) a- (5.6)

pPESP (A

Proof. Since we know that the measured value (z,y) (€ X x Y) obtained by a
measurement Ma (O, Sp) belongs to Z x Y (€ FQG), we can infer, by Theorem 5.3
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(Fisher’s method) and the equality F(Z) = F(Z)X G(Y), that the [+] (in Ma(O, Sy)) is
equal to pj (€ &7(A*)). Thus, the conditional probability that P=(-) under the condition
that we know that (z,y) € = x Y is given by

pur) - AFEXGD) _ AF(E) X G(T) -

P(F(E)X G(Y)) P(E(2))

This completes the proof. n

The following corollary is the most essential in classical measurements. That is because
what we want to infer is usually the state after the measurement (c¢f. Theorem 5.3).
Corollary 5.6. [Fisher’s maximum likelihood method in classical measurements, cf.
[55]]. Let O = (X,F, F) be an observable in a commutative C*-algebra C(2). Assume
that we know that the measured value obtained by a measurement Mc(q)(O, S}y) belongs

to Z (€ F). Then, we can assert the following (i) and (ii):

(i) there is a reason to infer that the state [*| of the system S (i.e., “the state before
the measurement Me(q)(O, Siy)” cf. Fisher’s method in classical and quantum

measurements)) is equal to d,, (€ M",(R2)), where

[F'(Z)](wo) = max[F(Z)](w), (5.8)

weN

and,

(ii) there is a reason to infer that the state after the measurement M¢(q) (O, S}y) is also

regarded as the same ¢, (€ M%(Q)).
Summing up the above (i) and (ii), we see that

(iii) there is a reason to infer that

[ %] = “the state after the measurement Mc(q)(O, Si))” = duy- (5.9)

wo
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Proof. The (i) is the special case of Fisher’s maximum likelihood method (c¢f. Theorem
5.3), i.e., A = C(Q). Thus it suffices to prove (ii) as follows: <This (ii) will be, under
the definition of “S-state” (c¢f. Definition 6.7), proved in Remark 6.12 as a special case
of Lemma 6.11 later. In this sense, the proof mentioned here is temporary.) Let O =
(Y,G,G) be any observable in C(f2). Let O be the product observable of O and O/,
that is, O0=0x0 = (X xY,FQYG,F x G). Consider a measurement MC(Q)<6
= (X xY,TQG, FxG), Su). And assume

(A) we know that the measured value (z,y) (€ X x Y') obtained by the measurement

~

Me)(O = (X xY,TQG, Fx G), Sp) belongs to = x Y.

Corollary 5.5 says that there is a reason to infer that the unknown measured value y (€ Y)

is distributed under the conditional probability P=(-), where

P(D)[F(E))(wo) = [GD)](w0) (VT €9, (5.10)

where wy (€ ) is defined in (5.8). Also note that the above (A) can be represented by
the following two steps (A;) and (Ay) (i.e., (A) = (Ay) + (A2)>:

(A1) we know that the measured value by a measurement Mc) (O = (X, T, F), S)
belongs to = (€ F).

and

(A2) And successively, we take a measurement of the observable O’ = (Y, g, ), and get

a measured value y ( € Y).

<The above is somewhat metaphorical since “two measurements” seem to appear (cf.

§2.5[Remarks (H)])) Comparing (A) and “(A;) + (A2)”, we see, by (5.10), that
“the probability that y belongs to I' ( € §) in (43)” = [G(D)](wy) (V' €G) (5.11)

That is, we get the sample space (Y, 3, [G(-)](wo)). Therefore, we say, from the arbitrari-
ness of O’ = (Y, G, G), that

(Ag) the state after the (A;) (i.e., the state after the measurement Me(q)(O, S)) is

equal to 4.
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This completes the proof. (This corollary does not hold in quantum measurements, since
the product observable O = Ox O’ = (X x Y, F® G, F x G) does not always exist. That

is, the concept of “the state after a measurement” is not always meaningful in quantum

theory.) O]

The “Bayes operator (in the following Remark 5.7)” is hidden in the above proof. This
will be more clarified in Remark 6.12 later.
Remark 5.7. [Bayes operator]. Let O = (X,J, F') be an observable in C(Q2). For each
= ( € F), define the continuous linear operator Béo’o) (or, B2, BS’(O’O)) : C(2) — C(Q)
such that:

B (= B2(9) = B (9)) = F(E) - g (VgeC(Q),  (512)

which is called the Bayes operator (or, the simplest Bayes operator). Note that it clearly
holds that

(i) for any observable O; = (Y, G, @), there exists an observable O = (X x Y, F® G,
F) in C() such that:

FExT)=BM@GT) (EeFrey).

That is because it suffices to define O by the product observable O x O;. Define the map
R(EO o M7 (Q) — M () (called “normalized Bayes dual operator”) such that:

R(_O’O) (y) B

sy
=
=
—

S
Dt
<
=2

_ I [FE)w)v(dw)
Jo[F(E)](w)v(dw)

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

M7 (Q) 3 v (= pretest state) — (posttest state =R (1) e M (Q)* (5.14)

Note that this says that (i)=-(ii) in Corollary 5.6. That is because a simple calculation
shows that R(EO ’0)(@00) = 0y, in the case of Corollary 5.6. In §6.2, the reader will again

4The pretest state [resp. posttest state] may be usually called “priori state” [resp. “posterior state”].
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study the Bayes operator in more general situations.
|

Example 5.8. [Continued from Problem 5.1 (Urn problem)?]. Recall Example 5.1. That

is, consider the following procedures (P;) and (Ps).

(P1) One of the two (i.e., Uy or Us) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U; or Us®

(P2) Pick up a ball out of the urn chosen by the procedure (P;). And you find that the
ball is white.

You do not know which the urn behind the curtain is, U; or Us.
Assume that you pick up a white ball from the urn.
The urn is Uy or Us? Which do you think?

U

o000e
o000 e -

Now we have the following question:

(Q) Which is the chosen urn (behind the curtain), Uy or Us?

[Answer]. Put Q = {wy,ws}. Here,

Wy s the state that the urn U; is behind the curtain (5.15)
Wy s the state that the urn U, is behind the curtain. '

In this sense, we frequently use the following identification:

U1 ~ Wi, UQ%(A}Q. (516)

5 As mentioned in Example 2.16, we believe that “urn problem” is the most fundamental in all examples

of statistics.
6Here we are not concerned with SMTpgp (i.e., the principle of equal probability, cf. §11.4)
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And define the observable O( = (X = {w, b}, 2t F)) in C(Q) where
[F({w})](w1) = 0.8, [F({b})](w1) = 0.2,
[F({w})](w2) = 0.4, [F({b})](w2) = 0.6.

Since we do not know whether the state is wy or ws, we have the measurement Mc (o) (O, Sp).

Thus, out situation is
e a measured value “w” is obtained by the measurement M¢(q)(O, Sp).
Then, we conclude, by Fisher’s maximum likelihood method, that

e the urn behind the curtain is Uj.

That is because

[E({w})](wi) = 0.8 = max{[F({w})](w), [F({w})](ws)}.

|
Example 5.9. [Urn problem]. Let U;, j = 1,2, 3, be urns that contain sufficiently many

colored balls as follows:

’ H blue balls ‘ green balls ‘ red balls ‘ yellow balls ‘
urn U; 60% 20% 10% 10%
urn U, 40% 20% 30% 10%
urn Us 20% 20% 40% 20%

(5.17)

Put U = {U;,U,,Us}. We consider the state space Q2 ( = {w,wq, w3} ) with the

discrete topology, which is identified with U, that is, U 3 U; < w; € Q =M% (Q)T
U = w U = wy Us =~ ws

®O®®Y
®OO®®QY

"Strictly speaking, we must consider the identification as (5.15).
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Define the observable O = (X = {b,g,7,y},P(X), F{,)) in C(2) by the usual way. That
is,
Fuy(w) =6/10  Fy(w) =2/10  Fyy(wi) = 1/10  Fy(wr) = 1/10
F{b}(WQ) = 4/10 F{g}<w2) = 2/10 F{T}(CL)Q) = 3/10 F{y}(wz) = 1/10
Fuy(ws) = 2/10  Figy(ws) =2/10  Fy(ws) =4/10  Fry(ws) =2/10. (5.18)

Then we have the measurement M) (O, S}y).
I} Now we consider the measurement Mc(q)(O, Si). And assume that we get the mea-
sured value ‘b’ by the measurement M¢ () (O, Sp,j). Then Fisher’s maximum likelihood

method (i.e., Corollary 5.6) says that there is a reason to infer that
[] = w1
since
Fpy(wi) = 0.6 = max Fpy(w) = max{0.6, 0.4, 0.2}.

That is, the unknown urn [x] is Uj.
1] Also, consider the (iterated) measurement Me(q)( Xi:l O = (X2 P(X?), Xizl F),

Sp) where ( Xizl F)_ « - (w) = Fg,(w) - F=,(w). Also, assume that

e the measured value (b, r) is obtained by the iterated measurement Me(q)( X i=1 O, S).

Applying Fisher’s method (= Corollary 5.6), we get the conclusion as follows: Put

E(w) = Fy (W) Firy (w).

Clearly it holds that E(w;) = 6-1/10* = 0.06, E(wq) = 4-3/10* = 0.12 and F(w3) =
2 -4/10% = 0.08. Therefore, there is a very reason to think that [ ] = d,,, that is, the
unknown urn [#] is Us.

[III; Remark (moment method)]. Here, let us consider the above [II] by the moment

method (cf. Definition 2.27). Define the distance A on M7 (X) such that:

A= Y, In({z}) —w({})]

reX={b,g,my}

=l ({0}) = ({b)| + [ ({g}) — a({g})| + [ ({r}) —e({r D] + 1 ({y}) — vo({y})].
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Note that M(Q)<5w1,F{b}>C(Q) = 5w1 (F{b}) = F{b}(wl) = 6/10, and similarly (Cf (5.18)),

O (Fipp) = 6/10 0y, (Figy) =2/10 6y, (Fipy) = 1/10 6, (Fiyy) = 1/10
Ouy (Froy) = 4/10 0u,(Figy) = 2/10 00y (Firy) = 3/10 du, (Fyy) = 1/10
Ouy (Floy) =2/10 0wy (Figy) = 2/10 b0y (Firyp) =4/10 bu, (Fyy) = 2/10.

Since the measured value (b, 7) is obtained, we have the sample space (X, 2%, v) such that

v({b}) = 1/2, v({g}) =0, v({r}) =1/2, v({y}) = 0.

Then, we see that

A8, (Fpy),v) = 16/10 — 1/2| 4 2/10 — 0] 4+ [1/10 — 1/2| 4+ [1/10 — 0] = 8/10
A(0uy (Fry),v) = [4/10 — 1/2] + |2/10 — 0] + [3/10 — 1/2| 4+ [1/10 — 0| = 6/10
A(buy(Fry),v) = [2/10 = 1/2] + [2/10 — 0] + |4/10 — 1/2| 4 |2/10 — 0| = 8/10.

Thus, the moment method says that the unknown urn [#| is Us.

|
Example 5.10. [At a gun shop, [44]]. Let G = {G,...,G50} be a set of guns in a gun
shop. Assume that
80% if 1<75 <30,

the percentage of “hits of a gun G,;” =< 70% if 31 <j <40, (5.19)
0% if 41 < j < 50.

F °
Gun Gy, Mark

Assume the following situation (i)4(ii):

(i) Some one picks up a certain gun Gj, from G. He does not know the information

concerning the j.

(ii) He shoots the gun G, three times. First and second he hits the mark, and third he

misses the mark.
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Our present problem is to formulate the measurement (i)+(ii).
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The above example is solved in what follows. Let €2 be a state space, which is identified
with the set G. That is, we have the identification: G > G; < w; € Q. Define the
observable O = (X = {0,1},P(X), F,y) in C(€) such that:

0.8 if 1< <30,

Fay(w)) =4 0.7 if 31 < <40, (5.20)
01 if 41<j<50

and Fioy(w;) = 1 — Fiy(wj). Of course we think that

(f) “hit the mark by a gun G,,” < “get the measured value 1 by the measurement
M) (O, Sp,, 1)

Here, consider the (three times) iterated measurement Me(q)( Xzzl 0 = (X3, P(X?),

X0 F), Sp.,1) in C(Q) such that:

(X F)_ o 5o (@)= Fey (@) Foy(0)Fay () (VEL X B3 X By € P(X?), Vw € Q).
k=1 =1 =2 =3

(5.21)

Clearly, the above statement (ii) implies that the measured value (1,1,0) is obtained by
MC(Q)( Xi:l 0, S[*]). ( The observer does not know that [*] = Oy - ) By a simple
calculation, we see
0.128 if 1< j <30,
Fy(w;) Froy () Foy (wy) = {0147 i 31 < j < 40, (5.22)
0.009 if 41 < j <50.
Therefore, by Fisher’s method (= Corollary 5.6), there is a very reason to consider that
31 < jo < 40.
[
Example 5.11. [(i): Gaussian observable]. Consider a commutative C*-algebra Cy(R).

And define the Gaussian observable O,2 = (R, BY, F("; ) in Cy(R) such that:

2 1 1 —
FZ () = /Hexp[ — Tﬂ(m — p)?dx (V2 € BRY, VueR). (5.23)

2o

3 f
Further, consider the product observable x,_;O (or in short, O?;) = (R?, BY, F(”Z’S) in

)
Co(R) such that:
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Fgl ;(352><E3 (Iu) = Fgl (Iu) ’ FEUQ (lu) ’ Fgg (/’L)

1 N2 N2 N2
:m/ exp| = o (x2202lu) +{gs = 4] Jdx dzods
1 XZ2XE3

(VE=ke By k=1,2,3, VYucR). (5.24)

Here consider the measurement Me,r)(O2.,

Siy). And assume that
e the measured value (29,29, 29) (€ R?) is obtained by the Mc,yr) (022, Sp).

Then, Fisher’s method (=Corollary 5.6) and Remark 5.4 say that there is a reason to

think that the unknown state [ *] = 1, where
1 (2] = p0)* + (23 — po)* + (23 — po)”
———exp| — 5 ]
(V2mo)3 20
1 0_ )2 0 _ )2 0 _ )2
neR L(\/2mo)3 202
which is equivalent to
(2} = p0)? + (25 — p0)* + (23 — p10)’
=min[(z] — p)° + (5 — p)* + (23— p)°] (5.26)
m
and moreover, equivalently,
o = (2§ + 25 + 23) /3. (5.27)

[(ii): Gaussian observable]. Consider a commutative C*-algebra C'([0,100]), where [0, 100]
={peR|0<pu<100}. And define the Gaussian observable O, = (R, B%d,F(‘T;) in
C'([0,100]) such that:

1
\2mo

Further, consider the product observable O?, = (R?, B! F(72’3) in Cy([0,100]) such that:

Fg () =

1
[exp[ -l (EEBR, Vue0100). (529

R3» ()
02
FElengg(:u)
1 N2 PAY N2
:—/ exp| — (21 — @) + (22 — p)* + (23 — p) day dadirs
( 27T0)3 E1 XEgxE3 20°
(VE=kecBrLk=1,2,3, VYucl0,100)). (5.29)

Here consider the measurement MC([OJOOD(OE’Q, S[*]). And assume that

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
2 S MA 0 0
For Clear5l-25rirf;%|sr¥§,l% ge]\é W%%%L %?o-%gggﬁp?kup/mfomt/

e the measured value (29, 29, 23) (€ R?) is obtained by the Me((o,100) (022, Sp)

105

Then, Fisher’s method and Remark 5.4 say that there is a reason to think that the

unknown state [ * ] = po, where [ % | = ug, where
1 GXp[ . (Icl) B M0)2 + ($8 — 50)2 + (l‘g B /LO)2]
(V2mo)? 20
1 0_ )2 0 _ )2 0 _ )2
— max —exp[_ (xl :u) + (1‘2 2:“) +(:L‘B lj’) ]] (53())
pel0,100] L(/27o)3 20
which is equivalent to
(2 = p10)? + (25 — p0)* + (23 — o)
= min [(2} — p)* + (23 — p)* + (23 — )] (5.31)
1£€(0,100]
and moreover, equivalently,
0 if 20 4+ 25 +29 <0
po =1 (@¥+29+2%)/3 if 0 < 2?4+ 25+ 25 <100 (5.32)
100 if 29 4+ 25 + 29 > 100.
[

5.2.2 Monty Hall problem in PMT

Problem 5.12. [Monty Hall problem, cf.[33]].
The Monty Hall problem is as follows:

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 1”7, “number 27, “number 3”7 ). Behind one door is a car, behind the

others, goats.

You pick a door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say “number 3”7, which has a goat. He says to you, “Do you

want to pick door number 277 Is it to your advantage to switch your choice of doors?
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|
|
|
Door Door Door \/ \/ |
Number 1 Number 2 Number 3 gp\ @\ I

_

[Answer]. Put Q = {wy,wq, w3}, where

Wy eeeens the state that the car is behind the door number 1
Wy = rrene the state that the car is behind the door number 2
Wy eeeree the state that the car is behind the door number 3.

Define the observable O = ({1,2,3},2{:23} F) in C(Q) such that

[F({1D)](w1) =00,  [F({2D)(w1) =05,  [F({3}](w1) =05,
[F({1D)](w2) = 0.0, [F{2P))(w2) =00,  [F({3})/(w2) = 1.0,
[F({1D](ws) = 0.0, [F{2}))(ws) = 1.0,  [F({3})](ws) = 0.0.

Thus we have a measurement Mg ) (O, Sp,j). Here, note that

(1) :“measured value 1 is obtained” <= The host says “Door (number 1) has a goat”,
(2) :“measured value 2 is obtained” <= The host says “Door (number 2) has a goat”,

(3) :“measured value 3 is obtained” <= The host says “Door (number 3) has a goat”.

The host said “Door (number 3) has a goat”. This implies that you get the measured
value “3” by the measurement M¢(q)(O, Sp). Therefore, Fisher’s maximum likelihood

method says that you should pick door number 2. That is because we see that

[F({3})](ws) = 1.0 = max{0.5, 1.0, 0.0}
= max{[F'({3})](w1), [F({3})](w2), [F'({3})](ws)},

and thus, [*] = d,,. However, this is not all of the Monty Hall problem. See Remark 5.13,
Problem 8.8 and Problem 11.13 later.

8Strictly speaking, F({1})(w1) = 0.5 and F({2})(w1) = 0.5 should be assumed in the problem (P).
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Remark 5.13. [Monty Hall problem by the moment method (c¢f. Definition 2.27)].
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Here, consider Problem 5.12 by the moment method. Since you get measured value 3,
you get the sample space ({1,2,3},2{123} v,) such that v,({1}) = 0, v,({2}) = 0 and
vs({3}) = 1. For example define the distance A such that: for any v, 15 € M7, ({1,2,3}),

Ay, ve) = [({1}) = v2({1D)[ + [11({2}) — 2 ({2H)] + [ ({3}) — 2({3})].
Then, we see

A, [F()) (1) = 0= 0] +]0 = 0.5 + 1 — 0.5 = 1,
A, [F(-))(wn) = [0 = 0] + 10— 0] + 1= 1] = 0

and
A [F(-))(ws)) = 10— 0] + [0 — 1] +]1 — 0 = 2.

Thus, we can, by the moment method, infer that wy is most possible, that is, the car is
behind the door number 2.
|

5.3 Inference interval

Let O( = (X, 3, F)) be an observable formulated in a C*-algebra A. Assume that
X has a metric dx. And assume that the state space GP(A*) has the metric ds, which
induces the weak* topology o(A*, A). Let £ : X — GP(A*) be a continuous map, which
is called “estimator?” Let v be a real number such that 0 < v < 1, for example, v = 0.95.
For any p?( € GP(A*)), define the positive number 7}, ( > 0) such that:

m =ity >0 (o, (B (B(oim) ) = 7) (5.33)
where B(p?;n) = {p]( € &P(A*)) : ds(p¥, p") < n}. For any = ( € X), put
Dy ={p"(€ 6"(A")) : ds(E(x), ") < np}- (5.34)

The D] is called the (vy)-inference interval of the measured value x.

Note that,
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(A) for any ph( € GP(A*)), the probability, that the measured value x obtained by the
measurement Ma (O = (X, 5, F), S[pg]) satisfies the following condition (v), is larger
than v (e.g., v =0.95).

(b) E(x) € B(ph; nzg) or equivalently d(E(z), pf) < 7733'
Assume that
(B) we get a measured value zy by the measurement Ma (O = (X, 5, F), S[pg}).

Then, we see the following equivalences:

b)) — dg(E(xo),pg)SnZg <~ D] >}

X &P (A7)

4 ) 4 )

Summing the above argument, we have the following theorem.
Theorem 5.14. [Inference interval]. Let O = (X, J, F) be an observable in A. Let ph
be any fixed state, i.e., ph € &P(A*), Consider a measurement MA(O =(X,5,F), S[pg]).
Let E : X — GP(A*) be an estimator. Let v be such as 0 < v < 1 (e.g., v = 0.95). For
any x( € X), define D) as in (5.34). Then, we see,

(#) the probability that the measured value xo( € X) obtained by the measurement
MA(O = (X,3,F), S[pg]) satisfies the condition that

D3, > 6f (5.35)

is larger than .
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Example 5.15. [The urn problem]. Put Q = [0, 1], i.e., the closed interval in R. We

109

assume that each w ( € 2 = [0, 1]) represents an urn that contains a lot of red balls and
white balls such that:

the number of white balls in the urn w

~w (Mwel0,1]=9). (5.36)

the total number of red and white balls in the urn w

Define the observable O = (X = {r,w}, 2"} F) in C(Q) such that where

F)(w)=0, F{rHw)=w, F{w})w)=1-w, F{rw})(w) =1
(Vw € [0,1] = Q). (5.37)

Here, consider the following measurement M.,,:
M, := “Pick out one ball from the urn w, and recognize the color of the ball” (5.38)
That is, we consider
M, = M¢ (O, Sps.)- (5.39)
Moreover we define the product observable O = (XN P(X¥), FV), such that:

[FN(E, X Ey X - X En_; X En)|(w)

Vw e Q=10,1], VZ,,Z,--,Zy CX ={r,w}). (5.40)
As mentioned in Definition 2.27, we think that

“take a measurement M, N times” < “take a measurement MC’(Q)(ON ,56.1)”

(5.41)
Define the estimator F : XV ( = {r,w}") — Q( = [0,1])
ne{l,2,--- N} |x,=1
E(x1, 29, ,xn-1,7N) = il { N ) J
(Vo = (z1, 29, ,on_1,2n) € XN = {r,w}?). (5.42)
For each w( € [0,1] = ), define the positive number 7 such that:
s
:inf{n >0 ‘ [FN({(z1, 29, - ,on5) |w—n < E(z1, 29, ,2n) <w +1})](w) > 0.95}
= inf . (5.43)

[FN({(z1,22,,xN)|w—n<E(z1,22, ,alcN)Su.)—i—n})](w)>0.9577
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Put
Dy ={w(€Q): |E(x) —w| <nl}. (5.44)

For example, assume that N is sufficiently large and v = 0.95. Then we see, by (2.58),

that
0 ~ 1.9/
and
Dy = [E(z) = n-, E(x) + 1] (5.45)
where
N =N n s T+ = NE eyt (5.46)

Under the assumption that N is sufficiently large, we can consider that

EFz)(1—- E(zx
17_%17+%17%?§)%1.96\/ ( )(N ( ))

Then we can conclude that

o foranyurnw( € Q =10,1])), the probability, that the measured value x = (xq,x2,- - - ,
xy) obtained by the measurement MA(ON, S[M) satisfies the following condition

(8), is larger than v (e.g., v = 0.95).

() E(r) — 1.96y/ ZR0-E@) <, < B(z) 4 1.96,/ E@0_E@)

where E is defined by (5.42).

5.4 Testing statistical hypothesis

Now we study “testing statistical hypothesis”, that is, answer the following question.
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Problem 5.16. [Testing statistical hypothesis|. Consider a measurement M¢(q)(O =
(X,3,F),Sy) formulated in C(§2). Let ' : X — Q be Fisher’s estimator. Assume the
following hypothesis:

(H) the unknown state [*] belongs to a closed set Cy ( C Q).
And further assume that we see the following fact:
(F) a measured value xo( € X) is obtained by measurement M¢ ) (O = (X, J, F), Siy).

Here, our present purpose is to propose an algorithm that decides whether the above hy-
pothesis (H) can be denied by the fact (F). This algorithm is called “the testing statistical
hypothesis”

In the above problem, it is usually expected that the hypothesis (H) is not true. In
this sense, the above (H) is called the null hypothesis.

Now we provide two answers (i.e., Answer 1 and Answer 2). Answer 1 (likelihood ratio
test) is, of course, well-known and authorized. Also, in order to solve the question: “Is
there another answer?”, we add Answer 2 after Answer 1.

Answer 1. [Likelihood ratio test]. Consider a measurement M¢(q)(O = (X, JF, F), Siy)
formulated in C(Q2). Let E : X — € be Fisher’s estimator, i.e., it is defined by
E(z)= lim w, (Vz € X),

ZEn—{z
where w,, (€ Q) is chosen such that it satisfies

FEN)

(For the exact argument, see Remark 5.4 (Radon-Nikodym derivative). ) Assume
both (H) and (F) in Problem 5.16. Consider a real number a such that 0 < o < 1
(e.g. a = 0.05, which may be called a significance level. Let w be in Q. Then, by
Axiom 1, we have a sample probability measure P, on X (of the measurement M¢ ) (O

= (X,J,F),Sp.)) such that:
P,(E)=[FO))w) (VE2e9). (5.47)

Here define the function Ag,, : X — [0, 1] such that:

P,(=
ACH(ZE): lim SuprCH ( )

— Vo e X). 5.48
E—{z} SUP cq Pu(E) ( ) ( )
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Also, for any € (0 < e < 1), define [D];, ( € F) such that:

D], =1z € X | Ac,(z) <€} (5.49)
1
ACH (I)
0

Thus we can define %% such that:

mor =sup{e | sup P, ([D]g,) < 0.05}. (5.50)

max
woeCy

Now we can conclude that

Answer 1

if xo € [D]ngi, then the hypothesis (H) can be denied
(5.51)
if xo ¢ [D]Eg’j’s‘, then the hypothesis (H) can not be denied

]

Next we shall propose “Answer 2”7 Before this, we must prepare the following well-
known lemma.
Lemma 5.17. [Neyman-Pearson theorem, a-influential domain of vy for vy, cf. [59]]. Let
(X,F) be a measurable space. Let vy and vs be probability measures on X. Define the

Radon-Nikodym derivative 24 : X — [0, 00) such that:

dV1 B Vl(E)
d—VQ(x) = %ILI}E ) (x € X). (5.52)
Put
dV1 dV1
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Thus we can define €% such that:
dv
£0.05 ([ — »a=0.05) _ P\ <
(= ame™) = supfe | m(ID)(e, 3 1)) < 0.05), (5.54)
Now we have the
D], o), (5.55)

max) g

which is called “the 0.05-influential domain of vy for vy”

|
Answer 2. [A test using Neyman-Pearson theorem|. Consider a measurement M¢ ) (O
= (X,T3,F),S) formulated in C(2). Let E : X — € be Fisher’s estimator. Assume
both (H) and (F) in Problem 5.16. Consider a real number « such that 0 < a < 1
(e.g. a = 0.05 which may be also called a significance level. Let w be in Cy. Consider
a measurement Mc) (O = (X, 3, F), Sj5,1) - Let « be in X. Then, we have two sample
probability measures I, and Pg(,) on X such that:

vo(E) = P(E) = [F(8)](w) (V2 €T)
and
Vi = Pe@)(E) = [FE)(E(z)) (VE € 9). (5.56)
Thus, we have “the 0.05-influential domain of 4 for v5” such that:
dv,
[D](émans 7—)- (5.57)
duE(m)
Put
e 20.05 W
[D]CH,x = mWECH [D](Ema)m d ) (558)
Vi@
Lastly, we put
EVO.OS g0.05
Dl ={r € X |z € [D]&,}. (5.59)

Now we can conclude that

Answer 2

if xo € [D]i%g?‘, then the hypothesis (H) can be denied
(5.60)
if xo ¢ [D]gnj’s‘, then the hypothesis (H) can not be denied
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Remark 5.18. [Answers 1 and 2]. We believe that the above two answers 1 and 2
are proper though the meanings of “significant level” is different in each answer (cf. [II;
Cy = [0,00)] in Examples 5.16 and 5.17). We do not know whether there is another

proper answer.

|
Example 5.19. [Likelihood ratio test for the Gaussian observable]. Put Q@ = R, A =
Co(Q), 0,2 = (R, BRL, Fy) in Co(€2) such that:
o2 1 (z — w)? = bd
FZ(w) = o /Eexp[ - T,z]du (V=2 € B, YweQ=R). (5.61)

And thus. consider the product observable O2 = (R?, B, F(‘_’)2 ) X F("; ) in Co(Q2). That

is,

o2 o2 . 1 oxpl — (:L‘l - w)2 + (l’z - w)2 i de
(F2, X FZ,)(w) = —< 27m0)? //5le2 p| 902 Jdx,dzs

(VEr € Bpl(k =1,2), Ywe Q=R). (5.62)
[Case(I): Two sided test, i.e., Cyg = {wp}]. Assume that Cy = {wo}, wo € 2 = R. Then,

Supwe{wO} Pw(El X EQ)

im =
=5 XEQ—>{(21,.’22)} Supweﬂ Pw(:1 X :2)

Aoy (1, 72) =

_ (z1—w0)?+(w2—wo)?

exp| 52 ]
exp| — (961—($1+0€2)/2)221-2(I2—(I1+I2)/2)2]
-9 2 2 _ 2
— exp| — [(z1 +$2)2 wo) ] = exp| — [(z1 + 22)/2 — wy] ]
do 2(0/v2)?
(V(z1,72) € R?). (5.63)

Also, for any €( > 0), define [D]{,, ( € F) such that:
[D]Ewo} = {(z1,75) € R?| Aoy (1, 22) < €} (5.64)

Thus we can define %% such that:

eman = sup{e | sup P,([D]f,,;) < 0.05}. (5.65)

max
we{wo}
Now we can conclude that

0.05
[ ]Emax

{wo}
—{(x1,22) € R? | (@14 22)/2 < wp — 1.960/V2}

{21, 22) € R? | (21 + 22)/2 > wy + 1.960/v/2}

=“Slash part in the following figure”
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X2

2(wo + 1.960/v/2)

2(4o 960 //2) 2(wo N9697 V2 T

[Case(II): One sided test, i.e., Cy = [wp, 00)]. Assume that Cy = [wg, 00), wp € 2 = R.
Then,

su weE|wo,00 Pw E X E
A[O,oo)(xlaxz) = __lim Puefwo,o0) :( 1 _ 2)
ZixE—{(m1e2)} SUPeq Fu(E1 X Ea)

_ [ ol - ot (e < 556)
1 ( otherwise )

Also, for any €( > 0), define [D]f, ) (€ F) such that:

[wo
[Dlfo ey = {(#1,22) € R?* | Ajg oo (21, 73) < €}
= {(z1,29) € R* | L —; T wo < \/4o?loge}. (5.67)

Thus we can define €99 such that:

max

2% — sup{e| sup Pwo([D]fo,oo)) < 0.05}. (5.68)

wp€[0,00)

Therefore, we can conclude that
e0.05
(D5
={(x1,22) € R? | (214 22)/2 < wy — 1.650 /V/2}. (cf. (2.58)).

=“Slash part in the following figure”
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X2

2060 —1.656//2)

2o A 1.080 /V/2) T

[
Example 5.20. [The test using Neyman-Pearson theorem for the Gaussian observable].
Put @ =R, A = Cy(Q), O,z = (R, BRL, F¢)) and 02, = (R?, By, Foy X FY)) in Co(9)
are as in the above.

[Case(I): Two sided test, i.e., Cy = {wp}]. Assume that Cy = {wo}, wo € @ = R. Then,
V(21 X Zy) = Py (B1 X Zp) = [F(E; X Zy)](wo) (VZ, X Z5 € BRd)
and
vy ") = Ppioy (B0 X Zy) = [F(Z1 X Z)](E(x)) (V21 X 25 € BR). (5.69)

Thus, we have “the 0.05-influential domain of v; for v5” such that:

£0.05 A, 22) | (31 +22)/2 <wp — 1.650/V2} (E(zo) < wo)
(D] (Emac: @0, Bte1.220) = { {(x1,22) | (x1422)/2 > wo +1.650/v2}  (E(x0) > wo).

Put

~0.05

DI e = Nevetwo} PN (Enas B0, 2e1.020) = [D)(Eas B0 r.220) - (V(@1, 72) € R?).
(5.70)
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Therefore, we can conclude that

e &
[D]{wo} ={(z1,22) € R?| (1,72) € [D}{wo},(xl,m)}

={(z1,22) | (21 +22)/2 < wy— 1.650/V2}
(@1 22) | (21 +22)/2 > wp + 1.650/v/2}.

[Case(II): One sided test, i.e., Cy = [wp, 00)]. Assume that Cy = [wp, 0), wy € © = R.
Then,

V(21 X Ey) = Py (B1 X Z3) = [F(E; X Zy)](wo) (VZ, X Z5 € BR)
and

vy (E) X By) = Py (B1 X Ba) = [F(Z1 X B)](E(z)) (V21 X Zy € BRY).
(5.71)
Thus, we have “the 0.05-influential domain of v; for v,” such that:

{(z1,29) | (z1422)/2 <wo— 1.650/v2} (E(x0) < wo)

£0.05 _
[D](emax’gbl/f“/l/f((xl’m)) N { {1, 22) | (214 22)/2 > wo +1.650/v2}  (E(x0) > wp).

Put

=0.05

(Dl o000 [D) (€ 0,50, p0) - (V(wr,22) € R). (5.72)

[0,00),(z1,x2) max;

Therefore, we can conclude that

~0.05

Eiax _ o
[D][o,oo) ={(21,22) € R?| (21,72 € [D][o,oo)(g;l,m)}
={(x1,22) | (214 22)/2 < wo — 1.650/V/2}.

5.5 Measurement error model in PMT

Although we have several kinds of measurement error models in statistics (c¢f. Fuller
[25], Cheng, etc. [16]), the following may be the simplest one (i.e., with normal distribu-

tions (= Gaussian distributions)):

gn = 90 + elxn + €n,

(€n, un) ~ Nl[average(0, 0), variance(c?2,, 02,)],°
(n=1,2,...,N),
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which, of course, corresponds to the conventional statistics (i.e., the measurement equa-

tion in the dynamical system theory (1.2)). The first equation is a classical regression
specification, but the true explanatory variable x,, is not observed directly. The observed
measure of x,, denoted by x,,, may be obtained by a certain measurement. Our present
concern is how to infer the unknown parameters 6, and 6; from the measured value
{(Z,Un) }_,. Precisely speaking, the purpose of this section is to study this problem in
general situations (i.e., without the assumption of normal distributions).

Put Ay = C() and A; = C(€2;). Let © be a compact space, which may be called
an index state space (or parameter space). Consider a parameterized continuous map v :
Qo — 4, 6 € O, which induces the parameterized homomorphism ¥? : C(Q;) — C(£y)
such that (c¢f. (3.14))

(Pf1)(w) = L[ (W) (Vi € C(Q),Yw € Q).

Consider observables Oy = (X, F, F) in C(€) and O; = (Y, G, G) in C(€;). And recall
that U0, can be identified with the observable in C(£) (¢f. Remark 3.6 (i)). Thus, we
can consider the product observable Of = (X XY, Fx G, Fx U?G) in C(). Thus, we get
the measurement MC(QO)(f)@, Sps.1), (w € €q). Consider the N times repeated measure-
ment of MC(QO)(éa, Sts.)), which is represented by M g ( ®nN:1 0°, Sign_s,,1)- Here,
DN 10 = Otoniomncon) (€ MEL(QY)) and @, 0 = (XN x YN, FV x 6N QN (F x
v0@)) in @Y, C(Q) = C(Q), that is,

(RF x WG))(E) x -+ x Ey x Ty x -+ x Ty)J(wi, ..., wy)
:[zj; VG(E x T))](wy) - [F X WG(Zy x Ty)|(wa) - - - [F x VG(Ex x Ty)](wy)
(VETL € g:, VFn € 9,‘7(&)1, ...,wN) S Qév) (574)

Our present problem is as follows:

(£) Consider the measurement Mg ( RN, o’ SigN_5.,1) Where it is assumed that

n=1

@1, @9, ...,y and O (€ O) are unknown. Assume that we know that the mea-

sured value (Zq,..., Tn, J1,-., yn) (€ XV x YV) obtained by the measurement
Mg o) QY o’ SieN_s,,1) belongs to [1)_,(Z, x I,). Then, infer the unknown

@1, @, ...,wy and @ (particularly, 6).

9Independent random variables with normal distributions
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That is, for simplicity under the assumption that 2y = X, 21 =Y, we can illustrate this

problem () as follows:
)

— ./,0
o

From the measured data
(fla ceey 557@1; ceey g5) (E Qg X Q?) )

infer the reasonable 6.

_ o),02
wi = 9%(w0)  “Probably 6, I”

wy = ¥ (wp)

Qo

This problem is solved as follows: Define the observable O = (XN x YN FN x N, H ) in
C(Q) x ©) such that [H(Z, x - x Exy x Ty x -+« x Dy)(wi, ..., wy, 0) = (5.74). Note
that we have the following identification:

~

N
Moy x6)(O: S s, e50) = Moy (@) O, Siga_s.,.1)-

n=1
Consider the measurement Mc(Q(J)VX@)(a, S[(@rly:lgwn)@)(gé]) where it is assumed that we
do not know @y, @s, ..., @y, . Then, we can, by Fisher’s maximum likelihood method (cf.

Corollary 5.6), infer the unknown state (®2_ 8, ) ® d; such that:

[H(Z, X - x Exy x Ty x -+ x Tp)|(@1, ..., oy, 0)
= Jﬁ%fé%vxe{ﬁ(a X oo X Ey X Ty X oo+ x Ty)](wi, ..o, wiv, 0). (5.75)
This is the answer to the above problem (f). It should be noted that the problem (£) is
stated under the very general situations (i.e., o, €5, X and Y are not necessarily the
real lines R).
In the following example, we apply our result (5.75) to the simple measurement error
model (5.73) with normal distributions.
Example 5.21. [The simple example of measurement error model (the case that 6y, 6y,

wy , ..., wy are unknown)]. Let L be a sufficiently large number. Put Qo = [ — L, L],

O =[-L*—L,L*+ L], =[-L,L]*, and define the map %) : Qy — ; such that:

SO a) = oty (Ve € . V(00 0 € O
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Also, put (X,F,F) = (R,Bgr,G) in C() and (v,5,G) = (R,Bgr,G?) in C({)
(c¢f. Example 2.17). Thus, we define the product observable O0f1) = (X xY,FxG,HY,
where H? = F x UG, in C() such that:

z—w)?  (y— (thw+6))°

1 (
HY(ZxT S (R _ _
[ ( % )](w) <\/27r0102) //Exp eXp[ 20% 20% }d'%dy
(VE € BR,VF € BR,\V/CU € QO)

Thus, we have the observable O = (R2Y, Brav, H) in C(Q) x ©) such that:

[ﬁ(El X oo X Zy X'y x oo x Ty)](wy, ...,wn, 0o, 01)

2N @n—en)? SN (yn—(010n+60))2
20’% 20%

dxidy, - - - drydyy.

:(;)QN / / e
\/2Tmo109 TN (EnxTy)
(5.76)

Assume the conditions in the problem (4), and further add that
=y =T, — €T, +e€|, I =I[Un—€70n+el (for sufficiently small positive €).

Then, our main result (5.75) says that

max [H(ZS x - x 25 X T X -+ x T (wis .., wn, )
(I wN,Go,Gl)GQéVXe
Y E, w Y, bhoyw, 0
= min Z(—" — )2 4 In _ (ATLEn )] (since e is small)
(W1 yeney wN,GQ,Ol)EQéVXe —1 01 01 n—1 02 02 01 02

(Here, note that the distance between a point (2= %) and a line y = 4%y + g—g is equal

o1’ o2
tO ‘gn_elgn_eo‘

Jorre Then, we see)
> onet (o — 0170 — 0)?

= oo o3 + 0203 (5.77)
— Zg:1@n~— 9_15n~— éo) 2707 N - ) (— 8%0(5'77) =0),
Son (01502 + F03 = 060103) (5 — 017, — O0) =0 (— 5-(5.77) = 0).

(5.78)

Thus, the unknown parameters 6, and 6, are inferred by the solution of this equation
(5.78). Note that this is a direct consequence of our main result (5.75).

[ |
Example 5.22. [The case that 6y, 0y, 07, 02, w; , ..., wy are unknown|. Assume that 6,
01, 0%, 02, wy , ..., wy are unknown. The log-likelihood is

L(007 91) U%? U%? w1, ,(UN) = 10g[(576)]
__Nlog of _ Nlogad -~ Eg:1<xn — wp)? 25:1(5% — by — iw,)?

2 2 20% 20%
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Taking partial derivatives with respect to 6y, 01, 07, 03 and wy, ..., wy, and equating the

results to zero, gives the likelihood equations,

N N
> (o — 6o — brw,) = 0, > (g — 6o — brwn)wn = 0,
n=1 n=1
nNzl(xnwn)2 2 ZnN—l(yn 0o — elwn)z 9
N B N IR
(xnwn)Q (Yn — b — Orwy)
- =0 =1,2,..,N
207 207 ’ (n=12,..N)

o2 S S,
0 == =%, 207 =Se— -2, 205 =Sy, — Sybh,
1 U% S, 1 0, 2 vy yU1
n_g n_in
Oy =1y — 0,7, 2wn:xn+y Ozxn—i—f Y y)
0, 0,
where
j_mﬁr + N T+ + yn
- N ) y_ N 9
g _lm-oPH Ay o gt gy =)
T — N ) Yy N 3
(v —Z)(y1 —y) + -+ (ony —2)(yn — ¥)

(Cf. Cheng, etc. [16]).
[

5.6 Appendix (Iterative likelihood function method)

In this section we study the “Iterative likelihood function method (cf. [47])”, which
will be related to subjective Bayesian statistics (see §8.6 later).

Consider the “measurement” described in the following “step [1]” and “step [2]",

[1] First we take a measurement Mc(q) (01 = (X, 2%, F), Siy), and we know that the

measured value is equal to z (€ X).

2] And successively, we take a measurement M¢ ) (05 = (Y, 2V, G), S},), and we know
() [+]

that the measured value is equal to y ( € Y).
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Note that “[1]+[2]” ie equal to the following [3]' :

3] We take a measurement Mc)(O1 x O = = (X XY, Fx G H = F x G) S),
and we know that the measured value obtained by MC(Q)(Ol X Oa, S[*]) is equal to
(x,y) (€ X xY).

<A non-negative (real-valued) continuous function F(Z) in an observable (X, J, F) is

called a likelihood function, or, a likelihood qucmtity.) Then we can say:

[b] By Step [1], we get the likelihood function F'({z}). And further by step [2] (i.e.,
by “[1]4+[2]” (=][3])), we get the new likelihood function F({z})G({y}) ( = [F X

Gl({z} x{y}))-
Using the Bayes operator (cf. the formula (5.12)), this statement [b] can be rewritten as
follows:
Step (1) Step (2) 3
1 W F({z}) W F{{z}G{y}) in C(€), (5.79)

where I( € C(2)) is the identity element, i.e., the constant function such that I(w) =
1(Vw € Q).

1 T IO T I
I F{ENEhI@)
Step (1) Step (2)
By F(h]e) B
0 0 0
Q Q 0

It should be noted that:

(F1) the constant likelihood function “I” (or “k x I” where k > 0) is the likelihood

function that represents the fact “we have no information about the system S,

Now we introduce the following notation. Cf. [47].
Notation 5.23. [S}(G))i4). The system Sy, (formulated in C(2)) such that we know it
has the likelihood quantity G (G € C(Q2), 0 < G(w) (Vw € Q)) is denoted by Sy (G))g-

0Recall §2.5 (Remarks(Il)), that is, “Only one measurement is permitted to be conducted” Thus,
“[1]4+[2]” is a methodological explanation.
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Thus, the symbol M¢(q) (O, Sp(kG)),,) means “the measurement M q) (O, S},)) under

the condition that we know the likelihood quantity of the system Sy is equal to kG,
where G € C(Q2), 0 < G(w) (Vw € Q)7

[

Under this notation, the conventional Fisher’s maximum likelihood method (i.e., Corol-

lary 5.6) says that:

(F7) Assume that we first have no information about the system Sj,;. And we take a
measurement MC(Q)(O, S[*]), i.e., Mc) (O, S ((k:]))lq). Then, from the fact that
the measured value z ( € X) is obtained by the Mc(q) (O, Syy((k1)),,), we know
that the likelihood quantity of the system Sy is equal to k[F({z})](w). (Thus,

there is a reason to regard the unknown state [* | as the state wo( € Q) such that

FIE({x})](wo) = maxyeo k[F({x})](W))

However, it is usual to assume that we have a little bit of information before a measure-
ment. Thus, let us start from the measurement M o) (O = (X, 2%, F), Si(Go)),,). Here

we have the following problem:

(Pg) How to infer the new likelihood quantity of the system Sp, from the fact that the
measured value z (€ X) is obtained by the Mc(q) (O, Su(Go))y,)-

This is equivalent to the following problem:

(P) How to infer the likelihood quantity of the system Sp, from the fact that the mea-
sured value (yo,z) ( € {yo,y1} x X) is obtained by the iterated measurement
MC’(Q)(OO x O, S[*]((k:]))lq), where Og = ({yo, 11}, 2804} @) and G({yo}) = Go,
G{m}) =1-Go.

Thus, from (F]) and “(Pg)«(P{)" the problem (Pg) is solved as follows:

(F,) (The answer of the (Pg)): We know that the new likelihood quantity G, of the

system Sy, is equal to B?x}(Go)- Here, Bayes operator B{c;} :C(Q) — C(Q) is
defined by Bgc} (G) = F({z})G (VG € C(Q)).

Thus we see:

(01, S(Migq Mc(a) (02, S (FHz}))ig)

Sy (1) — L S(F{ )

x is obtained y is obtained

St (F{a)C 1)y
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where Oy = (X,2X, F) and O, = (Y, 2Y,G).

Summing up, we can symbolically describe it as follows:

[F1] No information quantity «— kI( € C(Q)
(5.80)

Mc () (O, S (Gig)

B Sy S(BR G = S(F{zHE )

x is obtained
where O = (X,2% F).

The following example will promote the understanding of “iterative likelihood function

method”
Example 5.24. [The urn problem|. There are two urns w; and wy. The urn wy [resp.

ws] contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Assume that they

can not be distinguished in appearance.

e Choose one urn from the two.

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball’

(Q1) Which is the chosen urn, wy or we?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Which is the chosen urn, wy or wq?

The illustration of MC(Q)(O, S[*]) (OI‘, MC(Q)(O, S[*] ((k[))lq) )

} t
7 \
/ X
7/ N
y 4 \
y 4 N\
y 4 \,
y 4 \,
y 4 \,
/ N\
/ \
/ P \
O000e —_— { P ]
\ i
\, 7
\, y 4

Ay y 4

N 7

N 7

NS 7
N 7
N >

[Answers]. In what follows this problem is studied in the iterative likelihood function

method. Put Q = {w;,wy}. O = ({w, b}, 2% F) where

[F({wh)](wi) = 0.8, [F({b})](wr) = 0.2, [F({w})](w2) = 0.4, [F({b})](w2) = 0-?-5 )
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The situation of no information in Fisher’s method is represented by kI (k > 0). Thus,

it suffices to consider the measurement M¢(q)(O, Sp(kI))i,). Since the measured value

(13

w” was obtained, the new likelihood quantity G, is given as follows:

Ghew (1) ( = K- [F({w})](w1)) = 0.8k,
Gnew(w2)< — kI [F({w})](w2)>: 0.4k. (5.82)

Thus, by Fisher’s maximum likelihood method, we see that
(Aq) there is a reason to infer that [+ ] = wy.

For the further case, it suffices to consider the measurement Mc(q)(O, Su(Grew));y)-

Thus we similarly calculate that

Ghew(@1) (= [Grew](@1) - [F({B}))(w1)) = 0.16F,
Gow(@2) (= [Guen)(@2) - [F{bD)](2)) = 0.24%. (5.83)

Thus we, by Fisher’s maximum likelihood method, see that

(As) there is a reason to infer that [+ ] = ws.
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Chapter 6

Fisher’s statistics II (related to
Axioms 1 and 2)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement + the relation among systems in C*-algebra (6.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

In this chapter we study the relation between Fisher’s statistics (mentioned in the previous chapter)
and Axiom 2. Particularly we show that regression analysis can be completely understood within
the framework of Axioms 1 and 2. We expect that our result will make the readers notice that
regression analysis is more profound than they usually think. As mentioned in Chapter 1 (cf.
Declaration (1.11)), we assert that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics
is theoretically true (in PMT)” !

6.1 Regression analysis I

6.1.1 Introduction

The purpose of this chapter is to study and understand “regression analysis” com-
pletely under Axiom 1 and 2 (of measurement theory). The following Example 6.1 is the
most typical in all examples of “regression analysis”.

Example 6.1. [A typical example of regression analysis]. Let = {w;, ws,...,w100} be a

set of all students of a certain high school. Define h :  — [0,200] [resp. w :  — [0, 200]]

'We believe that only “Fisher’s maximum likelihood method” and “regression analysis” are most
essential in statistics. Thus we believe that, in order to justify statistics, it suffices to show that the two
(i.e., “Fisher’s maximum likelihood method” and “regression analysis”) are formulated in PMT.

127
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such that:

h(w,) = “the height of a student w,” (n =1,2,...,100)

[ resp. w(wy,) = “the weight of a student w,,” (n=1,2,..., 100)}

. J 0 100 200

(Note that this is a special case of Fig. (3.20).) Assume that:

(1) The principal of this high school knows the both functions h and w. That is, he

knows the exact data of the height and weight concerning all students.
Also, assume that:

(2) Some day, a certain student helped a drowned girl. But, he left without reporting

the name. Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(i) his height [resp. weight] is about 170 cm [resp. about 80 kg].
Now we have the following question:
e Under the above assumption (1) and (2), how does the principal infer who is he?

This is just what regression analysis says. For the solution, see Regression Analysis I (6.7)
later.
|
In order to explain our main assertion, let us begin with the following Example 6.2 (the
conventional argument of regression analysis in Fisher’s maximum likelihood method),
which is easy and well-known.
Example 6.2. [The conventional argument of regression analysis in Fisher’s method].

We have a rectangular water tank filled with water. Assume that the height of water at
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time t is given by the following function h(t):
h(t) = ao + Bot, (6.2)

where g and 3y are unknown fixed parameters such that «q is the height of water filling
the tank at the beginning and [ is the increasing height of water per unit time. The

measured height h,,(t) of water at time ¢ is assumed to be represented by
hm(t) =g+ ﬁot + €(t), (63)

where e(t) represents a noise (or more precisely, a measurement error) with some suitable
conditions. And assume that we obtained the measured data of the heights of water at

t=1,2,3 as follows:

hn(1) = 1.9, hpn(2) = 3.0,  hp(3) = 4.7. (6.4)

’?

L(t)

|

Under this setting, we consider the following problem:

(i) Infer the true value h(2) of the water height at ¢t = 2 from the measured data (6.4).

This problem (i) is usually solved as follows: From the theoretical point of view, we can

infer, by Fisher’s maximum likelihood method and regression analysis, that

(a0, Bo) = (0.4,1.4). (6.5)

(For the derivation of (6.5) from (6.4), see Example 6.4 (6.16) 1ater.> And next, we can
infer that

h(2) = 3.2, (6.6)
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by the calculation: h(2) = 0.4+ 1.4 x 2 = 3.2. This is the answer to the problem (i).
|

The above argument in Example 6.2 is, of course, well known and adopted as the usual
regression analysis. Thus all statisticians may think that there is no serious problem in
regression analysis. However it is not true. For example, we have the basic problem in

the argument of Example 6.2 as follows:

(ii) What kinds of axioms are hidden behind the argument in Example 6.27 And more-

over, justify the argument in Example 6.2 under the axioms.

It is important. If we have no answer to the question: “What kinds of rules are permitted
to be used in statistics?”, we can not prove (or, justify) that the argument in Example 6.2
is true (or not). That is because there is no justification without an axiomatic formulation.
In this sense, we believe that the above question (ii) is the most important problem in
theoretical statistics. Also, if some know the great success of the axiomatic formulation
in physics (e.g., the three laws in Newtonian mechanics, or von Neumann’s formulation of
quantum mechanics, cf. [71], [84]), it is a matter of course that they want to understand
statistics axiomatically.

Trying to solve the problem (ii), some may consider as follows:

(iii) Firstly, Fisher’s maximum likelihood method should be declared as an axiom (cf.
Corollary 5.6). Also, the derivation of the (6.6) from the (6.5) should be justified

under some axioms. That is, it must not be accepted as a common sense.

This opinion (iii) may not be far from our assertion proposed in this chapter. However,
in order to describe the above (iii) precisely, we must make vast preparations.

Our standing point of this book is extremely theoretical (and not practical). However
we expect that many statisticians will be interested in our proposal. That is because we
believe that every statistician may want to know the justification of both the (6.5) and

the (6.6) in Example 6.2.

6.1.2 Regression analysis I in measurements

By the results in the previous chapters (i.e., Theorem 3.7 and Corollary 5.6), we can

easily propose:
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REGRESSION ANALYSIS I [The conventional regression analysis in PMT]. (6.7)
Let (T'={0,1,..,N}, 7 : T\{0} — T) be a tree with root 0, and let S;) = [Sp); {Pr(t)

C(%) — C(Qrw)) beer\f0y] be a general system with the initial system Spj. And, let an
observable O; = (X;,2%t, F}) in a C*-algebra C(§);) be given for each t € T. Let 60

131

be the Heisenberg picture representation of the sequential observable [{O}ier, { P ()
C() — C(Qrwy) brergoy | in C(Qo). Then, we have a measurement
Mo (O = (][ Xi,2Mer X Ky), S, (cf. Theorem 3.7).

teT

Assume that the measured value by the measurement Mg q,) (60, Siq) belongs to[],., Z¢ (€

2llicr X¢) " Then, there is a reason to infer that the state [x] of the system S (i.e.,
the state before the measurement MC(QO)(607 S[*])), the state after the measurement

MC(QO)<60, Si) and the 0., (€ M, (9)) (deﬁned by (6.9)) are equal. That is, Corollary

5.6 says that there is a reason to infer that
[%] = “the state after the measurement MC(QO)(ao, Si)” = Oug- (6.8)

Here the 0, (€ M%()) is defined by

[Fo([T =0 (wo) = max{Fo([ [ =0)](w). (6.9)

w€eNo
teT teT

|
Remark 6.3. [Regression analysis I]. The above regression analysis is quite applicable.
For example, note that the “®.4; @ C(Q) — C(Qr))” is generally assumed to be
Markov operators (and not homomorphlsms). In this sense, Regression analysis I may
not be “conventional”
|
Now we shall review Example 6.2 in the light of Regression Analysis .
Example 6.4. [Continued from Example 6.2, the conventional argument of regression
analysis in Fisher’s method]. Put Qy = [0.0, 1.0] x [0.0, 2.0], and put Q; = Qy = Q3 =
[0.0, 10.0]. For each t (€ {1,2,3}), define a continuous map ¢g+ : 2o — € such that:
Q( =[0.0, 1.0] x [0.0, 2.0]) > w = («, ) (;;;04 + gt € Q,( = (0.0, 10.0)). (6.10)

Thus, for each ¢ (€ {1,2,3}), we have a homomorphism ®q; : C'(£2;) — C(€) such that:

(o fi](w) = fi(@or(w)) (Vw € Qo,Vfi € C()). (6.11)
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It is usual to assume that regression analysis is applied to the system with a parallel

structure such as in the figure (6.12). <From the peculiarity of this problem, we can also

assume that this system has a series structure. However, we are not concerned with it.)

®o1_~ C(h)
/

(%) g, ¢

.

03" C(s)

(6.12)

For each t € {1, 2,3}, consider the discrete Gaussian observable O,z v = (XN, 25V Fy N)
in C(£%), (¢f.(2.60) in Example 2.18). That is,

k
Q, = [0.0, 10.0], Xy = {N | k=0,%1,£2,...,£N?},

and

[Fon({k/N})l(w)
i I e[ = S (k= N Vw € [a,b),

k1
vorrl expl — &P dr (Vk=0,+1,42, ., +(N? = 1), Vw € [a,}]),
yi¥ea N 2N

\/2;7 f:jj*ﬁ exp| — %]dﬁ (k= —N?Vw € [a,b]).
(cf. (2.2a60) in Example 2.18)

Here, we define the observable Oy = (X%, 2%%, Fy) in C(€) such that:

[Fo(Z1 X Ey X Z3)](w) = [Bo1Fren] (@) - [Po.2F 2 n](w) - [®o5Fy2 v](w)
=[Foe n(Z21)[(d0,1(W)) - [Fo2 v (Z2)](d0,2(w)) - [Foz v (Z3)](P0,3(w))
(V21,559,535 € 2°V, Yw = (a, B) € Qp = [0.0, 1.0] x [0.0, 2.0]). (6.13)

Then, we have the measurement M q,)( O, Sp1). The (6.4) says that the measured value
obtained by the measurement MC(QO)(C~)0, Sp) is equal to

(1.9, 3.0, 4.7) (€ X3). (6.14)
Here, Fisher’s method (Corollary 5.6) says that it suffices to solve the problem

“Find (av, B) such as max(, gyecq, [Fo({1.9} x {3.0} x {4.7} (e, B)". (6.15)
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Putting
= 1 Lo oo L Aoy L 1
E1=[19- 5 L9+ o) B = B0 5= 3.0+ o] B = 4T — o AT+ o],

we see, under the assumption that N is sufficiently large, that

1 (@1 (a+8) 2 +(zo—(a+28)) %+ (23— (a+38))?
(6.15) = max el 202 Jday deyda,

= max exp ( 19— (@t )2 + (3.0 — (a+28))% + (47 — (a + 35))2}/(202))

= min (19— (o + B)2+ (3.0 — (a+2B))2 + (4.7 — (a+ 35))2]

(by the least squares method)

{ (L9 — (a+8)) + (3.0 — (a+28)) + (47— (a+36)) =0
(19— (a+3)+2(3.0—(a+28) +3(4.7—(a+35)) =0

= (o, fo) = (0.4,1.4). (6.16)

This is the conclusion of Regression Analysis I (6.7). Also, using the notations in Regres-

sion Analysis I, we remark that:

(R) the measurement MC(QO)(60 = ([Ler Xe, 2Meer Xt ﬁg),S[*]) is hidden behind the
inference (6.16) <: (6.5) in Example 6.2).

This fact will be important in §6.3.
[
The above may be the standard argument of the conventional regression analysis in
measurement theory. However, our problem (i) in Example 6.2 is not to infer the («y, 5o)
but ~(2). In this sense the above regression analysis I is not sufficient. As the answer

of the problem (i) in Example 6.2, we usually consider that it suffices to calculate h(2)

< = ¢p,2(0.4, 1.4)) in the following:
h(2) =04+14x2=32. (6.17)

However, this is doubtful. (In fact, this (6.17) is not always true in general situations.
(c¢f. Regression analysis 11 (6.51) 1ater).> We should not rely on “a common sense” but

Axioms 1 and 2. That is, we must solve the problem:

e How can the above (6.17) (: (6.6) in Example 6.2) be deduced from Axioms 1

and 27

In order to do this, we will make some preparations in the next section.
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6.2 Bayes operator, Schrodinger picture, and S-states

In order to improve Regression Analysis I (introduced in the previous section), in this
section we make some preparations (i.e., Bayes operator, Schrodinger picture, S-state,
etc.). Our main assertion (Regression Analysis IT) will be mentioned in §6.3. We begin
with the following definition, which is a general form of “Bayes operator” in Remark 5.7.
Definition 6.5. [Bayes operator (or precisely, Bayes-Kalman operator)]. Let (T =
{0,1,..,N}, 7 : T\ {0} — T) be a tree with root 0 and let S; = [S; {C(€%) Prge
C(Qrt)) bter\foy] be a general system with the initial system Sp,j. And, let an observable
O, = (X,, %, F,) in C(Q) be given for eacht € T. Let Oy = (ITLier Xo: Qyer Tt Ey) be
as in Theorem 3.7 in the case A, = C(€) (Vt € T'). That is, Oy is the Heisenberg picture
representation of the sequential observable [{O}ier; {C(S4) Frs C(Qrt)) brerqoy]- Let
T be any element in T. If a positive bounded linear operator Bﬁ)ﬂsi : C(Q,) — C(Q)
satisfies the following condition (BO), we call {Bl(jot’gat | 2 € F (Vt € T)} [resp. Bl(-lot’gat]

a family of Bayes operators [resp. a Bayes operator]:

(BO) for any observable O). = (Y;,8,,G,) in C(S,), there exists an observable Oy =
((Ter X0 % Ve (Ryer F) @ Gr). Fo) in C(S2) such that

~ = Do)t
(i) Oy is the Heisenberg picture representation of [{O} er; {C(Q4) = C(Qrw)}

ter\o0y], where O, = Oy (if t #7), = O, x O. (if t = 7),
(it) Fo((TT,erZ) x Tr) = BT 2 (G(T,)) (V2 € Ty (Yt € T), VI, € G,),

— FlierE:

(iil) Fo((TT,ep o) X ¥2) = Fo(TT,ey Et)< — Bﬁg’ga(m), (VE, € F, (vt € T)), where 1,
is the identity in C(§2;).

Also, define the map Rl(%?TEt s M7 (Q0) — M (€2;) such that:

B(OvT): * v
oz, (V) = EO,J?”;) v (v € M4 (), (6.18)
I( nteth) (V)HM(QT)

where (Bg)tga)* : C(Q9)" — C(Q,)* is the adjoint operator ofBﬂOt’T) :C(92;) — C(Q).

eTEt

The map Rl('?t;)T =, Is called a “normalized dual Bayes operator”. Bayes operator is also

called “Bayes-Kalman operator”
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We see

BT 2, (9:) < ®org- (g € C(Q,) such that g, > 0), (6.19)

MierE:

because it holds, for any observable O’ = (Y, S, G,) in C(£,),

BYT S (GH(T) = Fo((J[ ) x Tr) < Fo((J ] X0) x T)

teT teT

- <I>07TGT(FT)< - Bglgxt(ef(n))) (VT, € F,). (6.20)

The following theorem is essential to Regression Analysis II later.

Theorem 6.6. [The existence theorem of the Bayes operator (cf. [46, 55])]. Let Oy =
(TTer Xi, 2Meer X, Fy) be as in Theorem 3.7 in the case A, = C(€) (Vt € T). And,
for any s (€ T), put Ty = {t € T | s < t}. Assume that, for each s (€ T), there exists
an observable 63 = (HtGTS X, 2llien, Xf,ﬁs) in C(Q) such that q)w(s),sﬁs(nteTs =) =
ﬁw(s)<(nteTﬁ(s)\Ts X)) % (e, Et)> (VE, € 2% (¥t € T)), (cf. Theorem 3.7). Let T be
any element in T. Then, there exists a family of Bayes operators {Bl('lot ’2& Zy € 2% (Vt e
T)}.

Proof. See [46]. The proof in [46] is essentially true, but it is not complete. That is
because the definition of “Bayes operator” (i.e., Definition 6.5) was not mentioned in [46].
Thus, we add the complete proof in what follows. It will be proved by induction. Let O
= (Y;,2¥",G,) be any observable in C(£2,).

[Step 1] First, define the positive bounded linear operator BT _ . c (©,) — C(£;) such

Mer, Bt
that:

BT _(9:) = F(ILer, 2) x g, (Yg, € C(,)), (6.21)

HteT-r By

and define the observable O, = ((ILer, X;) x Y5, 2X7Y7 F) in C(Q,) such that:

Fo(Ier 2 x ) = BYD _(G(T,)) (V. € 2%7), (6.22)

Myer, Et

which is clearly the Heisenberg picture representation of the sequential observable [{O; }ier. ,
(I>7r t),t -~ . .

{CQ) ™" () bier ], where O, = Oy (if t # 7), = O, x O (if t = 7). Thus,

the operator Ef{g =, - C(Q2:) — C(Q,) is the Bayes operator induced from the 0. ( =

(Wser, X, 2Meerr Xt i)), which is uniquely determined.
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[Step 2] Let s be any element in 7"\ {0} such that s < 7. Here, assume that BYn _

Miery Zt

C(,) — C(,) is the Bayes operator induced from the O, < = (Iyer, X, 2Mrems Xt Fs)>
That is, there exists an observable O, = ((TTier, Xt) x Y7, 2(lier, X0X¥= [y in C/(Q,)
such that

(i) O, is the Heisenberg picture representation (c¢f. Theorem 3.7) of the sequential
(I)ﬂ(t),t

observable [{Gt}teTs, {C(%) =" C(Qnw) her(sy], where O, = O, (if t # 1),
=0, x O, (ift=r1),

(il) Fy((Mer,Z) x ) = BET _ (GH(T,)) (2, € 2% (Vt € T)), VT, € 2¥7),

Mier,Et
(i) F((Mer,E) xYy) = F([Len, E) (5 € 2% (vt TL)).

Let (1)ier,,, be any element in Iler,  X;. Note that {(z;)er,,} = er,, {7:}. Define
the positive bounded linear operator EI(IW(S)’T) C(Q2;) — C(Qrs)) by

teT, oy 12t}

Pty TLier, o {2 @) X [@rio)s BT 11 (97 (@r(e)

[ﬁW(S)«HteTw(s)\Tth) X HteTs{xt})](Wﬂ(S))
(VgT € C(QT), Vwﬁ(s) (G QW(S))). (6.23)

n(m(s),7) B
[BnteTﬂm {ft}(gfﬂ(wﬂ(s)) =

Here, the above is assumed to be equal to 0 if the denominator of (6.23) is equal to
0 (i.e., [ﬁw(s)((ﬂteTw(s>\Tth) X [Tier Az )] (wris) = 0). And thus, we can define the
positive bounded linear operator BF™™) _ - C(€,) — C(Qys)) by

e, )=t

pr(s)r) R (7 (s),7)
BHteTw(S)Et - Z B{(xt)teT )

_ (s
(It)teTﬂ,(s) theTﬂ,(s) =

(Ilter

™

Xe)xYr
(2 XV)

Define the observable (A)W(S) = (I Ler “ X)) xY,, 2 ,ﬁr(s)) in C(Qx(s)) such

that:

~

Fro((Mer,  Z) x D) = BYY7Y _(GA(T,) (2, € 2% (vt € Ty)), VI, € 277),

e, St

(I)ﬂ(t) ,t

(s)? {C(Qt) - C(Qﬂ'(t))
}teTﬁ(S)\{ﬂ(S)}], where O, = O, (if t # 7), = O, x O (if t = 7). Also, it holds that

which is clearly the Heisenberg picture representation of [{O; }er.

Fro(Myer,  Z1) x Y2) = Fo( [ Z0) (B € 2% (Vt € Tr(o))-

€T, (o)
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That is because we see

~

Fro((her, 20 x Yo =B < ()= >0 By (1)

Meer,

(mt)teTﬂ,(s) theTﬂ(s)Et

_ Z FW(S)(HtGTW(S){J;t}) X (I)W(S)vSBl('IS;;)TS{xt}(lT)

(w0)ier, ) Ellier, ) 5t Fro) ((Mer,  \17. Xt) X [Tier, {7e})

FW(S)(HtETW(S) {z:}) ¥ Fﬂ(S)((HtETW(S)\Tth) x HteTs{xt})

— > =

(xt)tETﬂ,(s)EHteTﬂ,(S)Et F”(S)((HteTﬂ(S)\TSXt> X HtETs {:Ct})
= > Foo( I {=}) = Feo( ] 20 (6.24)
(Il‘t)teTﬂ_(S) EHtETﬂ.(S) Et tETﬂ.(s) teTﬂ.(S)
Therefore, we see that El({ig’:)@ : C(Q;) — C(Qyr(s)) is the Bayes operator induced from
the 6ﬂ(5) ( = (Ter, ,, Xt MMteTn () Xt ﬁr(s))). Thus, we can, by induction, finish the proof
since it suffices to put Bg)t 23 = El('lot ’;—T)“OEt. O

Let Op = ([Tyer Xo, 2Mer X1 Fy), OL = (Y;,2Y7,G,), {BY7)z, | 20 € 2% (vt € T)},
O = ((TTyer Xe) x Yy, 2Mher X02%7 L) and {RY7) - | Z, € 25 (vt € T)} be as in
Definition 6.5. Assume that
(C1) we know that the measured value (2;)ier (€ ([ [;c7 X¢)) obtained by MC(QO)(60, Si5o])

belongs to [],.r Z:.
Note that this (C;) is the same as the following (Cs).

(Cz) we know that the measured value ((@)ier,y) (€ (I[,er X¢) xY7) obtained by Mc(q)
(60,5[5%]) belongs to (J[,cr Z¢) x Yr.

Thus we see that

(C3) the probability distribution of unknown y (under the assumption (Cs) (:(Cl))>,
i.e., the probability that y (€ Y;) belongs to I';, is represented by

-~ —_ 0,7
e Oons Fo((TLier Z0) X T))oay) (_ crag G Bitgz, (G () oy

~ — = o (6.25)
C(29)* <6w07 FU((HteT :t) x YT)>C(QO) c(Q)* <5w07 BHteTEt <1T)>C<QO)
A simple calculation shows:
(B =) (0u) 0:)
(0:25) = cian |(BY) ET)*(5 i G (To))eany = o (Bierz, (Gun) G (U)o, -
Mier=t wo /IIM(£2)

Therefore, we say that

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
38 . CHAPTER 6. FISHER'S STATISTICS II,(RELATEL TO AXIOMS 1, AND 2
Flor CIearAlgrlntlng, ee http:?‘ WWW. elé)-up.co.Jp/kupjfm%mt/ )
(C4) the probability distribution of unknown y <under (Cy) (:(Cl))) is represented by

C(Qr)* <Rﬁ)t’;3“5t (6w0)7 GT<F7)>0(QT) . (626)

Let this (C4) be, as an abbreviation, denoted (or, called) by

(Cs) the S-state (after the measurement MC(QO)(ao,S[&UO])> at 7 (in 7)) is equal to
R 2, (8uy)-

Mier=t

For completeness, again note that (C4) = (Cs), i.e., (C;) is an abbreviation for (C4). Note
that the concept of “S-state” and that of “state” are completely different. In measurement
theory, as seen in Axiom 1, the state always appears as the p? in Ma(O, Sj,»)). That is,
the state pP is always fixed and never moves. In this sense, the p” may be called a “real
state”. On the other hand, the “S-state” is used in the abbreviation (Cs) of (Cy).

Summing up the above argument, we have the following definition.
Definition 6.7. [S-state (= Schrddinger picture)]. Assume the above situation. If
the above statement (Cy) holds, then we say “(Cs) holds” i.e., “the S-state (after the
measurement Me () (O, Sis.,))) at T (€ T) is equal to RI(T[);;)TEt(cLO)”. The representation
using “S-state” is called the Schrodinger picture representation. The S-state is also called
a Schrodinger state or imaginary state.

[

As seen in the above argument, we must note that the Bayes operator is always hidden
behind the Scrodinger picture representation.

We sum up the above argument (i.e., (C1)=(Cs)) as the following lemma.
Lemma 6.8. [S-state]. Let Og = ([],op X, 2leer X 1), {BY7) L | By € 2% (vt € T)}

MierT=r

and {RY7) _ | 2, € 2X¢ (Vt € T} be as in Definition 6.5. Assume that

MierEe

e we know that the measured value (z;)icr (€ [[,cr X¢) obtained by Mg (qy) (O, Si50,1)
belongs to [[,cr Zt-

Then, we can say

(f) the S-state (after the measurement MC(QO)(60,S[5WO])> at 7 (in T) is equal to
R 2 (8u,)-

MierTZt

The following lemma will be used as Theorem 6.13.
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Lemma 6.9. [Inference and S-state]. Let Oy = (HteTXt,2Ht€TXf,ﬁo), {Bl('ﬁ;z;Et |

2, € 2% (vt € T)} and {RY7 _ | 5, € 2% (vt € T)} be as in Definition 6.5. Assume

MierEe
that

() we know that the measured value (x;)ier (€ [[,or Xi) obtained by MC(QO)(60, Si)
belongs to [ [,cr Zs.

Then, there is a reason to infer that

(#) the S-state <after the measurement Mc () (O, S )) at T (inT) is equal to RYOT (Oug )-

MierEe

Here the d,,, (€ M%(Qy)) is defined by

Fo([]Z0)wo) = max(Fo( [T E0)w). (6:27)

Proof. The proof is similar to that of Corollary 5.6. Let (Y;, 2", G,) be any observable
in C(2,). Note that the above (o) is the same as the following:

(8)” we know the measured value ((z¢)ier,y) (€ (I [;er Xi)xY7) obtained by M) (O, Sis)
belongs to (J],cr Z¢) x Y, (where Oy is as in Definition 6.5).

Thus we can infer, by Theorem 5.3 (Fisher’s method) and the equality ﬁO(HteT =) =
F\O((HteT =) xY;), that the unknown state [*] (in Me (o) (6, S[*])) is equal to 4, (deﬁned
by (6.27)). Thus the conditional probability Pi,.,=,(-) under the condition that we know
that ((z¢)ier,y) € ([[,er X¢) X Y7 is given by

o = 0,7

C(Qg)* <5w07 FO((HteT ::t) X FT)>C(QO) o C(Qg)* <5w0, Bl(—lte;Et (GT(FT))>C(QO)
L = o 0,7

C(Q0)* <5w07 FO((HtET :t) X Y;)>C(QO) C(Qp)* <5w07 Bl(_ltei)“Et (1T)>C(QO)
0,7 a

= o (BT 2 (000). Gr(T)) o, (WD, € 277),

PHteTEt (FT) =

From the equivalence of (Cy) and (Cjs), we can conclude the (f). O

(DOT

o1 C(Qr) =
C()]. For each k = 0,7, consider the null observable O™ = ({0,1},2008, F™Vy in

Now we consider the simplest case that T' = {0,7} and Sp, ) = [Ss

C(Q%) (cf. Example 2.21). Then, we have the measurement
MC(QO) <60 = ({0’ 1}27 2{0,1}27 Fénl) « ¢O7TF7EHI))’ S[‘SWOO . (628)

Note that:
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(i) the probability that the measured value (by MC(QO)(60, Sis,,1)) is equal to (1,1) is

given by 1. That is, the measured value is always (or surely) equal to (1, 1).
Thus,

(ii) the measured value obtained by MC(QO)(GO, Sis,,1) has always the form ((1,1),y) (€
{0,1}2 x Y;). Here Oy is defined by

({0,1}? x Y;, 2001507 gD o g FOD 5 @y G, ) (6.29)
for any any observable (Y;,2Y7, G,) in C(Q,).

Note that MC(QO)(60, Sis.,)) and Moy (Y, 2'7, 0 -G7), Sps,]) are essentially the same.

“o

That is because “to take MC’(QO)(éo, S[gwo})” is essentially the same as “to take no mea-

surement” (cf. Example 2.21). Thus, the above (ii) implies that

(iii) the probability distribution of unknown y (under (ii) (: (1))), i.e., the probability
that y € I';, is represented by

C(Qr)* <(I)8,T(5w0)7 GT<FT)>C(QT)
for any (Y,,2'",G,) in C(Q,) and any T, (€ 2'7).
That is because it holds that

C(Q)

ey (O (F§™ X Do FMY X @, G)({(1,1)} x T,))
cinys (s (F™ % @ P x @0 .G ({(1, 1)} x Y7))
:C(QT)* <(I)8,T(5w0)7 GT(F7)>C(QT) .

C(Qp)

Thus,we get the following (iv), which is short for (iii).
(iv) the S-state at 7 (€ T'= {0, 7}) is equal to @ (du,)-

Thus we conclude that (i) = (iv). However, note that (i) always holds. Therefore, we
think that (iv) always holds.
From the above argument, we have the following lemma. This will be used in the
statement (6.33).
Lemma 6.10. [The Schrédinger picture representation|. Put T = {0,7}. Let S,
o,

[Sauy)i 1C(Q27) = C(0)}] be a general system with an initial state Sis, ). Then we see
that

wo] =
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(4) the S-state at 7 (€ T'={0,7} ) is ®f ()

Here it should be noted that the measurement Mcq,)((Y, 27 ®y .G, 5[5%]) (or, Me )

(O, Si50,1)s ) is hidden behind the assertion ().
|
Also, the following lemma is the formal representation of Corollary 5.6 (ii). (Cf. Re-

mark 6.12.>

Lemma 6.11. [Inference and the Schrédinger picture representation]. Put 7' = {0, 7}.
Let Spy = [S1: {®o,r : C(2;) — C()}] be a general system with an initial state Sp,. Let
Oy = (Xo,2%0, Fy) be an observable in C(Q). And, let O™ = ({0,1}, 2001} F™) be
the null observable in C(S);) (cf. Example 2.21). Consider a measurement MC(QO)<6O<E
Oy x <I>0,T05nl)), Sp), which is essentially the same as M¢(q,)(Oo, Sy). Assume that

e we know that the measured value obtained by MC(QO)<6U = Oy x Q)O’TO(THD, Si)
belongs to =g x {1} (€ 2X0x{01}),

Then we see that

(§) there is a reason to infer that the S-state (after the measurement MC(QO)(GO, Si1))
at 7 (€T =1{0,7}) is Of . (uy),

where 0, (€ MY (o)) is defined by

[Fo(Z0)](wo) = max[Fo(Zg)](w). (6.30)

wEN

Proof. Let BET, : C(Q) — C(Q) and RE7 + M7 () — M7T,(Q,) be as in

E()X{l} .
Definition 6.5. Here, note that, from the property of null observable, it holds that Fy(Zg) x
Oy, ™ ({1}) = Fy(So). Thus we see that Bé%;){1}(97) = Fy(Zo) X @g g, for any g, (€
C(€2,)). By Lemma 6.9, it suffices to prove RSO’T)((SW) = ®f . (0u,). This is shown as

follows:

(BET) ) (0.)

T Eox{1}
RS (0u) 7)oy = e { = gr)
(©7) = X{l} 0/ (27) (27) T % ? (27)
o T (BE ) Ca) Iy
_ 1 <5 BLO,T) (g )) _ [F()(E'O)](w()) X {CI)O,TQTKMO)
||(Béo(;;){l})*(éwo)HM(QT)C(QO) 0 Zox{1} C(Qq) [FO(EO)](WO)
=i (P0-(0w0) 97) o,y (Vgr € C(€1r)). (6.31)
Then, we see that R(E%;){l}(éwo) = ®§ (du,). This completes the proof. O
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The following remark shows that Corollary 5.6 (ii) is a direct consequence of Lemma
6.11.
Remark 6.12. [Continued from Corollary 5.6 (Fisher’s maximum likelihood method in
classical measurements)]. As mentioned before, the proof of Corollary 5.6 is temporary.
Corollary 5.6 should be understood as a corollary of Lemma 6.11 as follows: In Lemma
6.11, put Qy = Q, = Q4o. And let Oy, : C(249) — C(£) be the identity map. Since
“the S-state (after the measurement Me(qy)(Oo, Siy)) at 7(= +0)” = Pg - (0w,) = 0wy, We
easily see that Corollary 5.6 is a consequence of Lemma 6.11. This should be regarded as
the formal proof of Corollary 5.6.
|

6.3 Regression analysis II in measurements

Now let us explain the reason why we consider:

(#) it is worthwhile doubting the derivation of (6.6) (= (6.17)) from (6.5) (= (6.16)),
i.e., the formula h(2) = 0.4+ 1.4 x 2 = 3.2,

Using the notations in Regression Analysis I (6.7), we recall the statement (R) of Example

6.4 as follows:

(R) the measurement MC(QO)(60 = ([Lep Xi, 2Mer Xe, ﬁo),S[*]) is hidden behind the
inference (6.5) (=(6.16)).

And we conclude, by Corollary 5.6 (or Remark 6.12), that

[%] = “the S-state after the measurement MC(QD)(éo, S1)”

— by (6.32)

Here the 4, (€ M%,(€)) is defined by [ﬁo(HteT =) (wo) = maner[ﬁO(HteT =) (w).
On the other hand,

e the map “6,, — Df ()" <i.e., the derivation of (6.6) (= (6.17)) from (6.5)
(: (6.16))> is due to the Schrodinger picture, behind which the measurement
Mc (o) (P00, = (Y7, 27, D .G.), Sis.,)) is hidden. Cf. Lemma 6.10. (6.33)
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Thus, in order to conclude the assertion (6.6) (= (6.17)), we need the above “two
measurements’, that is,

“MC(QO)(éo = (HtET Xtﬂ QHtETXtvﬁO)v S[*]) 7 and MC(QU)((I)O,TO; = (YT7 2YT) (I)O,TGT); S[ﬁwo])”'
(6.34)

However, note that it is forbidden to conduct “two measurements” (c¢f. §2.5(II)). This
is the reason that we think that it is worthwhile doubting (6.6) (= (6.17)). In order to

avoid this confusion, it suffices to consider the “simultaneous” measurement:

MC(QO)(GO = ((H X,) x Y, 2Uler X7 oy S), (where Oy is as in Definition 6.5),
teT

(6.35)

instead of (6.34).
Then, we rewrite Lemma 6.9 as an main theorem as follows:

Theorem 6.13. [= Lemma 6.9, Inference in Markov relation]. Let Oy = (IT,er X, 2Heer X,
Fy) be as in Theorem 3.7 in the case A, = C(Q,) (Vt € T). And consider a measure-
ment MC(QO)(éo,S[*}). Let 7 be any element in T'. Let {Rl(%;)TEt | 2 € 2% (Vt € T)}
be as in Definition 6.5. Assume that we know that the measured value (obtained by

MC(QO)(6Q, Si)) belongs to [[,c Z¢. Then, there is a reason to infer that

(#)  “the S-state at 7 (€ T') after MC(QO)(60, Sw)” = RO _ (8.,). (6.36)

MieTEr

Here d,,, (€ M",(R2)) is defined by

[Fo(J[E0)(wo) = max[Fy([[20)](w)- (6.37)

weNo
teT teT

Lastly, we prove the following lemma, which justifies the inference (6.6).
Lemma 6.14. [Some property of homomorphic relation]. Let O = (TTer Xi, 2Meer Xe,
Fy) be as in Theorem 3.7 in the case A, = C(Q) (V¢ € T). Consider the family of Bayes
operators {BI(IOt’eT;Et | =, € 2% (t € ")} such as in Definition 6.5. Let T be any element in
T. Assume that @), : C() — C(Qr) (Vt € T such that 0 < t < 7) is homomorphic.
Then, it holds that:

BT (GH(T,) = Fo(J[ 20) x @0,G-(T;)  (VE, € 2% (¥t € T),¥T, €2"7),  (6.38)

MierT=t
teT
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for any observable (Y;,2Y G,) in C(Q,). That is, we see that the Bayes operator BHt’eT;Et :
C(Q,;) — C(Q) is determined uniquely under the homomorphic condition.

Proof. The proof is shown in the following three steps.
[Step 1]. Let wy be any element in €. And let g, and h, be in C(Q2,) such that:

0<g- <1, g-(dor(wo)) =0,0<h; <1, and hr(¢or(wo)) = 1. (6.39)
where ¢g , : o — §2; is defined by (3.14). Then we see, by (6.19), that
0 < B =, (97))(@) < (Drg7)(@) = gr(d0r(w)) (Voo € Q). (6.40)
Putting w = wy in (6.40), we get, by (6.39), that
[Bii7)=,(97))(wo) = 0. (6.41)
Also, from the linearity of Bayes operator and the condition (iii) of Definition 6.5, we get

BT - (1, — ho)l(w) = [BYT) 2, (1))(w) — [BY) 2, (h)](w)

= [Fo(J]2)lw) = B2, (h)lw) (Ywe Q).  (6.42)

Thus, putting w = wy in (6.42), we get, by (6.39), that

0< [BYT) <, (1 — hy)(wo)

Mier=e

< [((I)O,T(IT - hT))](WO) = 1T(¢0,T(w0)) - hT<¢O,T(w0)) =1-1=0. (643>

Then, we obtain

[BET 2, (ho))(wo) = [Fo(] ] Ze)] (wo)- (6.44)

teT
[Step 2]. Let wy be any fixed element in 4. Fix any f (€ C(€2;)) such that 0 < f < 1.

Define g¢,, h, (€ C(£2;)) such that:
gr(wr) = max{0, f(wr) = f¢or(wo))}  (Vwr € Qr),

= min flwr) w
hr(w‘r) - { ((bOT( )) 1} (V r € QT) (645)

The g, and the h, clearly satisfy (6.39). And moreover, we see, for any w, € ., that

gr(wr) + f (o (wo))r (wr)

= max{0, f(wr) = f(dor(wo))} + min{f(wr), f(¢or(wo))}
— { (f(wr) = f(¢or(wo)) + f(¢or(wo)), if flwr) = f(¢or(wo))
0+ flwr), if f(wr) < f(¢or(wo))
= f(wr). (6.46)
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[Step 3]. Let wy be any element in €. Let I'; be any element in 2. From the [step
2], we see that there exist g, (€ C(Q2,)) and h, (e C(Q;)) such that G.(I';) = g,+
G (T (b0, (w0) Ry Gr(Go,r(wo)) = 0, hr(0+(wo)) = 1. Then we see

[BED 2, (G (T))))(w) = [Bfﬁga <§T + [GT(FT)](%’T(MO))ET)] (@)
=[Bi]) =, @))(@) + (G- ()] (9o (w0)) x (B =, (h)](w)  (Vw € Q). (6.47)

Putting w = wyp, we see, by (6.41) and (6.44), that [Bﬁ)t’;;a (-)](wo) = 0 and [Bﬁ)tggt (ﬁT)](wO)
= [Fo(TT,er Z0))(wo). And, we see, by (6.47), that

[BET) 2 (G(T)(wo) = [Go(T)] (b0 (wn)) x [Fo(] [ Z0))(wo)

teT

= [®0, G (T')](wo) x [Fo(T =)l (wo)-

teT

Since wy (€ ) is arbitrary, we obtain (6.38). This completes the proof. O

Now we can propose our main assertion as follows:
REGRESSION ANALYSIS II [The new proposal of regression analysis, cf.[55]].
(6.48)
Let (T ={0,1,...,N}, 7 : T\{0} — T') be a tree with root 0, and let Sp,; = [Sp.; {C(€) Frgs
C(Qrt)) }rer\(oy] be a general system with the initial system Sp,). And, let an observable
O; = (X;,2% F,) in a C*-algebra C(€;) be given for each t € T. Then, we have a

measurement

Mo, (0o = ([ Xi, 2Mler X ), Sy)  (cf. Theorem 3.7). (6.49)

teT
Assume that the measured value by the measurement M (q) (O, Si) belongs to [[,. Z: (€
2llier Xt) " Also define 6, (€ M (S)) such that:

[Fo(J[E0)(wo) = max[Fy (][ 20)](w)- (6.50)

wEN
tel teT

Let 7 be any element in T. Let {RY7_ | Z, € 25t (Vt € T)} be as in Definition 6.5.
teT —t
(Tbe existence of {RY7) _ | 2, € 2%t (Vt € T} is assumed by Theorem 6.6.) Then, we

MierEr

see:
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(). [The S-state at 7 (€ T')]. There is a reason to infer that

(#)  “The S-state at 7 (€ T') after MC(QO)(éo, Sw)” = RY™) (Oug)- (6.51)

T erE:

Also
(ii). [The S-state at T (€ T') for homomorphism @ ,|. Assume that @ : C(Q,) — C ()
is homomorphic <1'.e., Qe 0 C() — C(Qrwy) (Vt € T suchthat0 < t < 7) s

homomorphic). Then there is a reason to infer that
“the S-state at 7 (€ T') after MC(QO)<6O, S)” = D5, (6ug)- (6.52)

Here note that ®f _(d.,) = 0y, (wy) Where ¢o - : Qo — Q, is defined by (3.14).
Proof. (i). See Theorem 6.13 (= Lemma 6.9).
(ii). We see, by Lemma 6.14, that

(0,7) *
< (0,7) ( ) > _ <<BHtGTEt) ((SWO) >
C(Qr)* MierE: \WWo 7g7' c(Qr) ~ C(Qp)* (0’7_) N 5 ’g’?’ c(Qr)
( HtETEt) ( WO)
1 07

- 0,7 %
1(BET) 2)* (80 Iy
! (0w Fo([ [ Z0) % @0, (by L 6.14)
-T= — * \Cwoyr L0 =t 0,79r y Lemma 0.
[Fo(TTer E6))(wo) " " Lt o

o) <(DS7T(5WO)7gT>C(QT) (vQT € C(QT))'

C(20)* <6""0 1 P ILerEy <g7>>0(520)

Then, we see that RV7) _ (8,,) = D (0o

Mier=e

]

Remark 6.15. [(i) Continued from Example 6.2]. Note that our problem (i) in Example
6.2 was to infer the h(2) and not (ap, By). Regression analysis II (6.52) is applicable to
our problem, that is, the above (6.52) says that there is a reason to calculate h(2) in the

following;:
h(2) = ¢p2(0.4,1.4) =04+ 14 x 2 =3.2. (6.53)

[(ii) Interesting logic]. It should be noted that, when 7 = 0, the Regression Analysis II
is the same as the Regression Analysis I. Thus, we also conclude (6.5), i.e., (ag,By) =

(0.4,1.4). After all, the Regression Analysis IT says that

(M;) as the result in the case that 7 = 0, the conclusion (6.5) in Example 6.2 is reasonable,
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(Ms) as the result in the case that 7 # 0, the conclusion (6.6) in Example 6.2 is reasonable.
However, it should be noted that the Regression Analysis II does not guarantee that
(M3) both (6.5) and (6.6) in Example 6.2 are (simultaneously) reasonable.

That is because two measurements (i.e., the measurement M; behind (M;) and the mea-
surement M, behind (Ms)) are included in (M;) and (M,). If we want to conclude
this (M3), we must consider the simultaneous measurement of “measurement M;” and

“measurement M,”, that is, we must generalize Definition 6.5 (Bayes operator) such as
B(Ov(ovT))

Merz, © C (Qo) x C(Q,) — C(Qp) satisfying similar conditions since only one measure-

ment is permitted (cf. §2.5(I1)). This is, of course, interesting, though it is not discussed
in this book.
[ |

6.4 Conclusions

In this chapter we show that regression analysis can be completely understood in PMT

as follows (cf. [55]):

measurement theory

( { Corollary 5.5 (conditional probability)

Axiom 1 = (F?;ﬁg?’geglleiﬁod) Corollary 5.6 (classical Fisher’s method)

Theorem 3.7 (measurability)
Axiom 2 = < Theorem 6.6 (the existence of Bayes operator)
L Lemma 6.14 (some property of homomorphic relation).

And, using these results, we derive “regression analysis” as follows:

(i) :  “Corollary 5.6” + “Theorem 3.7” = “Regression Analysis I 7,

Theorem 3.7

(ii) - “Corollary 5.5” + “Theorem 6.6” = “Theorem 6.13”

(Markov inference) = “Regression Analysis I1”.

“Lemma 6.14” )
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We believe that Regression Analysis II is the best (i.e., precise, wide, deep etc.) in all
conventional proposals of regression analysis (though it should be generalized as mentioned
in Remark 6.15.). It is surprising that both statistics and quantum mechanics can be
understood in the same theory, i.e., measurement theory (6.1) (=(1.4)).

We believe that every statistician may want to know the justification of (6.5) and
(6.6) in Example 6.2. Thus we expect that many statisticians will be interested in our
axiomatic approach. That is because there is no justification without axioms.

We think that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics is
theoretically true”, (cf. Declaration (1.11)).
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Chapter 7

Practical logic

It is certain that pure logic (cf. [89]) is merely a kind of rule in mathematics (or meta-mathematics).
However, if it is so, the logic is not guaranteed to be applicable to our world. For instance, (pure)
logic does not assure the following famous statement:

[f] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.

That is, we think that the problem: “Is the [4] true or not?” should be answered. Thus, the purpose
of this chapter is to prove the statement [f], or more generally, to propose “practical logic”, i.e.,

“logic with an interpretation”, ! which is formulated in the framework of the measurement theory:

PMT = measurement + the relation among systems in C*-algebra (7.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

Firstly, the symbol “A = B” (i.e., “implication” ) is defined in terms of measurements. And we
prove the standard syllogism for classical systems:

“A= B, B= C” implies “A = C” ? (7.2)

(This is not trivial, because the (7.2) does not necessarily hold in quantum systems.) We can
assert, by “Declaration (1.11)” in §1.4, that this theorem (7.2) guarantees that the above (7.2) (or,
the statement [f]) is “theoretical true” Several variants may be interesting. For example, under
the condition that “A = B, B = (C”, we can assert a kind of conclusion such as “C = A" For
completeness, “pure logic” and “practical logic” must not be confused. The former is a basic rule
on which mathematics is founded. On the other hand, the latter is a collection of theorems (whose
forms are similar to that of “pure logic” ) in MT. All results in this chapter are due to [41]. Also,
this chapter can be skipped if readers want to study statistics in the framework of SMT firstly (cf.
Chapters 8).

1'We have no confidence for the naming “practical logic. We may choose the other namings: “empirical
logic”, “applied logic”, “usual logic” etc.
2t is said that the syllogism is said to be, for the first time, introduced by Aristotle (B.C.384-B.C.322)
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7.1 Measurement, inference, control and
practical logic

The PMT has various aspects. For example, we believe that three concepts:
“measurement”, “inference”, and “control” are different aspects of the same thing.
Let us explain it as follows: Let Ma (O =(X,3,F), S[pp]) be a measurement formulated
in a C*-algebra A. Note that Axiom 1 can be regarded as the answer to the following

problem:
(M) What kind of measured value is obtained by a measurement Ma (O, Sj,)?

As mentioned in Chapter 5, the measurement Ma (O, S[pp]) is often denoted by Ma (O,
S[*]), if we want to stress that we do not know the state pP. Using this notation, we can

respectively characterize “inference (I)” and “control (C)” as follows:

(I) Assume that we get a measured value z( € X) by a measurement Ma (O, Sp).
Then, infer the state [ * ],

and

(C) Assume that we want to get a measured value z( € X) by a measurement Ma (O,

Spi)). Then, settle the state [ ].

Of course, Fisher’s maximum likelihood method is one of the answers of the above prob-
lems (I) and (C).
Also, we think that

(L) “Practical logic” is characterized as “a qualitative theory concerning conditional

probability (cf. §2.5 (IV)) in PMT"

Thus “practical logic” is also one of the aspects of Axiom 1. Also, since “(practical)
logic” is a qualitative aspect of “inference”, we can say that “(practical) logic” [resp.
“Inference”] is used in rough [resp. precise| arguments. For completeness, “pure logic” and
“practical logic” must not be confused. The former is a basic rule on which mathematics is
built. And thus it is not related to our world. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic” ) in PMT. Since practical logic
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is regarded as a theorem in PMT, it automatically possesses the measurement theoretical

interpretation. That is, we think that
“practical logic” = “theorems (whose forms are similar to (pure) logic) in MT”.

Recall, throughout this book, that the measured value set (or, label set) X is assumed
to be finite if we write (X, 2%, F) (or, (X, P(X), F) and not (X, JF, F). In this chapter we

always assume that X is finite.

7.2 Quasi-product observables with dependence

We begin with the following definition.
Definition 7.1. [Marginal observable, quasi-product observable, consistency. (cf. Defi-
nition 2.10.)]. Let A be a C*-algebras. Let K = {1,2,...,|K|}.
(i). Consider an observable O = ( X per X, 2><k’6KX’f, F) (with a label set X pex Xi)
in A. Let D be D C K. An observable Op = ( X ep Xk, 2><k6DXk, Fp) in A is called
a D-marginal observable of O if it satisfies that

Fp( X Ek):F<( X ) X( X Xk)>,
keD keD k€eK\D
for all =5, € 2%k, k € D. Also this Op is denoted by O‘D. Here note that the marginal
observable O p IS equal to the image observable O[QD] where X ex Xi 3 (Tk)kex =N
()kep € Xpep X
(ii). For each k € K, consider an observable Oy = (Xj,2%*, F}) in A. If there exists an
observable O = ( XkeKXk,QXkGKXk,F) in A such that OK}{k} = Oy, forall k € K,
then [Oy : k € K] is called consistent. Also, this O is called a quasi-product observable of
[0y, : k € K], and is sometimes denoted by ( X e Xy, 27 ver Xk X ok Fy), or X ok Oy,
(or, (X per Xn, 2 X ken X6 %, 0 F), or ipkeKok) .
[ |
Note that the consistency of observables [(X}, 2%+, F}) : k € K] in A is not guaranteed

in general. If the commutativity condition:

Fkl (Ek1)Fk2 (Ekz) - Fk2 (EkQ)Fkl (Ek‘1> (VEkl € 2Xk17 VEkQ € 2Xk27 kl 7é k2>
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holds, then we can construct a quasi-product observable O = ( X e Xk, 2 X ke X =

XkoeK F},) such that:
F(E X Ey X+ X Eig)) = Fi(51) F2(E2) -+ Fii| (Bx))-

It is, of course, the case that the uniqueness is not guaranteed even under the above
commutativity condition.
Remark 7.2. [Only one measurement is permitted (cf. §2.5. Remarks (II))]. If we want
the data concerning both O; and O for the system Sp,»), we must take a simultaneous
measurement Ma (O = O x 012 Oy, Sipr)). Therefore, if a quasi-product observable
01, does not exist (i.e., [0, Os] is not consistent), the concept of “the data concerning
O, and O; for the system S|,” is nonsense, i.e., it has no reality. This is a prevalent
notion in quantum theory as in the case that the concept “the momentum and position
of a particle” or “the trajectory of a particle” is meaningless in quantum theory. (For the
recent results, see [37, 40].) It should be emphasized that the importance of this spirit
(i.e., “the consistency of [O1, Os]" < “the reality of data”) is essential.

|

As the classical PMT is rather easy, people tend to overlook important facts in classical
systems. Since quantum theory is moderately difficult, it is rather handy compared to
classical theory.

Let X = {z', 2% ..., 27}. Let O = (X,2%, F) be an observable in a commutative C*-
algebra A (hence by Gelfand theorem, we can assume that A = C'(€2)). We can consider

the following identification:
(X,25,F) e— [ [F({2' D)) : j=1,2,0..,J |
(where F({z7}) = [F({27})] € C(R)), and therefore denote
Rep[O] = Rep[(X, 2%, )] = [[F({#/](w) : j=1,2,... T |

It is clear that
0<[FH{a’P](w) <1 and Z[F({ﬂ})](@ =1 (Vwen),

that is, Rep[(X, 2%, F)] is considered to be the resolution of the identity (cf. §2.3).
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Consider two observables O; = (X1,2%!, F}) and Oy = (X,,2%2, F}) in C(Q) such
that:

153

Xy ={zl2? 2} and Xy = {x} 22 ..z}

Let O = (X; X X,, 2% X X F=F x 012 F,) be a quasi-product observable with the
marginal observables O; and O,. (The existence of Ojs is guaranteed by Theorem 2.11

since C'(2) is commutative.) Put

F{etapP]@)  [FEha)Pw) - [F{(e1,25) Dlw)

Rep[Oyy] — [F({(x?,f%)})](w) [F({(x?,?sé)})](w) - [F({(x§7gfg2)})](w)

FUER D) FEE D) ... F{ER ) ))w)

Let X = {a',2%, ....,27}. Let O = (X, 2%, F) be an observable in a C*-algebra A. Put
X ==,U=, (where Z,N =, = 0). Define the map g : X — X9y = {y,n} such that
glx) =y (iftx € ), =n (if v € E,). Here we can define the two-valued observable
(X(2) = {y,n},2%®, F5)) in A as the image observable Oy,. This two-valued observable
is also called yes-no observable or 1 — 0 observable. The following lemma says about the
conditions that a quasi-product observable of yes-no observables should satisfy.
Lemma 7.3. [The existence condition of yes-no quasi-product observable]. Consider yes-
no observables O; = (X,2%1, F}) and Oy = (Xs, 2%, F}) in a commutative C*-algebra

C () such that:

X, = {ylynl} and X, = {yz,nz}-

Let O15 = (X; X Xy, 2% X X F=F x 012 F,) be a quasi-product observable with the
marginal observables O and Os.

Put

L) DIw)  [F{(y,n2) )] (w)
Rep[Oy2] = [[F({(nl,yz)})](w) [F({(nl,nz)})](w)]

_ [ a(w) Fi({n}))@) - a(w) ] 3
B({1))) - alw) 1+ aw) - [A{n ) - [F{mph)w) |
where o € C(92). (Note that [F({(y1, 1)) + [F({(yr, n)D)](®) = [Fi({n}))(w) and

[F({(y1,52)D(w) + [F({(n1,92)D](w) = [Fz({yz})](W))
That is,

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

F1c§?l Clear Printing, See http://www.ke%{ﬁyggﬁ)/lﬁ%% gﬁLt/L ele
| I [B{wDlw) | [F5({n2P)](w) |

[F1({y1 D](w) a(w) [Fi{yD](w) = a(w)

[Fi({m D) || [F2({ye})](w) = a(w) | 1+ a(w) = [Fi({y D](w) = [F({y2})](w)

Then, it holds that

max{0, [F1({y1 PI(w) + [F2({go})](w) = 1} < a(w) < min{[F1 ({y: DI(w), [F2({y2})](w)}
(Vw € Q). (7.4)

Conversely, for any « ( € C(QQ)) that satisfies (7.4), the observable Q15 defined by (7.3)

is a quasi-product observable with the marginal observables O, and Q5. Also, note that

[F{(y,m2)P)](w) =0 & aw) = [F{ynPlw) = A{nblw) < [Fz({yz})](w2~7 .

Proof. Though this lemma is easy, we add a brief proof for completeness. Since 0 <

[F({(z],23)})] (w) <1, (Vz', 2% € {y,n}), we see, by (7.3), that

O0<a(w) <1, 0<[A{nPlw) —aw) <1, 0<[B{gphwW) -aw) <1,
0<1+aw) - [F{yhlw) - [FR({gr}lw) <1, (7.6)

which clearly implies (7.4). Conversely. if « satisfies (7.4), then we easily see (7.6). Also,
(7.5) is obvious. This completes the proof. O

Next we provide several examples, which will promote a understanding of our theory.
Example 7.4. [Tomatoes’ example]. Let = {wy,ws,....,wn} be a set of tomatoes,
which is regarded as a compact Hausdorff space with the discrete topology. Consider
yes-no observables Ogp = (Xpp, 2570, Fyp) and Ogy = (Xaw, 255V, Fyy) in C(Q) such
that:

Xrp = {yRDa nRD} and Xgyw = {ysvw nSW}7

where we consider that “yrp” and “ngp” respectively mean “RED” and “NOT RED”.
Similarly, “ysw” and “ngyw’” respectively mean “SWEET” and “NOT SWEET”.

For example, the w; is red and not sweet, the w, is red and sweet, etc. as follows.
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Yrp YrD Nrp s Nrp

Ngw Ysw Ysw te Nsw
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We see that

(%) the probability that xpp ( € Xpp = {Yrp, Mrp}), the measured value by the mea-
surement Mc(q)(Ogp, Sps.,, 1), belongs to Zgxp ( € Xap = {Yros Nro}) is given by

O (Frp(Erp)) (= [Fro(Zro)](wn) ) -

That is, the probability that the tomato w, is observed as “RED” [ resp. “NOT RED”}
is given by [Fip({yro})] (wn) [ resp. [Fup({nan})] (wn) | (Continued to Ezample 7.5).

|
Example 7.5. [Tomatoes’ example; continued from Example 7.4]. Consider the quasi-

product observable as follows:

O
O = (Xnp X Xy, 2500 X Xow p = f X Fl),

that is,
T o 5o DI@) [F{ (G ) D)
ReplO] = [[F({mm,ysw)})w) F({ (o, ne) D))
B [ a(w) Fao ({10 D)) — ()
Faw ({gew D](@) — o) 1+ (@) — [Fan( {0 D) @) — [Fave ({0} ()

where a(w) satisfies (7.4). Hence by Axiom 1, when we observe that the tomato w;, is

“RED” we can see that the probability that the tomato w, is “SWEET” is given by

[F({(yro, ysw) 1)l (wn)

. 7.7
ST ) [P T (e ) 08 o

(For the conditional probability, see §2.5(IV).) Here note that (7.7) implies ;
“IF ({(yaps nsw) P](wn) =07 if and only if “RED” = “SWEET” , (7.8)
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which is also clearly equivalent to “NOT SWEET” = “NOT RED”.
|

Being motivated by the above (7.8), we introduce the following definition of “implica-
tion” as a general form which is applicable to classical and quantum systems.
Definition 7.6. [Implication]. Let O, = (X1,2%, [}) and O, = (X, 2%2, F3) be observ-
ables (not necessarily two-valued observables ) in a C*-algebra A. Let O3 = (X7 X X,
2%1 X X2 [ X [ be a quasi-product observable of O, and O,. Let pP € &P(A*).
Let =1 € P(X;) and =5 € P(X;). Then, the condition

(O3>
(B X B)(E X (X:\5)))=0 (7.9)
is denoted by
o' — 07 (7.10)

MAa(O12,5,r))

|
Remark 7.7. [Contraposition]. Assume that we get a measured value (z1,x2) ( €
X1 X X,) by the measurement Ma(O12,S|,»)). And assume the condition (7.10). If we

know that z; € Z;, then we can assure that xo € Z5. Also, (7.9) is of course also equal to

Of(l\El — 05(2\52 since O12 = Oy 9y = Oy (i.e., K = {1,2} is not regarded as
MA(012,5,r))

an ordered set). That is, “Ofl\zl = O?Q\E”’ is the contraposition of (7.10).
MAa(O12,5[,r))

7.3 Consistency and syllogism

In this section we study the consistent condition for observables. We show several
theorems of practical syllogisms (i.e., theorems concerning “implication” in Definition
7.6).

7.3.1 Consistent condition

Though we are not concerned with quantum theory in this chapter, our investigations

for classical systems become clearer in comparison with quantum theory. Therefore, the
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following definitions (Definitions 7.8 and 7.9) are common in both classical and quantum
theory.

Definition 7.8. [Covering family]. Let A be a C*-algebra. For each k € K =
{1,2,...,|K|—1,|K|}, consider a label set X;. Consider D (C 2K) such that|Jp.p D = K.
Then, § = [ Op = ( Xpep Xi, 2><k€DXk, Fp) : D € D] is called a covering family of

observables in A, if it satisfies the following condition:

OD1 (VDl,VDQ € D such that D; N Dy 7é (Z))

‘DlﬂDQZ OD2 ‘DlﬂDQ

Note that, if G is a covering family, it holds that Op, for any k € K and any

[y = On2l
Dy, Dy € D such that k € Dy () Ds. Thus, a covering family of observables G determines
a unique {k}-marginal observable Oy = (X, 2** F},) for each k € K.
[
The following definition is a generalization of Definition 7.1 (i.e., the case that D =
{1}, {2}, . {IK1}}).
Definition 7.9. [Consistent condition]. Let A be a C*-algebra. A covering family of
observable G = [ Op = ( Xyep Xy, 275 +ep X Fp) : D e D (C 25 | in A is called

consistent, if there exists an observable O = ( X jex Xk, 2 X ke Xk F) in A such that:
Ok|,=Op (VD e D). (7.11)

Also, the above relation (7.11) is denoted by
[Op : D € D] C Ok. (7.12)

|
Remark 7.10. [Consistent condition]. Under the condition (7.12), the data concerning
G = [Op : D € D] for the system Sy,» is obtained by the simultaneous measurement
MAa(Og, Sie1). Thus, a covering family G has no reality, if it is not consistent. Recall
the arguments in Remark 7.2, which correspond to the above definition for the case that
D = {{1},{2}}.

[
Lemma 7.11. [Consistent condition]. Let A be a C*-algebra. Let §; = [ Op, : Dy € Dy
( € 2%) ] be a covering family of observables in A. And let G = [ 0%, : Dy € Dy ( C 25)

| be a consistent covering family of observables in A. Assume that for any Dy € D, there
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exists an Dy ( € Dy) such that:

Dy C D, and Op, =03, (7.13)

[,

Then, G, is consistent.

Proof. Since a covering family G, is consistent, there exists an observable Og =
(X ger X, 27 kex X6, Fie) in A such that 0%, = O/, (¥Ds € Dy). Let D; be any
element in D;. Then, by choosing Ds( € D) satisfying (7.13), we see that O}, = 0%, |,
= (OK|D2)|D1 = OK‘Dl‘ This completes the proof. O

Lemma 7.12. [Consistent condition and quasi-product observables|. Let A be a com-
mutative C*-algebra (i.e., A = C(R2)). Let D15 and D be subsets of K. Put Dig3 =
D12 UD23 = (D12 \ Dgg) ﬂ (Dlg N Dgg) m (D23 \ D12> = D1 UD2 UD3 COHdeGI' the
following observables in C(12) :

OD12 E( X le:P( X Xk)7FD12) and OD23 E( X Xk7:P< X Xk>7FD23>

k€D12 k€D12 k€Do3 k€Do3

such that ODm‘DQZ OD23‘D2' Then, there exists an observable Op,,, = ( X ey Xks
P( X kenias Xi)s Fpis) such that Op,,, |, = Op,, and Opy,, |, = Opy,.

Proof. Assume that Do () Das # 0. (If Dia() Doz = 0, this lemma is trivial.  Put
Y, = Xiep,, Xi = {yb 2, oyim, o yMm} m = 1,2,3. (So, M,, = erDm | Xk|.)
Thus, we can put, by Y7 X Yy = Xyep,, X and Yy X Y5 = Xyep,, Xy, that

OD12 = (Yi X }/27{'])(1/1 X Yv2)7F12 = FD12)
and

Op,, = (Y2 X Y3, P(Yy X Y3), Fo3 = Fp,,).

3
m=1

3

Define the observable Op,,, = ( X Yo, P( X0 1 Yin), Fia3) in C(Q) such that:

[Fraos({(y]*, v22, y33) D)) (w)
(12 ({07 ) DI@) 1P (G2 OVIW) ¢ 11 (1,0

= { F{P D) 1 Pl i) #
0 if [Fo({y5°})](w)

for 1 <Vj; < Mp, 1 <Vjy < My, 1 <Vj3 < Ms. Therefore, it is clear that this lemma

0
0

holds. For example, O D123| Dag = Op,, is easily seen as follows:
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Fras¥ X {2 D@ = Y Fras{o 4 93D @)
5~ Fal{6d ) P ) I
et Fa{uF D)

[PV X {yg* Dlw) - [Fos ({3, 93 D) _ [y D)(w) - [Fas({ (w3, 93 D] (@)

(B ({13 () [F>({y3* )](w)
= [Fs({(18, 5 D)) (VweQ, 1<Vjy < My, 1 <Vijs < My).

This completes the proof. O

The following theorem is a kind of generalization of Theorem 2.11 (WhiCh essentially

corresponds to the result for D = {{1}, {2}, ..., {|K|}} in the following theorem). Here
note that a covering family [Op : D € D] is equivalent to [Op : D' € {D’: D" C D for
some D € D}| where Op = Op  for any D’ such that D' C D.

Theorem 7.13. [Consistent condition and quasi-product observables]. Let D = {{1, 2},
{2,3}, . {IK|—1,|K|}} (C25). Let G =[Op = ( XkeDXk,2><k6DXk,FD) : D € D] be
a covering family of observables in a commutative C*-algebra C(£2). (Here we can put G
= [ Oppr1 = (X X Xir1, P(Xe X Xesr), Fopsr = Fo XOM Fy)  k=1,2, ., |K| -1
]) Then, § = [ Oppy1 : k=1,2,....|K| — 1] is consistent.

Proof. Put Diy = {1,2} and D3 = {2,3}. By Lemma 7.12, we get O195 ( = Op,,,)
such that G3 = [O193, O34, Ous, ..., Ojx|—1,k|] is a covering family in C(Q2) where Oy =
0123|{172} and Qg3 = 0123‘{273}. Iteratively, we get Gix|—-1 = [O123..|k|-1, O|K|-1,/x|] and
Sik| = [O123k|-1,/|] = [Ok], which is clearly consistent. So, by Lemma 7.11, we see

that §jx|—1 C Og. Therefore, we iteratively get § C Og. This completes the proof. [

Remark 7.14. [Quantum PMT]. This theorem is due to the commutativity of a C*-
algebra C(€2). In general (particularly in quantum systems, i.e., A = C(V)), there exists
no Ojo3 such that [Oq2, Og3] T Oq23 (i-e., [O12, Og3) is not consistent in general). Thus,
we have no simultaneous measurement Ma (0123, S[pp]). Therefore, in general, we can
not get information (i.e., data) concerning the covering family [O12, Og3] for the quantum
system Sp,»). That is, in general, the covering family [O12, O23] has no reality in quantum
mechanics.
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The following notation is the preparation for Theorems 7.19 and 7.23.
Notation 7.15. [Preparation for Theorems 7.19 and 7.23]. Let G = [O12, Ogs, ...O k|1, k]
= [ (X X Xjs1, P(Xp X Xpi1), Fopr = Fe X" F ) 1 k=12, |[K|—1] bea
covering family of observables in a commutative C*-algebra C(€2). (So, G is consistent as

in Theorem 7.13). Suppose that Xy = {yg, ng} for each k € K. As in Definition 7.8, put
Rep[O4] = Rep[(Xi, 2%, Fi)] = |[Fe({yD](@), [Fil{m})](@)]] = [ph(w), ph(w)]
for all k =1,2,3,...,|K|. And put

Rep[Oxi1] = Rep[(Xi X X1, 2% X Xiett Fyopern)]

ey} XAuen DIW) [Frprr ({yn} X {nk+1})](w)]
Frprr({ne ) Xy D) [Frpra({ne} X {nea P)l(w)

_pllc,lk+1<w) pllﬁ(,)k—&-l (w)

_pg,lk+1<w) pg?k-s—l (w)

) pr(w) = prhs (W) ]

Pk (@) = P (@) 14 Dl (@) = pp(w) — Py (W)

(7.14)

for all k = 1,2,...,|K| — 1, where pil,,(w) satisfies (7.4). Let Og = ( Xjper X,
P( Xpex Xi), Fi) be any observable in C(2) such that:

[012, 023, '--O|K|71,\K\] C Og. (715)

(The existence of O is guaranteed by Theorem 7.13.) Put

Kl
[FK(k>_<1{x{gk )]((,U) : j17j27"'7j|K| = 170 )

pjllzpug;m (W) & JusJos e i) = 1,0} =

(7.16)

where xﬁf =y (if jy = 1) and xﬁf = ny (if j, = 0 ). Define Ok = (X1 X Xig,
:P(Xl X X|K‘), F1,|K|) such that OMK‘ = OK|{1,|K\} Put

Rep[Oy k] = Rep[(X; X Xg|, 251 X XK Fy k)]

_ [[F1,|K({y1} X{yxDlw)  [Frg({y} X n bl (w)
[k ({na ) X {y DIw) - [Fre({ma b X e P (w)
_ {pﬁm(w) pi?K(w)} _ { Py (W) pi(w) = pilg @)
N p(1),1|K|(W) pg?\m(w) B p|1K|(W> _pi,luq(w) 1 +p%,l|K|(W) —pi(w) _Pﬂk\(w) .

(7.17)
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(Continued to Lemmas 7.16 and 7.17 and Theorem 7.19 for K = {1,2,3}, and to Theorem

161

7.23 for general case).
|
Lemma 7.16. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1, 2, 3},

we see, (putting pisi”* = pi () in (7.16), pifh = A and plfh = B),

pios = A(w), Pl = pis — Aw),
pias = p1y — Aw), P%s = py — P13 — Pas + A(w),
pios = B(w), p%s = py — pas — B(w),
pios = pi — pis — B(w), Pios =1 —pi — py — ps + pis + pas + B(w), (7.18)
where
max{0, —p3(w) + pi3(w) + pa3(w)} < A(w) < min{p}3(w), p3s(w)} (7.19)
and
max{0, pj(w) + p3(w) + p3(w) — p3(w) — pa3(w) — 1}
< B(w) < min{p;(w) — pia(w), p3(w) — paz(w)}. (7.20)

Proof. From (7.16), (7.15) and (7.14) for K = {1, 2, 3}, we see

P13 + Pias = Pia, pigs + pi%s = pis = i — Pia,
P35+l = Pl = p3 — pibs P53 + plog = Pl = 1+ p1y — p1 — Py,
Pizs + P23 = Das, D133 + DY3e = P33 = D3 — P,
pios + pi9% = P33 = p3 — a3, pio3 + P53 = po3 = 1 — phy — py — .

After a small computation, we get (7.18). Since 0 < p/¥27(w) < 1, we see, from (7.18),

that
0<A<L, pll—1<A<pll pl—1<A<pl
b pl e pll < A< 1 —plyptl 4+ pll
0<B<1, pi—py—1<B<pi—ph, pi—pp—1<B<p—pis,

pi+ Py + Py —pis — Py — L < B < py +py + p3 — pis — Pas-

This implies (7.19) and (7.20). This completes the proof.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

CHA . PRACTJCAIL, LOGIC
Flg? Clear Printing, See http://www.keioqungg.ji)/lfﬁp rﬁr omLt/L !

Lemma 7.17. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1,2,3},

max{0, —py(w) + p13(w) + paz(w)}
+ max{0,p; (w) + py(w) + p3(w) — pra(w) — paz(w) — 1}
< pr3(w) (7.21)
< min{pyy(w), py3(w)} + min{pj(w) — pra(w), p3(w) — pas(w)}- (7.22)

Proof. Since pii(w) = piil(w)+ pi(w) = A(w) + B(w) in Lemma 7.16, by (7.19) and
(7.20) we can easily get (7.21) and (7.22). This completes the proof. O

Remark 7.18. [Comparison]. Let us compare the result in Lemma 7.17 with the result

(7.4) in Lemma 7.3 (i.e., the result without consistent condition). Note that (7.4) implies
Cy = max{0, pj(w) + p3(w) — 1} < py3(w) < min{py(w), p3(w)} = Co.
Here we can easily see that ¢ < (7.21) and (7.22) < C5 from the following trivial
inequalities:
max{0, a1 + as} < max{0, max{0, a1} + max{0, as}} = max{0, oy} + max{0, as}

and

min{ay, as} + min{as, ay} = min{ a3 + az, a1 + ay, as + ag, as + a4 }

§m1n{ oy + ag, 042+Oé4}.

Therefore, we see in Lemma 7.17 that the value pil(w) is restricted under the consistent
condition of [O12, Og;].
[

7.3.2 Practical syllogism

Now we show several theorems of practical syllogisms (i.e., theorems concerning “im-
plication” in Definition 7.6) as the consequences of our arguments.
Theorem 7.19. [Practical syllogism, [41]]. Assume Notation 7.15 for K = {1,2,3}.

That is, [O12, O3] is a covering family of observables in a commutative C*-algebra C(£2).
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Let 0, € M%,(Q2) for any fixed wy € Q. Let O193 (= Og) be any observable such that
(012, 093] T Oj93 and let O3 = 0123|{173}. (The existence of O1a3 is guaranteed by
Theorem 7.13.) Then we have the following statements [1] ~ [3]:

[1]. Assume that

o = o), o = o (7.23)
MC(sz)(Olz,S[a[wo]]) Mc (0)(023,5(5,,,])
Then, we see that
[p%%(wo) p%g(wo)] — |: . p%(wo)l 01 (724)
Pi3(wo) pi3(wo) p3(wo) — pi(wo) 1 —ps(wo)]’

hence, we see that

olv — ol (7.25)
M () (013,5(5,,,1)

[2]. Assume that

O*l{yl} — OéyQ}, Oé‘”} — Oéys}_ (7.26)
Me () (012,5(5,,1) Mc(a)(023,5(5,,1)

Then, we see that

{Pﬁ(wo) P%g(wo)} _ { a(wo) pi(wo) — afwo)
p%(wo) P?g(wo) lea(wo) —a(wy) 1+ a(w) — P%(Wo) - pé(wo)

where
max{p;(wo), p1(wo) + p3(wo) — 1} < afwo) < min{py (wo), p3(wo)}- (7.27)
Also (7.26) is equivalent to

O{y2} — O{§y17y3)}. (7.28)
2 Me () (0123,575,,1) 1

[3]. Assume that

O‘l{yl} _— 03312}7 Oé?ﬂ} “— Ogys}_ (729)
Me (@) (012,5(5,,1) Mc(a)(023,55,,1)

Then, we see that

i) ol

_ { a(wo) pi(wo) — a(wo)
py(wo) — a(wy) 1+ alwy) — pi(wo) — p3(wo)
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where
max{0, py (wo) + p3(wo) — pa(wo)} < e(wo) < min{pj(wp), ps(wo)}- (7.30)
Also (7.29) is equivalent to

Ol (y1vs).(ims).(m.s)) — olv) (7.31)
Mc (o) (0123,5[&00])

Proof. [1]. By (7.23) and (7.5), we see that pi3 = pl = 0, so, pis = pl < p} = pil <
p3. Therefore, we see that (7.21) = pi} + max{0,pl — 1} = pi. And (7.22) = p{ +0 = pl.
This implies that pii = pi, i.e., (7.24). Also, (7.25) follows from p}3 = 0.

2]. By (7.26) and (7.5), we see that pi} = pi3 = 0, so, pis = p} < pi and pli = p} < pl.
Therefore, we see that (7.21) = pii+ max{0,p} —pi+pi—1} = max{p}, p; +ps —1}. And
(7.22) = min{p}, pi} + min{p} — p}, pi —pi} = min{pl, pi}. This implies (7.27). Also, we
see that (7.26) < ply = py3 = 0 & plig = pla; = pisg = 0 & (7.28).

[3]. By (7.29) and (7.5), we see that pi9 = pJi = 0, so, pls = pi < pl and pli = pt < pl.
Therefore, we see that (7.21) = max{0, p} —ps+pi} + max{0, p}—1} = max{0, pj —pi+pi}.
And (7.22) = min{p}, pi}. This implies (7.30). Also, (7.29) < pi5 = pli = 0 & pid =
p199 = pi9i = 0 < (7.31). This completes the proof. O

Remark 7.20. [Practical logic and pure logic]. The reader must not confuse the result
(for example, (7.23)=-(7.25)) in Theorem 7.19 with pure logic (i.e., mathematical logic).
Theorem 7.19 is a consequence of Axiom 1. Note that Theorem 7.19 is due to Theorem
7.13, i.e., the commutativity of C*-algebra C'(€2). That means the results in Theorem 7.19
can not be expected in quantum systems. In comparison with quantum theory, Theorem
7.19 becomes clearer. For example, in general, the syllogism is meaningless in quantum

systems. This is easily shown as follows. Put V = C?, and A = B(C®). And

1 0 0 0 0
0 1 0 0 0
51: 0 5 52: 0 ; _)3: 1 5 54: 0 5 55: 0 ;
0 0 0 1 0
0 0 0 0 1

-

and put ﬁ: = \6;—45 + 5—%, fg; = % — 755 Define the three observables O; = (X; =
{al,bl,cl},QXl, Fl), 02 = (XQ = {CZQ, bQ,CQ}, 2X2,F2) and 03 = (X3 = {a3,63,03},2X3, Fg)
such that

Fi({ar}) = len)(el,  Fi({bi}) = |ea) (] + |ez)(es] + [ex)(es], Fi({ci}) = [é5)(e5],
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Fy({az}) = [en) (e + [e2) (G|, Fa({b2}) = |es)(es], Fa({ca}) = |€x)(€a] + |€5)(e5],

Fy({as}) = @)@ + &) (@] + @)@l Fa({bs}) = 1) (fal,  Fa({es}) = /) (fsl:

Note that O; and Oy [resp. O, and O3] commute. Let Oy = (X x Xy, 2% X X2 [y X Fy)
be the product observable of O; and Oy. And let Oy = (X3 x X3, 252 X X3 Fy X F3) be
the product observable of Oy and O3. Let pP be any pure state ( i.e., p? € &P(B(C?)*)).

Then, we have

Oitn} y — Oéaz}7 Oéaz} — O:EGB}-
A(O12,51,p) MAa(O23,S,p])

since we see

o (R X B)({a} X ({bo,e}) =0, (R X B)({az} X ({bs,ea}))) = 0.

However, it should be noted that we have no product observable of Oy, Oy and Os. Thus,

the implication:

o)  — o
MAa(O13,5[,r))

is nonsense since O3 can not be defined.

Example 7.21. [Continued from Example 7.4, [41]]. Let Q, C(2), Oy = Ogw = (Xsw,
25w Fyw) and O3 = Opp = (Xgp, 2570, Fyp) be as in Example 7.4. Let Oy = Opp =
(Xgp, 257 Fp) be an observable in C'(€2) such that:

Xpp = {pr, nRP}7

where “yrp” and “ngp” respectively mean “RIPE” and “NOT RIPE”. Put

Rep[O1] = | [Faw (g D)) [P ({nsw D)),
Rep|Os] = | [Fe ({ye D)), [Fro ({rne DI ()]

Rep[Os] = | [Fio ({310 D) (@), [Fro ({rmo}) ().

For example,
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Nsw Ysw Ysw T Nsw

Yrp Ngrp Yrp Tt Ngp

YrDp YrD Nrp Tt Nrp

Consider the following quasi-product observables:
X O12
Oz = (Xsw X Xgp, 255V 2 X0 [y = Fyw X Frp)

and

X O23
o3 = (Xpp X Xpp, 2580 A Xm0 pro= B X ).

Let 6., € M, () for any fixed w,, € 2. Assume that

Oiyl} = OéyZ}, Ogyz} = O§y3}‘ (732)
Me () (012,5(5,,1) Me () (023,5(5,,1)

Then, we see, by Theorem 7.19 [1], that
Reptow] = [[Ffn) Xl [lln) X)) 7

[Fia({nsw} X {yno P)](wn)  [Fis({nsw} X {nep})](wn)

_ { [Fsw({ysw })(wn) 0 }
[Fro({Yro )] (wn) = [Fsw({yswHl(wn) 1= [Fap({yro H)](wn) |

So, when we observe that the tomato w, is “RED’, we can infer, by the fuzzy inference
Me¢ ) (O3, Sps,,,.1) (equivalently, Mc(q)(Osi, S, 1)), the probability that the tomato w;,
is “SWEET” is given by
[Fi3({ysw} X {ynp})](wn) _ [Faw ({ysw )] (wn)
[Fi3({ysw} X {yno D] (wn) + [Fis({nsw} X {yro })](wn) [Fro({Yro })] (wn)

Also, when we observe that the tomato w, is “SWEET", we can infer, by the fuzzy

(7.34)

inference M¢(q) (013, Sjs,,1), the probability that the tomato w, is “RED” is given by

[Fio{n} X {30}l n) _ Pl 70
Fro(lymd X o} )] T Fro(lyd X (oD @n) ol (g0 D))

Note that (7.32) implies (and is implied by)

“SWEET” = “RIPE” and “RIPE” = “RED” . (7.36)
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(Recall (7.8)). So, it is “reasonable” to reach the conclusion:
“SWEET” = “RED” , (7.37)

which is implied by the above (7.35). <Here we are afraid that the most important fact
may be overlooked. For completeness, note that the conclusion “(7.36) = (7.37)” is a
consequence of Theorem 7.19 (and therefore, our axiom).) However, the result (7.34) is
due to the peculiarity of fuzzy inferences. That is, in spite of the fact (7.36), we get the

conclusion (7.34) that is somewhat like
“RED” = “SWEET"” . (7.38)

Note that the conclusion (7.37) is not valuable in the market. What we want in the
market is the conclusion such as (7.38) (or (7.34)).

|
Example 7.22. [Continued from Example 7.21, [41]]. Instead of (7.32), assume that

O‘l{yl} e Oém}’ Oéw} _— Ogys}_ (739)
Mc (o) (012,505,,,]) Mg (0)(023,55,,1)

Assume the notation (7.33). When we observe that the tomato w, is “RED” we can
infer, by the fuzzy inference M¢(q)(O13,Ss,,]), the probability that the tomato w, is
“SWEET” is given by

[Fis({on} X o)) 70,
[Fia({ysw} X {yro Pl (wn) + [Fis({nsw} X {ymo})](wn)

which is, by (7.27), estimated as follows:

max{ [Fre({Yre )](wn)  [Fsw({ysw})] + [Fro({yro})] — 1}
[Fro({Yno })](wn)’ [Fro({yro })](wn)

[FSW({?JSW})KW”)
[Fro({yro })](wn) 1} (7.41)

Note that (7.39) implies (and is implied by)

Q=

< @Q < min{

“RIPE" = “SWEET” and “RIPE” = “RED” . (7.42)
And note that the conclusion (7.41) is somewhat like

“RED” = “SWEET” . (7.43)
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Therefore, this conclusion is peculiar to “fuzziness”.
|
The following theorem is a generalization of the first part of Theorem 7.19.
Theorem 7.23. [Standard syllogism, cf. [41]]. Assume Notation 7.15. Let d,,, € M% ().
Assume that

O;Eyk} — Ol{ﬁlﬂ} (Vk=1,2,..,|K| - 1), (7.44)

Me (@) (Ok,k+1,5601)

Let Ok be any observable as in Notation 7.15, i.e.;, § = [O12, Oa3, Osy, ..., O‘K‘_1,|K|] C
Og. Put Oy g = OK‘{1 K|} Then, we see that

11 10 1
_ | |K\(W0) D |K|(wo)] B [ p1(wo) 0
Rep|O = 1"y ’ = , (745
P[0k ] at w, P2 (wo) P (wo) Pl (wo) = PH(wo) 1 — ple;(wo) (7.45)
hence, we see that
ot = OR (7.46)

Mc () (01, xS 6,1)

Proof. Let O be any observable such that § = [O12, Og3, O3y, ..., Ojg|-1,x|] C Ok-.
Thus, we see that [OK‘{LB}’ Os4, ..., Oix-1, k| C OK‘K\{2}' Note that (OK‘{LB}
O,,, m = 1,3. Also note, by (7.24), that

1
p1(wo) 0
Rep|O = ,
PIOKlaalateo = |phan) — plwn) 1 phea)
and therefore O} = O Hence, by induction, we see that Rep[O k]
Mc () (Ok (1,3} 5[50,
= Rep[OK|{1 |K|}] = (7.45) at w = wy. This completes the proof. O

7.4 Conclusion

It is certain that (pure) logic is merely a kind of rule in mathematics. However, if it
is so, the logic is not guaranteed to be applicable to our world. For instance, (pure) logic

does not assure the truth of the following famous statement:

[8] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
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That is, we think that the problem: “Is this [f] (theoretical) true or not?” is unsolved.

169

Thus, the purpose of this chapter was to prove the [t], or more generally, to propose
“practical logic”, i.e., a collection of theorems (whose forms are similar to that of “pure
logic” ) in PMT.

Firstly, the symbol “A = B” (i.e., “implication” ) is defined in terms of measurements

(cf. Definition 7.6). And we prove the standard syllogism for classical systems:
“A= B, B= C” implies “A = C”, (7.47)

which is the same as the above (f). (This (7.47) is not trivial since it does not necessarily
hold in quantum systems.) We can assert, by “Declaration (1.11)” in §1.4, that PMT
guarantees that the above statement [f] is true.

Several variants may be interesting. For example, under the condition that “A = B,

B = C”, we can assert a kind of conclusion such as “C' = A7 That is,
“A= B, B= C” implies “C = A”  in some sense. (7.48)

For completeness, “pure logic” and “practical logic” must not be confused. The former is
a basic rule on which mathematics is founded. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic” ) in PMT.

7.5 Appendix (Zadeh’s fuzzy sets theory)

7.5.1 What is Zadeh’s fuzzy sets theory?

As mentioned in Chapter 1 (i.e., the footnote below Problem 1.2), one of motivations
of our research is motivated by Zadeh’s fuzzy sets theory. In 1965, L.A. Zadeh proposed
a certain system theory, in which a membership function f :Q — [0, 1], which is asserted
to represent “fuzziness”, plays an important role. The membership function is considered
as a kind of generalization of a characteristic function. Here, the characteristic function

Xp of D ( C ) is defined by x,, : 2 — {0,1} such that:

1 (we D)
Xp () :{ 0 (w¢D).
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Consider the identification:

“characteristic function x,” «—  “set D",

which gives us the question “What is the following [f]?”

“membership function f7  «— [f].
Xp (W)
Pl @)y
O HHHHHHHHHHHHHH /\ Q
D 8] ?

The [t] is called a fuzzy set by Zadeh. Thus we think that Zadeh’s fuzzy sets theory has

two aspects [A;] and [As] as follows:

[A1] : membership functions (analytic aspect),
Zadeh’s fuzzy sets theory (7.49)
[As] : fuzzy sets (logical aspect).
Zadeh’s fuzzy sets theory acquired a lot of believers. In fact, his paper [93] is one of

the most cited papers in all fields of 20th century science. However, his theory seems

“fuzzy” rather than “difficult” Thus, it is natural that the following problem arises:
(1] Is Zadeh'’s fuzzy sets theory true or not?
When we examine the problem, we are immediately confronted with the following problem:

[f2] What is “true or not”?  Or, if we want to assert “Zadeh’s fuzzy sets theory is true

[or not]”, what do we say?

And when we study the problems [f;] and [f2], we immediately notice the fact that we
have not yet the clear answer to even the question: “Is Fisher’s statistics true or not?” 3
As mentioned in Chapter 1, our research starts from the above questions [f;] and [fs].

And we conclude “Declaration (1.11)” in §1.4 as follows:

e MT is entitled to check all theories in theoretical informatics. In other words, we
can, by using MT, introduce the criterion: “true or not” into theoretical informatics.

That is, MT can be regarded as “the Construction of theoretical informatics”

3In Chapters 5 and 6, it is proved that Fisher’s statistics is theoretically true.
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Now, consider an observable (X,2%, F') in C(€). Note that, for any Z ( C X), F(Z) is a

171

membership function on Q. Since F(Z) € C(2), the F(Z), of course, has various analytic
aspects. Also, in this chapter we see that the membership function F(Z) has various
logical aspects. Thus, someone may conclude that Zadeh’s fuzzy sets theory (i.e., the
analytic aspect [A;] and the logical aspect [A] in (7.49)) is understood in the framework of
measurement theory, that is, Zadeh’s fuzzy sets theory is true (¢f. “Declaration (1.11)” in
§1.4). We may agree with this opinion. In fact, these kinds of aspects [A;] and [As] can

not be found in the conventional formulation of system theory (cf. (1.2)) such as

(7.50)

’ “dyn. syst. theor.” ‘:
y(t) = g(z(t), ua2(t),t) ( measurement equation).  (=(1:2))

{ dflff) = f(z(t),u1(t),t), x(0) =z ---(state equation),

That is because the conventional formulation (7.50) does not possess the concept of
“observable in the sense of Definition 2.77

The believers of Zadeh’s fuzzy sets theory say too much (cf. [64]). And thus, we have

no firm answer to the question: “What is the essence of Zadeh’s theory?”. If we can

assume that:

(f) Zadeh wanted to assert that DST (7.50) and “logic” are closely connected <07" pre-

cisely, “logic” is one of the aspects of DST (7.50)) though the two are, in appearance,

independent,

then we can understand his assertion. That is because in this section we study “logic” in
measurement theory, which is a kind of generalization of the system theory (7.50). This is
our opinion for Zadeh’s theory. Of course, there may be another opinion, that is, someone
may assert that Zadeh said something much more than the (f). If it is so, we may not
understand his theory in the framework of measurement theory.

Recall the arguments in Chapter 1 (particularly, “Declaration (1.11)” in §1.4, tables
(1.7) and (1.8)). Now, we have only two options, i.e.,

(i) Zadeh’s fuzzy sets theory is characterized as the theory concerning membership

functions in measurement theory.

(ii) Zadeh’s fuzzy sets theory is not characterized in measurement theory. Thus another

fundamental theory (cf. ’The third mathematical scientific theory‘ in (1.7)) should

be proposed.
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Although there is a possibility that (ii) is reasonable, that is, Zadeh’s fuzzy sets theory may

be understood in another fundamental theory (cf. ‘T he third mathematical scientific theory‘

in (1.7)), we should note that the proposal of another fundamental theory is much more
remarkable than the justification of Zadeh’s fuzzy sets theory. Thus we choose the (i) even
if the essential part of Zadeh’s assertion (e.g., the scientific part asserted in [64]) can not
be characterized in MT. Thus we conclude that Zadeh’s assertion can not be completely

understood in measurement theory, i.e.,

e Zadeh’s assertion is not completely “theoretical true” (¢f. Declaration 1.11), though

practical logic somewhat has the property like “fuzzy set”

This is our present opinion.

7.5.2 Why is Zadeh’s paper cited frequently?

Although we believe that the above argument in §7.5.1 is proper, it does not explain
the reason why Zadeh’s paper is cited frequently. As mentioned before, Zadeh’s paper [93]
is one of the most cited papers of all scientific papers. This is an established fact. This
fact may imply that there is something interesting behind Zadeh’s assertion. Thus, we
think that the question “Why is Zadeh’s paper cited frequently?” is more important than
the question “What is Zadeh’s fuzzy sets theory?” Thus we shall consider the question:

e Why does the term “fuzzy” look attractive?

We think that the reason is that Zadeh’s spirit is regarded as the antithesis of the myth:
“Science must be exact, clear, strict, etc”’ This myth seems to be due to Newtonian
mechanics (and moreover, theoretical physics), which has been located in the center of all

science. That is, we think that
e many people want another science, which is fuzzy, rough, vague, etc.

If it is so, we should recall Table 1.8 (in Chapter 1), which asserts mathematical science

is classified as follows:

theoretical physics (‘'TOE") .. exact mathematical science
theoretical informatics (measurement theory) ... fuzzy mathematical science.
(7.51)
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If it is true, we can understand the reason why the term “fuzzy” was accepted widely.

173

Thus we do not deny the following opinion:

(f) “measurement theory” = “fuzzy theory” (Cf. [42].) Or, the attractive parts of

Zadeh’s assertions are mostly included in measurement theory.
That is because we believe that

(b) Measurement theory is the very theory that represents the anti-spirit against the

myth: “Science must be exact, clear, strict, etc”
In fact, the terms

o fuzzy statement (cf. the footnote below Example 2.16), ready-made, useful or not,
subjective, popularity, likes or dislikes, (in “Theoretical informatics of Table (1.8)”)

seem to belong to the category of “fuzziness” On the other hand, the terms

o precise statement (cf. the footnote below FExample 2.16), made to order, empirical

true or not, objective, truth, (in “Theoretical informatics of Table (1.8)7)

obviously belong to the category of “exactness”

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

Chapter 8

Statistical measurements in
C*-algebraic formulation

As mentioned in the beginning of Chapter 2, measurement theory (MT) can be classified into two
subjects, i.e., “(pure) measurement theory (PMT)” and “statistical measurement theory (SMT)”
That is,

PMT (=%“(pure) measurement theory”) in Chapters 2 ~ 7
MT (=“measurement theory”)
SMT (=“statistical measurement theory”) in Chapters 8 ~

(8.1)
PMT is essential, and it is formulated as follows:
PMT = measurement + the relation among systems in C*-algebra (8.2)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

Here it should be noted that the state pP is always assumed to be pure, i.e., p? € GP(A*). In this
chapter we study the statistical measurement for a statistical state, i.e., the measurement in the
case that the state is distributed. The distribution (i.e., a statistical state) is represented by a
mixed state p™ (€ &™(A*)). The Statistical MT (i.e., SMT) is formulated as follows:

SMT = statistical measurement + the relation among systems in C*-algebra , (8.3)
[Proclaim 1 (8.10)] [Axiom 2 (3.26)]

where Proclaim 1 is characterized as follows:

“Proclaim 17 = “Axiom 17 + “statistical state” (8.4)
(the probabilistic interpretation of mixed state)

Thus, the (8.3) is also rewritten such as

SMT = PMT + “statistical state” in C*-algebra .  (8.5)
(Axioms 1 and 2) (the probabilistic interpretation of mixed state)

Therefore it should be noted that there is no SMT without PMT. Also, we add “belief measurement
theory” in §8.6 and “principal components analysis” in §8.7.

175
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8.1 Statistical measurements (C*-algebraic formula-
tion)
8.1.1 General theory of statistical measurements

Axiom 1 (proposed in §2.4) says that the measurement of an observable O ( = (X, F, F))
for the system with the state p? ( € GP(A*)) induces the sample space (X,F, P(-) =
PP(F(-))). That is, Axiom 1 says symbolically that:

“observable”
(X,F,F)in A

“state” “sample space”

pESPAY) | pew | (XRPOZpR(F()) |

Here it should be noted that the state must be always pure, i.e., p? € GP(A*) in Axiom

and

1. However we sometimes want to generalize the concept of “state”, i.e., to introduce
“statistical state”, which is represented by a mixed state p™ (€ &™(A*)). That is, we

assert (in Proclaim 1 later) that

“statistical state” = “mixed state” + “probabilistic interpretation”
b b
(mathematics)

Also, it should be noted that we have already studied “S-states” in Chapter 6, which
is one of the aspects of the statistical state. Although the statistical state has various
aspects, we begin with the following example, which will promote a better understanding
of the concept of “statistical state’

Example 8.1. [Coin-tossing and urn problem]. There are two urns U; and U,. The urn
Uy [resp. Us| contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Under
the following identification (¢f. (5.16) in Example 5.8):

Ul ~ Wi, UQQWQ,

we regard () ( = {wl,wg}) as the state space. And consider the observable O( = (X
{w,b}, 2t F)) in C(Q) where
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Here consider the following procedures (P;) and (P3).

(P1) One of the two (i.e., wy or wy) is chosen by an unfair tossed-coin (Cp1-,), i.€.,
Head (100p%) — wy, Tail (100(1 —p)%) — w2 (0 <p <1). (8.7)

The chosen urn is denoted by [*|(€ {wi,w2}). Here define the mixed state vy(€
M7, () such that vy = pd,, + (1 — p)ou, (e, vy({wi}) = p, L{w:}) =1 —p),

which is considered to be “the distribution of [*]” Thus we call the vy a statistical

state.

(Py) Take one ball, at random, out of the urn chosen by the procedure (P1). That is, we
take the measurement M¢ ) (O, Sp).

Then we have the following question:

(Q) Calculate the probability that a measured value “w” [resp. “b”] is obtained by the

above measurement M¢ o) (O, Spy).

[Answer]. The “measurement” defined in the above (P;) and (P) is denoted by

M) (O, Sy ([0u,; P] @ [0w; 1 — 1)) (8.8)

This may be called a “probabilistic measurement”, and the symbol [d,,;p] ® [0w,; 1 — D]
may be called a “probabilistic state” Note that:

(i) the probability that [ * | = d,, [resp. [* ] = d,,] is given by p [resp. 1 — p).

(ii) If [*] = 0y, [resp. if [*] = J,,], the probability that the measured value obtained
by M) (O, Sy) is equal to z ( € {w,b}) is, by Axiom 1, given by

M(©@) (Ouns F({2})) oy = 0.8 (ifz =w), =02 (ifz=0),
[resp. M(©@) (G, F({a:})>c<Q> =04 (ifr=w), =06 (ifz=0>0) }

Thus, under the condition (P;), the probability that the measured value obtained by the
measurement Mc (o) (O, Spy) is equal to = ( € {w, b}) is given by

P({:L‘}) = /QM(Q)<6MF({m}»cm)yo(dw) = M(Q)<V07F({x}>>cm)

_{ 0.8p+0.4(1 —p) (ifzr=w),
] 0.2p+0.6(1 —p)) (ifx=0).

This is the answer to the above question (Q). Summing up, we see:
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(#) There is a reason that the “measurement” M) (O, Sp([0w,; P]® [0u,; 1 —p])) is one
of interpretations of the “statistical measurement” Mcq)(O, Si(w)), (cf. Proclaim

1 (8.10) later). Here the mixed state vo(€ MT,(€2)) is called a “statistical state”,

which represents the distribution of [ *|. And, the probability that the measured

value = ( € {w,b}) is obtained by the measurement M¢ (o) (O, Si(10)), is given by
o (0. (D) Y (= /Q i (o P(12)) ey v0()).
Thus we consider that

probabilistic form

statistical form SM (VO) (89)

S[*}([(;wl;p] D [0uy; 1 — 1))

That is, the statistical state 1 is the mized state with probabilistic interpretation, or, the
mixed state generated by coin-tossing.

Thus, we see

The typical example of M¢(q)(O, Sy (1))

Pick up a ball from the urn behind the curtain
w1
P 7 1-p
O000e > { K ) <
0000® = —

On the other hand, we recall that

The typical example of M¢(q)(O, Sp)

Pick up a ball from the urn behind the curtain
w1
} L
II \\
II \\
/I \\
II \\
ll Y \\
0o0O0Oe ) — | * —
\ 7
OO000e i A
\\ I/
\\ II
S -~

Now, we introduce “statistical measurement Ma(O, Siy(p™) )”. The mixed state

p™ (with the probabilistic interpretation) is called an statistical state. We propose the
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following “Proclaim 17, which should be read by the hint of the statement () in Example
8.1.

PROCLAIM 1. [The probabilistic interpretation of mixed states, cf.
[44]].  Consider a statistical measurement My (O = (X, F, F), Sp(p™))
formulated in a C*-algebra A. Then, the probability that x ( € X), the
measured value obtained by the statistical measurement M4 (O, Siy(p™) ),
belongs to a set = ( € &) is given by

P (FE) (= a(p" FE)a)-

The statistical measurement Mu(O, Si(p™) ) is sometimes denoted by
Mua(O, 5(p™) ). (8.10)

That is, Proclaim 1! asserts that

[#] “statistical state” = “mixed state” + “probabilistic interpretation” (8.11)
(mathematics) (such as coin-tossing)

Note that the above “Proclaim 1”7 should be understood as
“Proclaim 17 = “Axiom 1”7 + “statistical state”
(the probabilistic interpretation of mixed state)

Therefore, the Statistical MT (i.e., SMT) is formulated as follows:

SMT =statistical measurement + the relation among systems

[Proclaim 1 (8.10)] [Axiom 2 (3.26)]
= PMT + “statistical state” in C*-algebra.
(Axioms 1 and 2) (the probabilistic interpretation of mixed state)

Therefore, we stress:
e there is no SMT without PMT. (8.12)

Also, for the relation between PMT and SMT, see Remark 8.3 [hybrid measurement
theory]| later.
The following definition is the same as Definition 3.1. Here, it should be noted that

“Markov relation among systems (i.e., {®y, 4, : A, — A fey)er2)” and “sequential

!Proclaim 1 is somewhat methodological. Thus, in [44], “Proclaim 1” was called “Method 17

2 As seen later (i.e., §8.7), Bertrand’s paradox is due to the confusion between mixed states (mathemat-
ical concept) and statistical states (measurement theoretical concept). In order to avoid this confusion,
it may be recommended to remember that there is always “coin-tossing” behind “statistical state”.
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observable (i.e., [{O}tier, { Pt 1, : A, — As by n)erz |)7 are common to both PMT and
SMT. This implies that Axiom 2 is common to PMT and SMT.

Definition 8.2. [General systems in statistical measurements, cf. Definition 3.1]. The
pair Spy(py) = [S(05) APuts + Aty — Ab bty )erz] is called a general system with an

initial state S(pj) if it satisfies the following conditions (i)~ (iii).
(i) With eacht (€ T'), a C*-algebra A, is associated.

(ii) Let to (€ T) be the root of T. And, assume that a system S has the state p;} (€
G&™(Ay))) at to, that is, the initial state is equal to py, .

(iti) For every (t,ty) € T2, Markov operator ®, 4, = Ay, — Ay is defined such that
q)tth(I)tQ’t3 = (I)tl,tg, holds for all (tl, tz), (tz, t3> c Té

The family {®y, 1, : Ar, — A}ty 1)er2 18 also called a “Markov relation among systems”.
Let an observable O, = (X, ¥y, F}) inia C*-algebra A; be given for each t € T. The pair
[{O}er, {Pi 1> + Aty = Aty by ao)erz | Is called a “sequential observable”
7 n
Again note that Axiom 2 is common to PMT and SMT. Thus we see,

’ H measurements ‘ relation among systems ‘
| PMT || Axiom 1 (2.37) | Axiom 2 (3.26) |
| SMT || Proclaim 1 (8.10) | Axiom 2 (3.26) |

In what follows, we introduce some examples, which promote a better understanding
of Proclaim 1. That is, readers will see that statistical states are not only generated by
“coin-tossing” but also by several causes, for example, “Schrodinger picture”, “Bayes

theorem”, etc.

Remark 8.3. [(i) Axiom 1 and Proclaim 1, hybrid measurement theory (= “HMT” )].
For example, consider a pure state class &(C(4)%)) ( = M%,(€4)) in Axiom 1 and a
mixed state class §™(C(Q2)")) (= M7, (€Q2)) in Proclaim 1. Then we sometimes consider

the tensor state class GP(C'(Q)%)) ® &™(C(22)")), which is defined by
{00, @ 01" € ML X D) | w1 € Qg € M ()}

This is called a “hybrid state class” In applications, we often devote ourselves to the

hybrid measurement theory (= HMT).
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[(ii) Axiom 1 and Proclaim 1, hybrid measurement theory]. For each p( € R), consider a

mixed state p;'( € M7, (R)) such that

m 1 (w — lu)2
P (D) = W/Dexp[—T]dw (VD € Bgr, Borel field),

where ¢ is a fixed positive number. Let O = (X, F, F') be an observable in Cy(R). Then,
we have the (statistical) measurement Mc,r) (O, S(p;)). On the other hand, define the
observable O = (X, ¥, F) in Cy(R) such that:

FEIW == [FEIer-“ e (perzeD)

Also note that

which urges us to consider the following identification:

MCO(R)(O7S(p,T)) — MCO(R)(O’S[‘SM]) :

(statistical measurement) (pure measurement)

[(iii): Axiom 1 and Proclaim 1, hybrid measurement theory|]. Let A; and Ay be com-
pact spaces (or compact index sets). For each A\( € Aj), consider a (parameterized)
mixed state pi' (€ M7 (2)). And further, for each Ay( € Aj), consider a parameter-
ized observable O,, = (X, J, F),) in C(Q2). Then, we have the (statistical) measurement
M) (On,, S(pY)) in C(€2). Define the observable O = (X,9,F) in C(A; x Ay) such
that:

FE) s A) = - <p;§, FA2(5)>C(9) (Y1, do) € Ay x Ao, = € F).

That is, we see

m ) . = -
c@)* <px\17 By, <'_')>C(Sl) T O(AqxAg)* <6(>\17>\2)7 F(“)>C(A1 xAg)?

which urges us to consider the following identification:

M) (On,, S(0,)) = Moaxan (0, s, 5,1) - (8.13)
(statistical measurement) (pure measurement)
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Such an identification is often used in measurement theory. In this sense, the classification
(8.1) should be considered to be flexible. [
Remark 8.4. [Natural mixed state® and statistical state, Bertrand’s paradox]. For
example, consider the square [0, 1] x [0,1] ( € R?). This square has a natural measure m
(which is usually called the Lebesgue measure) such that m([a, b] X [c.d]) = [b—al - |d — |
(0<a<b<land0 < c<d<1). Here it should be noted that m is a mixed
state (i.e., m € M’ ([0,1] x [0,1])), however, it is not a statistical state. That is, the
natural mixed state is not always a statistical state. We should recall that there is no
statistical state without the probabilistic interpretation (such as coin-tossing). This is
just what Bertrand’s paradox (cf. [35], also see §8.7 Appendix (Bertrand’d paradox))
teaches us. That is because Bertrand’s paradox says that, if “the natural mixed state” is
unreasonably regarded as “statistical state”, we encounter a serious paradox (since a

natural mixed state is not always unique). Also, recall Chapter 4 (Boltzmann’s statistical

mechanics), in which the normalized invariant measure is not regarded as “probability”*
but “normalized staying time” (Continued to §8.7 Appendix (Bertrand’s paradox))
|

8.1.2 Examples of statistical measurements

In Example 8.1, we showed “M¢(q)(O, Sp([0w,; P|®[0uy; 1—p]))” as the typical example
of statistical measurement Me(q)(O, Sp(1)). In this section, we study the other typical
examples.

The following example (Schrodinger picture) was already studied more precisely in
Chapter 6.

Example 8.5. [(i): Schrodinger picture I]. Let Wo; @ Ay — Ay be a Markov operator.
Let ph € GP(Af). That is, we consider the following general system:

Wo,1

Ao — [Ai]. (8.14)

(pure) stateph)

Also, consider any observable O; = (Xi,J, F}) in a C*-algebra A;. And put (N)O =

3The “natural mixed state p” usually means the “invariant mixed state p” for some “natu-
ral “homomorphism ® : A — A. That is, it holds that ®*(p) = p.

4Such probability may be called “a priori probability”. Thus we consider that the concept of “a priori
probability” is nonsense.
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(X1,31, g1 F1). Thus we have the measurement
Ma, (Oo; Siep))-

Axiom 1 says that the measurement MAO(60, Sipr) generates the sample space (X1, 571, P)
such that:

P(E1) = . (b, Vou Fi(E)) (8.15)

Ao

= AT<\IJS,1p]87 F1(51)> (VE1 € T). (8.16)

A1

This implies that the measurement Ma, (O, Sipr) can be considered to be equal to the
statistical measurement Ma, (O, S(¥5 ;5)). That is, M, (Oo, Sipry) is the representation
due to the Heisenberg picture, and Ma, (O1, Sy (W5 105)) is the representation due to the
Schrodinger picture. Summing up, we have the identification:

[the representation by Heisenberg picture] . dentificati [the representation by Schodinger picture]
identification )
Ma, (¥,104, S[pg]) — Ma, (On, S(‘I’O,lpo)) (8.17)

(meaningful in the sense of Axiom 1) (meaningful in the sense of Proclaim 1)

in which the left-hand side is understood in Axiom 1 and the right-hand side is understood
in Proclaim 1. For completeness, we explain the meaning of the identification (8.17) as

follows: The left-hand side of (8.17) means that

(1) Taking a measurement Ma, (¥ 01, S[pg]) N-times (that is, taking a measurement
Ma, (Y101, S[pg]), and taking a measurement Ma, (U, ;01, S[pg]),..., and taking a
measurement Ma, (Vo 10y, S[pg])>, we obtain measured values x1, xo,...,xny. And

thus we have the sample space (X, F, ph(¥o1F(-))) (= (8.15)).
The right-hand side of (8.17) means that

(e2) Taking a statistical measurement Ma, (01, S(¥5,p5)) N-times (that is, taking a
measurement Ma, (O1, Sp.,1 (¥ 105)), and taking a measurement Ma, (O1, Sp.,1 (V5 100))
..., and taking a measurement Mx, (O1, S[*N](\Ifalpg))), we obtain measured values

T}, TY,...,vy. And thus we have the sample space (X, F, (W5 ,00)(F(-))) (= (8.16)).

Since (8.15) = (8.16), we identify (e1) with (e3)?
[(ii): Schrodinger picture II]. Let Wy : Ay — A; be a Markov operator. Let p* (€

G™(A7)) be a statistical state. That is, we consider the following general system:

5Strictly speaking. we must say “we regard (e5) as (e1)”. That is because Axiom 2 says that Heisenberg
picture representation is more fundamental than Schrédinger picture representation.
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Wo,1

Al [Ad]. (8.18)

statistical statep]™
Here, let Oy = (X3,%F,, F3) be an observable in a C*-algebra A,. And put 61 =
(Xo, Fo, Wy oFY). Since pf* (€ &™(A})) is a statistical state (i.e., the probabilistic in-

terpretation is added), we have the statistical measurement
Ma, (01 = (Xa, Fo, U1 25%), S(pT), (8.19)
which generates the sample space (X, F2, P) such that:

P(22) = <p§’, qfo,lFQ(Eg)> . (8.20)

A

This is equal to

s (0l Fa(Z2)) (8.21)

Az

which implies that the statistical measurement Ma, (O1, S(p7")) can be considered to be
equal to the statistical measurement Ma, (Oz, S(V7 ,07")). That is, Ma, (O, S(p™)) is the
representation due to Heisenberg picture, and Ma,(O2, S(¥7 ,p7")) is the representation

due to Schrodinger picture. Summing up, we have the identification

[the representation by Heisenberg picture] [the representation by Schédinger picture]
Ma, (91505, S(p7)) ST Ma, (05, S(V5 07)) (8.22)
(meaningful in the sense of Proclaim 1) (meaningful in the sense of Proclaim 1)
in which the both sides are understood in Proclaim 1.
|
The statistical state also appears in Bayes theorem, which was already studied in
Chapter 6.
Example 8.6. [A statistical state in Bayes theorem|. (continued from Ezample 8.1)
Assume the situation (P;) ~ (P2) in Example 8.1 (Coin-tossing). That is, consider the

following statistical measurement M) (O, S (10)):

®Recall Axiom 2, which says that My, (¥;202,5(p7")) is more fundamental than
MA2(027S(\I/T,QPT))'
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The picture of M¢ () (O, Siy(v0))

Pick up a ball from the urn behind the curtain
w1
P BF=AY—F N\ 1-p
0000® = X Y =
oJoJoyo) J N i

Next, consider the following procedure.

(P3) We find that the ball sampled in (Ps) is a white one. That is, by the statistical

measurement Mc(q)(O, S(v)) in (P2), we obtain the measured value w(€ {w,b}).

(P4) After the above (P3), we further take a “measurement” of an observable O; =

(Y, G,G). And, we know that the measured value belongs to I' (€ G).

In what follows we study the above (P3) and (P,). The procedures (P;) ~ (P,) can be
characterized as the statistical measurement M¢q)(O x Oy, S(1p)). The probability that
the measured value (w,y)(€ {w, b} x I') obtained by M¢(q)(O x Oy, S(v)) belongs to I
is given by

{vo, F({w}) x G(T')).

Then, under the condition that we know (P3), the probability that the measured value y
(€Y) is obtained in (P4) is given by the conditional probability

M(Q)<V07 F({w}) X G(F)>C(Q) ( _ < F({w}) X
M(Q)<V07 F({w})>c(n) M M(Q)<VO7 F({w})>c(n) ’

Since O¢( = (Y, G,G)) is arbitrary observable in C(2), this implies the following state-

G(F)>O(m>. (8.23)

reduction:
F X
pretest state “vy”  ——  posttest state “v;” ( = M) (8.24)
before “white” is obtained in (Pa2) after “white” is obtained in (Ps) <I/0, F({w})>

That is because the probability that the measured value obtained by Me(q)(O1, S(14))
belongs to I' is given by

o (G0 ) (8.25)
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and it must hold that (8.23)=(8.25). Here, note that this new mixed state v (€ M7, (12))

satisfies
_ wfe}) * [F({w})](w) s
) e < TP (DI + wen) ol (€ 9= te))
(8.26)
Then, it holds that
B 0.8p _2p
M) = G 040 —p) " 1y
n({w}) = ——2i=p) __1-p (8.27)

C08p+04(1—p) 1+4+p

Since
[e] the vy is the statistical state after the (Ps),

the “measurement” in (Py) is represented by the statistical measurement M¢ o) (O2, S(11)),
that is,
The picture of S([0,,; 22] & [0uy; =2]) (= S(11))

W17 14p w27 1+4p
w1
} t
ya \
II \\

II \\
2 7 N,
1—‘?-7 /I, J- \\\\

—5 { X ) 2t
0000e® [ )
O000e i 7

\\ ,I
\\\ III

|
Example 8.7. [(i): A statistical state in the repeated measurement|. Let p™ € &™(A*).
By the Krein-Milman theorem (cf. [92]), we can choose a sequence {p}} | in GP(A*)
such that:

N

1

i Z ph~p™ (in the sense of the weak*-topology of &™(A*)). (8.28)
k=1

for a sufficiently large natural number N. Consider an observable O = (X, F, F) in
A. And consider the measurement Mga( ®;_, O = (XV, N, R, F), S[®kN:1pZ])
formulated in the tensor C*-algebra @n_, A, where (@ F)(X™ ! x 2, x XN-m) =
(P ' )@ F(E,) ® (@), 1) (VE, € F,1 < ¥m < N). For completeness, note
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the measurement Mga ( ®@n_; O, SleN_, ﬂi]) is meaningful in the sense of Axiom 1. Let

(21,9, ..., xx) be a measured value obtained by the measurement Mga (®,]€V:10, S[®]1€v:1pz]).

Thus, by Axiom 1, we can “almost surely” expect that

[{k Xy € E}]
N

F(E) ~ (VE € ) (8.29)

holds for a sufficiently large N, where #[B] is the number of the elements of a set B. That
is because the probability that a measured value obtained by Ma (O, S [pﬁ) belongs to =
(€ F) is given by pP(F(Z)). In the above sense (8.29), the mathematical symbol Ma (O,
S(p™)) (or, Ma(O, S(+ SN ph))) can be considered as the statistical measurement,

which may be called a “repeated measurement”

[(ii)]. Let © be a finite set, i.e., Q = {wy,ws,...,wp}. Let O = (X, F, F) be an observ-
able in C(€2). Consider the repeated measurement Mg~ oqg)( @NM O, S[®5ivf5wmodmn]])
(which may be called a cyclic measurement), where mody[n] is the integer such that
n = Mj+ mody/[n] and 0 < mody[n] < M — 1. Let (z1,x9,...,xyn) be a mea-
sured value obtained by the cyclic measurement M®g{c(g)( ®NM O, S[®g£{5wmodM [n]]) ( =

QMM Me ) (O, S[‘SwmodM[nﬂ) ) Thus, by Axiom 1, we can “almost surely” expect that

Oy & Oy + 40y o ik € 2} _
C(n>*< Wi ,F(:)>C<m ~ N (V2 e7) (8.30)

holds for a sufficiently large N. In this sense,

e we often use the repeated statistical measurement @2 M¢(q) (O, S (W+§“M))

<or more precisely, the repeated probabilistic measurement ®nN:1MC(Q) (0, Spy (®M_,

[0w,, 3 1/M])), cf. (8.8)) as a substitute for Mg~ qg)( QNM O, Slens,

=1"“mod p;[n] ] ’

That is, in the following table (in the case that Q = {w;,ws}), the measured data
(21, T2, ..., oy ) and the measured data (y, ys, ..., y2y) have the same statistical properties

(e.g., average, variance, etc.).
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measured measured
measurement .- measurement - - - - - -
value value
50-11 + 50.1
MC(Q)(OﬂS[&;l]) ...... 1 | MC(Q)(O,S(Tz)) ...... mn
0wy + O
MC(Q)(O, S[5w2]) ...... To | MC(Q)(O, S(Tz)) ...... Yo
0wy + 0w
MC(Q)(O, S[éwl]) ------ T3 | MC(Q)(O, S( 5 2)) oo Us
0wy F O
Me@) (O, Ss,) -+ T4 | Mgy (0, S( 5 )) e U
...... ’ S
0wy + Oy
Mc(Q)(O, 5[6‘01]) ...... ToN—-1 ‘ Mc(Q)(O, S( 2 )) ...... y2N71
0wy + Oy
MC(Q)(O’S[(Swl]) ...... ToN ‘ MC(Q)(O,S( 5 )) ...... YaN

8.1.3 Problems (statistical measurements)

Problem 8.8. [Monty Hall problem, cf.[33]]. The Monty Hall problem is as follows (cf.
Problem 5.12, Remark 5.13 and Problem 11.13) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“‘number 17, “number 2”7, “number 3”). Behind one door is a car, behind the

others, goats.

(C) You know that the probability that behind the k-th door (i.e., “number k” ) is

a car is given by pi (k = 1,2,3). (For example, consider the two cases that
pr=p2=p3=1/3, and py = 3/7, po = 1/7, p3 = 3/7->

You pick a door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say “number 3”, which has a goat. He says to you, “Do you

want to pick door number 277 Is it to your advantage to switch your choice of doors?

Door Door Door \/

Number 1 Number 2 Number 3 QP\ @\
_
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[Answer]. Put Q = {wy,wq, w3}, where

Wy eeeeee the state that the car is behind the door number 1
Wy« === - the state that the car is behind the door number 2
Waseenee the state that the car is behind the door number 3.

Define the observable O = ({1,2,3},21:23} F) in C(Q) such that
[F({1D](w1) = 0.0, [F({2})](w
[F{1H)](w2) =00, [F({2P)(w2) =00, [F({3}](w2) = 1.0,
P =00, 2N =10, [F({3}])(ws) = 0.0

Define the statistical state vy ( € M7, (€2)) such that:

) = 0.5, [F({3})](w1) = 0.5, !

—

N

w

vo({wi}) =p1, w{wse}) =pa, w{ws}) =ps

189

(8.31)

(8.32)

where p1 +po +p3 = 1, 0 < pi,po,p3 < 1. Thus we have a statistical measurement

Me¢ ) (O, Si(v)). Note that

(1) :  “measured value 1 is obtained” <= the host says “Door (number 1) has a goat”

(probability «— 0)

(2) :  “measured value 2 is obtained” <= the host says “Door (number 2) has a goat”

(probability «— 0.5p; + 1.0ps3)

(3) :  “measured value 3 is obtained” <= the host says “Door (number 3) has a goat”

(probability «— 0.5p; + 1.0ps)

Here, assume that

e By the statistical measurement Me(q)(O, Si(10)), you obtain a measured value 3.

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,

the posttest state vpos (€ MT4(€2)) is given by
L F({3}) x 1
ost — T S a1\ "
P <V07 F({3})>

That is,
PL
v wif) = oy Wat) = b2 , wst) =0.
post({ 1}) %+p2 post({ 2}) %+p2 post({ 3})
Thus,

(8.33)

(8.34)

"Strictly speaking, F({1})(w1) = 0.5 and F({2})(w1) = 0.5 should be assumed in the problem (P).
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o if p; = py = p3 = 1/3, then it holds that vpese({w1}) = 1/3, vpost ({w2}) = 2/3,
Vpost ({ws}) = 0, and thus, you should pick Door (number 2).

o ifpy =3/7,py =1/7 and ps = 3/7, then it holds that Vpost ({w1}) = 3/5, Vpost ({w2}) =
2/5, Vpost {ws}) = 0, and thus, you should not pick Door (number 2).

Also, more generally, we can say that

if Vpost ({w1}) < Vpost ({w2})(i-e.,p1 < 2po), then, you should pick Door (number 2)

if Vpost ({w1}) > Vpost ({w2})(i-€.,p1 > 2ps), then, you should not pick Door (number 2).
]

Remark 8.9. [P. Erdds]. I learnt the Monty Hall problem in the book [33] (“The Man
Who Loved Only Numbers, The story of Paul Erdos and the search for mathematical
truth”). This problem is famous as the problem in which even P. Erdés made a mistake.
I think that this problem is too profound to understand without measurement theory. In
fact, everyone may confuse the above Problem (P) for p; = p; = p3 = 1/3 with Problem
5.12 (i.e., the above problem (P) without the condition (C) ). In fact, in [33] (page 234),

it is written as follows:

(Q) You're on a game show and you’re given the choice of three doors. Behind one door
15 a car, and behind the other two are goats. You choose, say, door 1, and the host,
who knows where the car is, opens another door, behind which is a goat. He now
gives you the choice of sticking with door 1 or switching to the other door? What

should you do?

If you read this description of the Monty Hall problem (in [33]), you may think that the
correct answer should be due to Fisher’s likelihood method, i.e, the answer presented in
Problem 5.12. However, Problem 5.12, Remark 5.13 and Problem 8.8 are not all of the
Monty Hall problem. See Problem 11.13 later (which may be my final answer to the
Monty Hall problem).

|
Problem 8.10. [The problem of three prisoners].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free

and the other two were to be executed. But he did not know who was the one to be
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spared. (He knew that the probability that A [resp. B, C] will be set free is equal
to 1/3 [resp. 1/3, 1/3], or more generally, p/ [resp. p{: , pf]) To the jailer who did
know, A said, “Since two out of the three will be executed, it is certain that either
B or C will be, at least. You will give me no information about my own chances if
you give me the name of one man, B or C, who is going to be executed.” Accepting
this argument after some thinking, the jailer said, “C will be executed.” Thereupon
A felt happier because now either he or C would go free, so his chance had increased

from 1/3 to 1/2. This prisoner’s happiness may or may not be reasonable. What

do you think?

“C will be executed

»
»

~—~
~~—~

L
— \ =)

l—/‘\f/ N
L
= \ Q)

—a )

[Answer]. Put Q = {w,, wp, w.}, where

Wa o ree the state that A will be set free
Wpoeee the state that B will be set free
We= e the state that B will be set free .

Define the observable O = ({z 4,25, z¢}, 2{74782c} F) in C(Q) such that

[F({za})(wa) = 0.0, [F({zp})](wa) =05, [F({zc})](wa)=0.5,°
[F({zab)l(wp) = 0.0, [F({zp})l(ws) = 0.0, [F({zc})](ws) = 1.0,
D) =10, [F({zeDlw) =00.  (8.35)

=
—
&
h S
N
&
o
N~—
|
©
\_O
=
—
&
sy
=
&

Define the statistical state vy ( € M7, (€2)) such that:

v{wad) =t wl{ws}) =pf, w{w}) =l (8.36)

where p/ + p{: +pl=1,0< pg,pg,p{ < 1, though it may suffice to assume that p/ =
p{: = p/ = 1/3. Here, note that the following (i) and (ii) are equivalent:

8Strictly speaking, [F({zp})](ws) = 0.5 and [F({zc})](wa) = 0.5 should be assumed in the problem
(P)
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(i) The jailer said to A “C will be executed”

(ii) By the statistical measurement Me o) (O, Si(0)), A obtains a measured value z¢

Thus, the posttest state v (€ M7 (€2)) is given by
_ F({zc}) x v

o = 2\Eey) X Yo 8.37
P = T, Fl{ao}) (8:37)
That is,
ph f
5 P
Vpost({wa}) = ﬁ Vpost({wp}) = pf—bf Vpost({we}) = 0. (8.38)
ot D o D

Thus,

o if p/ = p/ = p/ = 1/3, it holds that vpest({wa}) = 1/3, vpost ({ws}) = 2/3,
Vpost({we}) =

0, and thus, the prisoner’s happiness is not reasonable. That is be-
cause pf = 1/3 = Vo5t ({wa }).

o if p/ =3/7, p{: = 1/7, pf = 3/7, it holds that vpest({wa}) = 3/5, Vpost ({ws}) = 2/5,
Vpost({we}) = 0, and thus, the prisoner’s happiness is reasonable. That is because
P =3/ < 3/5 = vpou({wa}).

o if pf =1/4, p/ =1/2, p/ = 1/4, it holds that vyess({wa}) = 1/5, vpest({ws}) = 4/5,
Vpost ({we}) = 0, and thus, the prisoner’s unhappiness is reasonable. That is because
pl=1/3>1/5=vpost({wa}).

Also, more generally, we can say that

if p! < Vpost ({wa})(i.e.,pf + 2p/ > 1), the prisoner’s happiness is reasonable

if p! > Vpost ({wa})(i.e.,pf + 2p] < 1), the prisoner’s unhappiness is reasonable.

|
Remark 8.11. [(i).The problem of three prisoners in PMT]. Recall that the Monty Hall
problem is also studied in PMT, that is, Problem 5.12 (Fisher’s method) and Remark
5.13 (The moment method). On the other hand, it should be noted that the problem of
three prisoners can not be solved in PMT.
[(ii): The relation between the Monty Hall problem and the problem of three prisoners].
Since the Monty Hall problem and the problem of three prisoners are similar, we add
something concerning the relation between the two. Consider the (P) (in Problem 8.8)

and the (Q) mentioned below.
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(Q) (Continued from the (P) in Problem 8.10). There is a woman, who was proposed
to by the three prisoners A, B and C. She listened to the conversation between A
and the jailer. Thus, assume that she has the same information as A has. Then, we

have the following problem:
(#) Whose proposal should she accept?

[Answer]. For simplicity, consider the case that p! = p{: = p/ = 1/3. Then we see that

Vpost({wa}) = 1/3, post({wn}) = 2/3, tposi({we}) = 0. (8.39)

Thus, she should choose the prisoner B. Here it should be noted that the problem () is
the same as the Monty Hall problem. That is, the problem:

“(P) in Problem 8.10” + “(Q) in the above”

includes both the Monty Hall problem and the problem of three prisoners.

8.2 General statistical system (Example)

As mentioned in the previous section, the Statistical MT (i.e., SMT) is formulated as

follows:
PMT = measurement + the relation among systems in C*-algebra
and [Axiom 1 (2.37)] [Axiom 2 (3.26)] ’
SMT = statistical measurement + the relation among systems in C*-algebra ,

[Proclaim 1 (8.10)] [Axiom 2 (3.26)]

where it should be noted that
“Proclaim 1”7 = “Axiom 17 + “statistical state” : (8.40)
(the probabilistic interpretation of mixed state)

Thus we see

SMT =statistical measurement + the relation among systems

[Proclaim 1 (8.10)] [Axiom 2 (3.26)]
= PMT + “statistical state” in C*-algebra, .
(Axioms 1 and 2) (the probabilistic interpretation of mixed state)
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That is, Axiom 2 is common to PMT and SMT. This will be explicitly seen in the following

example (= Example 8.12), which should be compared with Example 3.4. Also recalling
Remark 8.3 [hybrid measurement theory (= HMT)], we say that

HMT =  hybrid measurement + the relation among systems in C*-algebra .
[Axiom 1 (2.37) and Proclaim 1 (8.10)] [Axiom 2 (3.26)]

(8.41)
Here note that PMT and SMT are respectively regarded as one of the aspects of HMT.
Since Axiom 2 is common to PMT and SMT, it is a matter of course that Example
3.4 (in PMT) and Example 8.12 (in SMT) are almost similar.
Example 8.12. [(Continued from Example 3.4) A simple general statistical system,
Heisenberg picture|. Suppose that a tree (T'={0,1,...,6,7},7) has an ordered structure
such that 7(1) = 7(6) = 7(7) =0, 7(2) = n(5) = 1, 7(3) = 7(4) = 2. (See the figure

cI)ﬂ' t),t
(8.42).> Consider a general system S(p7) = [S(p), {A, =" A her\joy] with the

initial system S(pg").

A

@12 ‘A2 /3

o (I)2,4A4
0,1 Ay

0T A (8.42)
Also, for each t € {0,1,...,6,7}, consider an observable O; = (X;, 2%, F}) in a C*-algebra
A;. Thus, we have a sequential observable [{O;}ier, {®rr) : At — Ax@ brer\(o} |- Now

we want to consider the following “measurement”,

(f) for a statistical system S(pg), take a measurement of “a sequential observable
¢7\' .

{Oher, {Ar =" Ar@ her\foy] 7 i-e., take a measurement of an observable Oy at

0( € T), and next, take a measurement of an observable Oy at 1( € T'), -« - - , and

finally take a measurement of an observable O at 7( € T,

which is symbolized by 9MM({O; }ier, S(pg')). Note that the M({ Oy ber, S(pg")) is merely

a symbol since only one measurement is permitted (cf. §2.5 Remark(II)). In what follows
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let us describe the above (8) (= 9MM({O¢}er, S(py'))) precisely. Put
0,=0;, andthus F,=F (t=3,4,56,7).
First we construct the quasi-product observable 62 in Ay such as
qp  qp

62 = (X2 X X3 X X4,2X2XX3XX4,ﬁ2) where ﬁg = F2 X (Xt:374 (I)Q,tﬁt)a

if it exists. Iteratively, we construct the following:

®o,1 D10
Ao — Ay — As
qp ~ qp ~ qp ~
Fy x CDO,6F6 X @077F7 Fix (1)175F5
~ ®0,1 ~ (3T ~
Fo — Fy — Fy
qp ~ qp ~ qp ~ ap ~ ap ~ qp ~ qp ~
(Fo)((I>0,6F6X(I>077F7X(I>071F1) (F1X<I31’5F5X<I>1,2F2) (F2X¢273F3X¢'274F4)

That is, we get the quasi-product observable 61 = (H?:1 X, 2H?=1Xf, 151) of Oy, @1,262
and @1,565, and finally, the quasi-product observable Oy = (HZZO X, olTi-o Xt fo) of Oy,
@07161, @0,666 and @07767, if it exists. Here, 60 is called the realization (or, the Heisen-
berg picture representation) of a sequential observable [{Oy}er, {As g Az brer\(oy)-

Then, we have the measurement

MAO(()O = (H X4, 2llier Xta ﬁO)? S(py'))

teT

which is called the realization (or, the Heisenberg picture representation) of the symbol

IMM({O¢ }eer, S(07'))-
|

8.3 Bayes theorem in statistical MT

Now let us review “Bayes operator” (Definition 6.5 in §6.2), which plays an important
role in SMT as well as PMT. Or, we may say that Bayes operator is more natural in STM
than in PMT.

Let (T' = {0,1,..,N},m : T\ {0} — T) be a tree with root 0 and let S} =

Pyt

[S1, C(Q) =" C(Qrw) (t € T\ {0})] be a general system with the initial system
S And, let an observable O; = (X, 33, F}) in a commutative C*-algebra C(£2;) be
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given for each t € T. Let 60 = ([Ler X, Quer fﬂ,ﬁo) be as in Theorem 3.7 in the

case A, = C(€) (Vt € T). That is, O, is the Heisenberg picture representation of the

(I)7r t),t
sequential observable [{O¢}ier, {C(€) Q. C(Qrw)) brerfoy)- Let 7 be any element in

T. If a positive bounded linear operator BY™_ : C (Q,) — C(£0) satisfies the following

Mier=e

condition (BO), we call {B(O’T) : 2 € Xy (VteT)} [ resp. BY) | a family of Bayes

Mier= MierEr

operators [ resp. a Bayes operator |:

(BO) for any observable O" = (Y;,G,,G,) in C(R,), there exists an observable O =
((TTier Xo) % Vs (®yer F2) ® G-, Fy) in C(Q) such that

P ~ q>7r t
(i) Oy is the Heisenberg picture representation (¢f. Theorem 3.7) of [{Oy er; C() =5

C(Qrwy) (t € T\ {0})], where 0,=0;, (ift#7), =0, x0. (ift=1),

o

o~

(ii) Fo((IerZy) x T,) = BYT _(G.(T,) (B, €F, (vt € T),VT, € G,),

 TlierE:

(i) Fo((MeerZe) x Vy) = Fo(IT,er Z0) = BT =, (1), (24 € Ty (VE € T)), where 1, is the
identity in C'(£2,).

Also, define R(F?;)TEt c M (Q0) — MT(€2,) such that:

. BT (v) .
1(-?;6;575 (V) = H[ (O,Tl_)I (VV € MJrI(QO))?

HteTEt]*<V)HM(Qo)

which is called “a normalized dual Bayes operator”.
|
It is quite important to see that the Bayes operator BYT_ . C(Q2;) — C(Q)

erEt

is described in terms of the Heisenberg picture. This implies that the Bayes opera-

tor BT _ C(Q2;) — C(Qp) is common to PMT and SMT. That is, the dual form

MierZ
ROT _ . ™ (Q) — M7 (2,) can be applicable to both PMT and SMT and PMTpgw

MierEe

(i.e., subjective Bayesian PMT) mentioned later (in §6.4).

The following theorem is an analogy of Theorem 6.13. This theorem (= Theorem 8.13,

Remark 8.14) is also called “Bayes’ method”.
Theorem 8.13. [Generalized Bayes theorem, Bayes’ method, cf. [46]]. Let (T = {0, 1, ...,
Dr(t)t

N}, 7 : T\ {0} — T) be a tree with the root 0 and let S(vy) = [S(vp),C(%) —
C(Qruy) (t € T\ {0})] be a general system with the initial system S(1p). And, let an
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observable O; = (X, F;, Fy) in a C*-algebra C(£;) be given for each t € T. Then, we
have a statistical measurement

MC(QO)<60 = (H X, ®fﬂ, Fy), S(v)). (c¢f. Theorem 3.7).

teT teT

Assume that the measured value by the statistical measurement Meq) (0o, S(1)) belongs

to [L1er Zt (€ @yer Tt). Let 7 be any element in T'. Then, we see

(a)  “the (statistical) S-state at T7( € T') after MC(QO)((N)O, S(v))” = RO (v0).

MierT=r

(8.43)

cI>7r t),t .
Proof. Since the sequential observable [{O;}ier, {C(Q) =3 C (Qrt)) eer\foy) is com-

mon to PMT and SMT, Theorem 3.7 is applicable. Also, by the same argument in
Theorem 6.13, the (8.43) immediately follows. O

Remark 8.14. [(i): Bayes operator in Remark 5.7, Bayes’ method]. Let O = (X, 5, F)
be an observable in C'(§2). For each = ( € F), define the continuous linear operator Béo’o)

(or, BQ, B2 . C(Q) — C(Q) such that:

B9 =F(E) - g  (VgeC(Q)),

which is called the Bayes operator (or, simplest Bayes operator). Define the map R(EO’O) ;

M7 () — M7 (Q) (called “normalized Bayes dual operator”) such that:

©.0)1x(,,
(By) ROy = B Wy, e mm (),

IBE 1 (1) Imcey

that is,

(00, - fDO [F(E)](w)v(dw)
[R="" (V)[(Do) = T FE))(d) (VDy € Bg).

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

MY () > v (= pretest state) — (posttest state :)R(O’O)(y) e M7 (Q). (8.44)

As a particular case of the above, assume that v = d,,, ( € M%;(€2)). Then we see that
M2, () 3 6., (= pretest state) — (posttest state =)ROV(5,,) = 6., € MEL(Q).

That is, a pure state d,, is invariant.
[(ii): The conventional Bayes theorem in mathematics|. The above theorem should be

compared with the following conventional Bayes theorem (Bs).
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(B2) Let (8,Bs, P) be a probability space. Let {E, Es, ..., E,} be a (measurable) de-
composition of §, <i.e., Ey € Bs,Ul_Ex, =8, E;NE, = 0(if i # k:)) Let £ € Bs.
Then

P(Ey) Py, (E)
P(EV)Po(E) + ... + P(En) Py (E)

where PE(Ek) _ P(FJ?&E)JC)? PEk(E) - nggk)_'

The (Bz) is, of course, a mathematical theorem. Thus, when we use the (Bs), we must
add a certain interpretation to the (By). In measurement theory, this is automatically

done as follows:

(B1) = (B2) + ‘“measurement theoretical interpretation”.

[(iii): The collapse (reduction) of wave packet in quantum mechanics]. The reduction such
as (8.44) may happen even in quantum mechanics. In fact, it is called “the collapse (re-
duction) of wave packet in quantum mechanics” Assume that a measured value obtained
by a measurement Mcu((X,J, F),S(p)) belongs to = ( € F). Then, we may see the
following reduction (i.e., the collapse of wave packet):

FE)F(E)
FEFE )

Note that, even in the case that p = |u)(u| € Tr",(V), the above reduction happens

Tr" (V) 2 p (= pretest state) — (posttest state =)

e Try (V).

(i.e., not invariant). However, I believe that the collapse of wave packet is due to a non-
standard argument in quantum mechanics, though the collapse may be indispensable for
the intuitive understanding of “quantum Zeno effect (c¢f. [65])”, etc. That is, I have
an opinion that from the pure theoretical point of view quantum mechanics says nothing
after a measurement. That is because, from the theoretical point of view, we always
devote ourselves to the Heisenberg picture representation and not the Schrodinger picture
representation. And further, it should be noted that the collapse of wave packet in
quantum mechanics is not a direct consequence of MT (i.e., Axioms 1 and 2, Proclaim

1) (though the (8.44) (i.e., the classical reduction) is a consequence of Theorem 8.13

in MT). Thus, in this book we are not concerned with the collapse of wave packet in

quantum mechanics.
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8.4 Kalman filter in noise

As a consequence of Theorem 8.13 (and Theorem 6.13), in this section we reconsider
Kalman filter [51], and formulate “Kalman filter” in SMT, which is proposed in [55].

Consider the conventional Kalman filter in the following system:

91(” +1 S(n + 1) = S(L C(n) 4?&)
Y|~ 05(n) (Figure (8.45))

where s(n): L-dimensional state vector at time n(= 0,1,...,N), &(n): M-dimensional
measured data vector, (w € ). In the framework of dynamical system theory (2.1), s(n)
and x(n) are described by the following equations: for each w € Q2 where (€2, Bg, P) is a
probability space,

s(n+1,w) =Ypni1(s(n,w)) +01(n+1,w) :stochastic difference state equation

(n=0,1,..,N —1).
z(n,w) = C(n)s(n,w) + O2(n,w) : measurement equation
(8.46)

Here, it is assumed that ¢, , 11, C(n), 61(n, -) (and its initial distribution) and @5(n, -) are
known where ), ,+1: K X K-dimensional transition matrix, 6(n,-): L-dimensional input
vector which represents a white noise, C(n): L x K-dimensional measurement matrix,
02(n,-): L-dimensional vector which represents a measurement error. Here, our problem

is as follows:

(#) Let 7 be any integer such that 0 < 7 < N. Let = € Br (k =0,1,2,...,N). Then

infer the state vector s(7,w) at time 7 from the fact that

(x(0,w), z(l,w),x(2,w), ..., 2(N,w)) € Zg X Z3 X Zg X -+ X Ep.

Also, note the original equation of the stochastic difference equation (8.46) is the following

equation:
s(n+1)=vYpnt1(5(n)) (n=0,1,...,N—1). (8.47)

The problem (#) was firstly answered in the framework of dynamical system theory (8.46).
Now, we consider the (f) in the framework of SMT (8.3).
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8.4.1 The measurement theoretical formulation of Figure (8.45)

Firstly, we formulate the (8.45) in SMT, (or HMT in Remark 8.3). Assume, for
simplicity, that 7' (= {0, 1, ..., N}) is a tree with a series structure (though this assumption
is not needed). For each t (€ T'), consider compact Hausdorff spaces §; and ©,. Although
it is natural to assume that §g = 8; = --- = 8y and Oy = ©; = --- = Oy, we can do
well without this assumption. Now, consider the following two Markov relations among
systems: [{Wy, 1, + C(31,) — C<St1)}(t1,t2)€Té} and [{Yy, 1, : C(O) — C(th)}(tl,tg)eT%]

such as

Wo,1

[C(80)] «+—— [C(81)] TN 10(Syy)] XY (8 )] (8.48)

where the initial state dy, (€ M’ (8y)) is assumed to be unknown, and

(C(0y)] 2 [C(8))] 2 oo D2 (0O )] B [C(Oy)]
(with the known initial state g (€ M7, (0y))). (8.49)

Here, it should be noted that the above (8.48) [resp. (8.49)] is the measurement theoretical
formulation of (8.47) [resp. the 6; in (8.45)]. Also, note that the (8.48) is equivalent to

*

‘1’8,1 m ‘I’T,2 \II?V—2,N71 m \IIN—I,N m
[MTl(SO)] - [MH(SI)] [MH(SN%)] — [MH(SN)]

where U7 )t M, (8,) — MT,(8,11)] is the dual operator of Wy, ;11 : C(8,41) — C(8y).
Since the (8.48) corresponds to the conventional (8.47), it is natural to assume that the
(8.48) is deterministic, i.e., ¥, 41 is homomorphic. Thus, for each n = 0,1,.... N — 1,

there exists a continuous map ¥y, 41 : 8, — 8,41, €.,

0,1 1,2 YN—2,N—1 YN—1,N
8] o [8] 2 Syl (8]

where
Jrr1(Wnns1(8n)) = (Wnms1(far1))(5n)  (Vfngr € C(8n41), Vsn € 8p).
Next, consider a continuous map A, : 8, X ©,, — §,,, that is,
Sn X Oy 3 (Sp, 0n) — A(Sn,0,) €8, (n=0,1,...,N) (8.50)

which should be regarded as the corresponding thing of the left @ in (8.45). The contin-

uous map A, : 8, x ©,, — 8, induces the continuous map A,, : M7 (8, x ©,,) — M7(S,,)
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such that:

(An(vy @ VD)) (Bn) = (v§ @ vF) (X, (Bn))
V(S @) e M7 (8, x ©,),YB, C 8, : open). (8.51)
) Further, define the continuous map EI\DjL’nH t M (80 X Op) = M (8541 X Op41), such
that
T1(8n xOp) 3 Vﬁ ® Vf? H&\)Z,n—i-l (1/2 ® Vr(:))

E[Anﬂ(‘l’;nﬂ%sz ® T:L,n—‘y-ly??)] ® T;;,m-l%? € MY (Snt1 X Ont1)

where 17 )t MT(0,) — MT,(O,41) is a dual operator of T, 41 1 C(Op11) — C(O,,).
That is,

VS+1 ® V7(?+1( = @Z,nﬂ(%‘:’ ® VS))

:[An+1(\1127n+11/2 ® T:L,H+IVS)] ® Tz,nJerr(? (n = 07 17 ) N — 1) (852>

which (or, the following (8.53)) corresponds to the state equation (8.46). Thus, we have
the Markov relation [{:Isn,nﬂ L0841 X Opy1) — C(8, x ©,) 1)

o 3 Dn_o N_
0,1 [C(Sl ~ 91)] 1,2 N—-2,N—-1

SN_1,N

[C(So x ©0) C(sx x o) (8:53)

[C(SN_l X @N_l)]

where EI\>n7n+1 is the pre-dual operator of Cﬂinﬂ (i.e., (ZI\Dn,nH)* = &)Z,nJrl)' That is, the
(8.53) is equivalent to

L 7 5 ‘5?\171,1\7
M1 (80 X ©g)] —— [MT1(81 x O1)] —— - M, (8n-1 X On—1)] ——— M8y x O )]
(8.53)’

Next, we consider the measurement theoretical characterization of the measurement
equation (8.46). That is, consider the following Markov relation:

/ /

To1 , Tio T o N1 , Ty 1N ,
[C(0p)] —— [C(e)] [C(ON)] —— [C(Oy)]
(with the initial state v (€ M™(64))),

which corresponds to the O3 in (8.46). Also, for each n (€ T), consider an observable
0, = (X,,,2% F,)in O(8, x©’), which corresponds to the measurement equation (8.46).
Note that the observable O,, = (X,,,2%", F},) in C(§,, x ©') can be also regarded as an
observable in C'(§,, x ©,, x ©!). Thus, we see that the (8.46) corresponds to the following:

Py 1 ‘51,2 EI;N—I,N

[C(8y x Bg x ©f)] «—— [C(81 x O1 x ©))]

(X072XU7F0) (XlaQXIaFl) (XN72XN;FN)
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with the initial state d,, ® vy ® v where C/Isn,nﬂ = (imH ® T}, ,11). Here, note that
Ve (€ M™ () and v (€ M (6})) are known, but dy, (€ ME,(Sp)) is unknown.

Therefore, we have the correspondence:

~

(8.46) in DST « (8.54) in SMT (or precisely, HMT, ¢f. Remark 8.3).

Thus, we can skip to the next section §8.4.2. However, in what follows we add the
concrete form of the family {O,, = (X,,,2%", F,)}_, (in (8.54)), which corresponds to
the measurement equation (8.46) in detail.

Let 8! and 8! be compact spaces. Let C' : 8§, — 8 be a continuous map, which

induces the continuous map AS : M7, (8,,) — M (8%) such that:

(AL ()AL = v (W) THAL)) (Ve € MI(8,), VA, C 8 < open).

/

., which induces the continuous map

And consider a continuous map X, : 8" x ©/ — §
AL M (S x ©r) — MT,(8),) such that:

(N, () @ v ))(By) = () @ v ) (N)7H(B))
V(S @) e M™ (8" x ©), VB, CS§., :open).

For each n (= 0,1,...,N), consider an observable O/, = (X,,2*" F') in C(8/,), which
may be an (approximate) exact observable (c¢f. Example 2.20). Thus, for each n (€ T),
we can define the observable O,, = (X,,,2%" F,) (in (8.54)) in C(8,, x ©/,) such that:

S e’
C(SnxOh)* <Vn ® Vn

F(Zn)) = oy (MA@ 1), FL(Ea)),,

C(snxep)  C(s,

V(S @) € MT (8, x O)).

(Sh)

8.4.2 Kalman filter in Noise

For simplicity, put 6, = 0, x ©;, and Vé:) =19 ® v, And, we rewrite the (8.54) as

follows:
=~ <%0,1 ~ ‘%1,2 EIA\’N—Z‘N—l ~ ‘%N—l,N ~
[C(SO X @0)} — [C(Sl X @1)] B [C(SN_I X ®N—1)] — [C(SN X 9]\7)]
(Xo,2%0, Fy) (X1,2%1, Fy) (Xn-1,2%N-1, Fy_1) (Xn, 25N, Fy)

with the initial state d,, ® 1/((?, where Vé:) (e MTl(éo)) is known (that is, v (€ M7 (6y))
and v§" (€ M7, (0))) are known), but d,, (€ M%,(8y)) is unknown.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
NOISE 203

84. KALMAN FILTER 1 ) )
For Clear I%rlntlng, ee ifwttp:lylwww.kelo-up.co.Jp/kup/mfomt/
Now, we get the sequential observable [Or] = [{Ot}teT;{fI;tth : C(8y, x O,) —
C(8y, x @tl)}(thtz)eg]. Then, we can construct the observable Og = ([T,op Xy, 2 X, Fy)

in C(8y x @0), which is the realization of the sequential observable [Or], such as

)

~ 3 . Sn_o N . In_ ~
[C(So x B0)] ——— [C(S1 x O1)] —=— -+ =221 [C(Sy—1 x Oy—1)] —— [C(Sy x O)]
Fo Fy Fn_1 Fn
l l l l (8.55)
(Foff@ﬁl) g’0,1 (F1(;F§:>I;2) I é‘N—Q,N—l (FN,S?%I?N) $N—1,N (Fn)
=F, =F =Fy_, =Fy

(The existence of the Oy = (I eq X, 2MeerXe, ﬁ’o) is assured by Theorem 3.7.) Thus, we

can represent the “measurement” 9MM({O;}ier, S(ds, ® VO@)) such as
M({O}ter, S(ds ® 1)) = Ms,xa,) (00, S(6s, @ 117)).
Here, assume that

(#) we know that the measured value (x;)ier (€ [[,c X¢), obtained by the measurement

M (s,x8,) (00, S(ds ® vg)), belongs to [],c. Zs

Fisher’s maximum likelihood method (¢f. Theorem 5.3, Corollary 5.6) says that there is

a reason to infer that the unknown sq (€ 8) is determined by

@ T s _ @ [ =
C(Sgx8)* {050 © 15 ’F0<H “t»c(soxéo) a Igé%ff C(Sox80)* {0: ® v ’FO(H “t)>c<s0xé0)'

teT teT

Let 7 € T, and let {B(O’T) | [L,erE¢ € 2MerX} be a family of Bayes operators.

MierEe

(The existence is assured by Theorem 6.6.) Then, we see, by Lemma 8.9, that the new
S-state v5%Or (€ M (8; x (:)T)) is defined by

T,newW

sx0, _ pl07) 6
V‘r,new — RHteTEt (530 ® Y )

where R%?;?Tat s M7 (8 % Oo) — M7 (8, x ©,) is a normalized dual Bayes operator, i.e.,

; (BL T =) w) m A . :
R%Ot’e)ﬁt(y) = H(Bgifim (Vv € M4 (89 x ©p)). Thus there is a reason to think that
er=

the new S-state (in M7 (8;)) is equal to such that:

S
UT,neW

VSt (D) =1v597(D, x ©,) (¥D,(C 8,) : open set).

T,NEW T,NeW

Remark 8.15. [Stochastic differential equation] It is important to generalize the stochas-
tic difference state equation in (8.46) to the stochastic differential equation (1.2a). In order
to do it in SMT, we must prepare the W*-algebraic formulation of SMT (in Chapter 9).
Thus we do not touch this problem in this book.
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8.5 Information and entropy

As one of applications (of Bayes theorem), we now study the “entropy” of the mea-
surement. Here we have the following definition.
Definition 8.16. [Information quantity, the entropy of measurement (= fuzzy entropy),
cf. [42]]. Consider a statistical measurement Mc ) (O = (X,2%,F), S(po)) in a com-
mutative C*-algebra C(2), where the label set X is assumed to be at most countable,
ie, X ={x1,22,..., 2, ...}. Then, the H(M), the (fuzzy) entropy of Mc(a)(O, S(po)), is
defined by

= ) ) Fle ) [Fa)e) )
‘Z</ Pl [ TIF e e % TR o)) )
(8.56)

where, P({w,}) = A[F({xn})](W)po(dW)

( = the probability that a measured value x,, is obtained)

s Flla)]w)
Iza}) = / LIF {xn} pold) "8 TR (e (w)pold) )

({:cn}> / [F ({2 }))(w) 1og[F ({2 })] (w)pold) — log P({z,})

( = the information quantity when a measured value x,, is obtained)

(8.57)

(O S(p )) is the normalized W*-algebraic representation of a C*-measurement
Mco (0 = (X,P0(X), F), S(po)), the entropy H(MCO(Q)(O,S(pO))> is also defined
by H<Mc (O, S(Po)))

|
The definition is derived from the following consideration. Assume that we get the

measured value « ( € X) by the statistical measurement M¢(q)(O, S(po)). Note that its
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probability P({z}) is given by P({z}) = cio)- (oo, F({z}) )eroy = JolF{z}](w) poldw)
Also, we consider, by (8.44) (or, (5.13)), that the new statistical state p, (€ M7, (€)) is
given by

[P pold)
JolF({e1)](@)po(d)

whose information quantity /(x) is of course determined by I({z}) = |, 37 (w) log % po(dw),

: . ative Pz : [F{{z})](w)
where the Radon-Nikodym derivative d%o(w) is defined by TPl w)pods) Thus, the av-

(D)

(VD S BQ),

erage information quantity, i.e., entropy, is given by

H(Mo@)(0,5(p0))) = > P({aa}) - I({za}),

which is equal to (8.56). Also it should be noted that the formula (8.56) can easily

calculated as follows:
HM) = Z/Q[F({flfn})](w) log[F({zn})](w)po(dw) = > P({an})log P({xn}). (8.58)

Also, if O is crisp, we see that H(M) = —> > | P({z,})log P({z,}).
Example 8.17. [Urn problem (in Example 8.1)]. There are two urns w; and wy. The
urn wp [resp. ws] contains 8N white and 2N black balls [resp. 4N white and 6N black

balls], where N is a sufficiently large number. We regard Q ( = {wi,w»}) as the state
space. And consider the observable O( = (X = {w, b}, 2{"*, F)) in C(Q) where

[F({w})l(wr) = 0.8, [F({b})](w1) = 0.2,
[F({w})](ws) = 0.4, [F({0})](w2) = 0.6.
Here define the statistical state vo(€ M7, (§2)) such that vo({wi}) = p, vo({wa}) =1 —p.

And consider a statistical measurement Me(q)(O, Su(0)).

The illustration of M) (O, Spy(v))

Pick up a ball from the urn behind the curtain
w1
= 1-p
O000e > { K ) <
0000® = —
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Put

P({x}) : the probability that a measured value x ( € {w, b}) is obtained
I({xz}) : the information quantity that is acquired when we know that
a measured value z ( € {w, b}) is obtained

the posttest state after a measured value x ( € {w, b}) is obtained
Then,

P({w}) = 0.8p+04(1—p),  P({b})=0.2p+0.6(1—p),

I({w)) 0.8plog0.8 4+ 0.4(1 — p)log 0.4
w —=
0.8p + 0.4(1 — p)
~ 0.2plog 0.2 +0.6(1 — p)log 0.6

I({b}) = 025 1 06(1—p) —log(0.2p + 0.6(1 — p)),

— log(0.8p 4+ 0.4(1 — p)),

. B 0.8p " . 04(1-p)
e =g, 0aa =y e =55 T0an -y
Alen)) = g2 Alfen)) = ot =)

~0.2p+0.6(1 —p)’
Then, we see, by (8.58), that

0.2p+0.6(1 —p)’

H(Mc()(O, Spy(10)))
=[F({w})](w1) log[F ({w})](w1)p + [F'({w})]|(w2) log[F'({w})](w2) (1 — p)
+ [F({0})](w1) log[F({0})](w1)p + [F({6})](w2) log[F'({b})](w2) (1 — p)
— P({w})log P({w}) — P({b})log P({b})
—0.8(log 0.8)p + 0.4(log 0.4)(1 — p) + 0.2(log 0.2)p + 0.6(log 0.6)(1 — p)
—(0.8p 4 0.4(1 — p)) log(0.8p + 0.4(1 — p)) — (0.2p + 0.6(1 — p)) log(0.2p + 0.6(1 — p)).

Assume that p = 1/2. Then, we see that
H(Mgo)(0, Sy (v))) = 0.6 — 0.310g, 3 = 0.123- - - (bit),

|
Example 8.18. [Fuzzy information (fast or not fast), cf. [42]]. Let Q = {wy,wa, ..., w100}
be a set of pupils in some school. Let O, = (X = {yb,nb},2x,b(')) be the crisp C*-
observable in the commutative C*-algebra C(f2) such that by, y(w,) = 0 (nis odd), =1
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(n is even), and by, 3 (wn) = 1 — by y(wn). Also, let Of = (Y = {yfvnf},QY,fH) be
the C*-observable in C*-algebra C'(€2) such that fi,3(w,) = (n —1)/99 (Vw, € ) and
Jiny(wn) = 1= fryy(wn). Let pg € MZP,(€), for example, assume that py = vy, i.e., the
equal weight on Q, namely, v,({w,}) = 1/100 (Vn). Thus we have two measurements

MC(Q)(Ob, S(Vu)) and MC(Q)(Of, S(Vu))
T e e e ettt e

Then, we see, by (8.58), that

1 (Meqo) (On, 5()

= —[[bll 21 @) 108 |03 21 @) — (01| 21 (@0 108 [[bgn3 [ 1 00)

1 1 1 1 )
=3 log 575 log 5= log, 2 =1 (bit), (8.59)

and

H <MC(Q) (Of> S(”u)))

:Amwm%mmmww+émmmm&mmmm>
— [ fwer Iz ) 108 | frum Lt @) — 1 ne 21 @) 108 1| finey 121 (@u00) (8.60)
1
~ 2/ Aogy AddA 41 = —
0

1=0278--- (bit). 8.61
g2 (bit) (8.61)

For example, assume that the symbol “y,” [resp. “ny,”] in X is interpreted by “boy”

“not

[resp. “girl”]. And “y” [resp. “n’] in Y is interpreted by “fast runner” [resp.
fast runner”]. When we guess the pure state () of the system S ( = S(,(v,)) in the
above situation, the (8.60) and (8.61) say that the crisp information “boy or girl” is more

efficient than the fuzzy information “fast or not fast”.
|

Remark 8.19. [Fuzzy information theory|. “Shannon’s entropy” is usually defined

as follows (cf. [79]). Let (2,B,P) be a probability space. Let D = {Dy, Do, ...} be
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the countable decomposition of 2. Then, the entropy H(D) of D is defined by H(D) =
—> > P(D,)log P(D,). Note that Definition 8.16 is the natural extension of Shannon’s
entropy if we regard the observable O as a “fuzzy decomposition” (cf. the formula (2.30)).

8.6 Belief measurement theory (=BMT)

In this section we study “belief measurement theory (=BMT)”, which is considered

to be closely related to “subjective Bayesian statistics”.”

Firstly let us consider the following problem:

(P) For example, consider a measurement Mc(q)(O = (X, 2%, F), Sy, formulated in
C(22), where Q = {wy,ws}, and further, assume that we have no information about

2

the [*]. How do we represent “having no information about the [*|” mathematically?

Or, how do we infer the statistical state?

We prepare three answers to the problem (P) in this book. That is, we consider three
kinds of “having no information about the [*]” (or, “having no belief whether [x] = w; or

[*] = wq ) as follows:
(A1) Tterative likelihood function method in PMT. See Mc q)(O, S((kI)),,) in §5.5.

(A2) The principle of equal probability (= “PEP”). As seen later (i.e., Theorem 11.12),
this is essentially equivalent to the hypothesis that the [ %] is chosen by a fair
coin-tossing (e.g., p = 0.5 in (8.7)). That is, it suffices to consider the statistical
measurement Mc o) (O, Si(v.)), where v, ({wi}) = vu({wa}) = 1/2.

(A3) The principle of equal weight(=“PEW” =Bayes’ postulate). See §8.6.2 later. This
method will be called “belief measurement theory” (or, “BMT”).

9This is not sure since my understanding of the subjective Bayesian statistics (cf. [21]) is not sufficient.
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Thus we may have the following classification (and correspondence):

( PMT=measurement + the relation among systems
[Axiom 1 (2.37)] [Axiom 2 (3.26)] — (A1)
SMT = PMT “statistical state” — (A
MT (Axioms 1 and 2) + (the probabilistic interpretation of mixed state) ( 2) (862)
BMT = PMT + “belief weight” — (A3)
L (Axioms 1 and 2) (the principle of equal weight)

8.6.1 The general argument about BMT

In §8.1~88.5, we studied SMT (i.e., Proclaim 1 (= the probabilistic interpretation of
“mixed state” ) + Axiom 2), in which “mixed state” has the probabilistic interpretation.
In this section, we propose another interpretation of “mixed state”, which may be called

“belief interpretation” That is, we want to assert:

“probabilistic interpretation” — “SMT”
[Proclaim 1 (8.10)] in §8.1~8.5

P e GM(AY) - (8.63)
(mixed state) “belief interpretation” — “BMT”
[the principle of equal weight (8.72)] in this §8.6

The purpose of this section is, of course, to propose “belief measurement theory” (or,
“BMT”).

We begin with a simplest example as follows. Consider the statistical measurement
M) (O = ({w, b}, 2w F), Siy(1)). Here

[F{whl(wr) =08, [F({b}](w1) = 0.2, [F{w})](w2) = 0.4, [F({b})](w2) = 0.6,

and, vy({w1}) = 1/4 and vy({w1}) = 3/4. Recall that this measurement is symbolically

described as follows.

Pick up a ball from the urn behind the curtain
Ul (% wl)
=== 3/4
oJoJoyo) J > { >R ) <
0000® N J

Figure(8.64)
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By a hint of the Figure (8.64), we can introduce “BMT” as follows. Assume that there

are 100 people. And moreover assume that!®

25 people (in 100 people) believe that [x] = U;
75 people (in 100 people) believe that [x] = U

That is, we have the following picture (instead of Figure (8.64)):

Pick up a ball from the urn behind the curtain
Ul (% C(Jl)
0000® = K = -
O000e S S
25 people believe that [x] = Uy. 75 people believe that [x] = Us.

Figure(8.65)
This is just the “belief measurement”, which is denoted by M) (O, Siy(0)sw). Also,
the vy is called a belief weight (or, approval rate, conviction degree ).'*

We add the following remark:

(R1) Note that the [*] (in M¢)(O, Sy(10)pw) ) is assumed to be unknown. Thus,
the triplet (X, 2X . M(Q)<1/,F(-)>C(Q)> is a merely mathematical symbol and not
a sample space. In other words, it is nonsense to consider the probability that
the measured value obtained by Mc(q)(O = (X,2%, F), Sy(¥))w) belongs to Z(€
2%). That is, Proclaim 1(8.10) does not hold for a belief measurement Me (o) (O =

(X, 2%, F), Spq(¥))bw), or equivalently, a belief measurement has no sample space.

This (R;) is clear. That is because the argument mentioned in Example 8.1 is invalid
for a belief measurement, since v ( in Me()(O, Sp(¥)sw) ) is a belief weight and not a
statistical state.

However (i.e., in spite of the fact that Proclaim 1(8.10) is invalid), we have the following
theorem:
Theorem 8.20. (Bayes theorem for belief measurements). Assume that we know that

a measured value obtained by a belief measurement M¢q)(O = (X, T, F), Su(¥)sw)

10Recall “parimutuel betting”, which is very applicable. For example, we may consider the
“probability” that life exists on Mars.

"'Thus, outsiders may think that Mc o) (O, Sp(v0)sw) and Mc(q)(O, Sp,) are the same. That is
because the number of the believers is not related to the measurement itself.
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8.6. .BE
For Clear Igrlntlng,
belongs to = (€ F). Then, we have the “Bayes theorem” such that
M () > v(= priori belief weight) — (posterior belief weight :)R(EO 0)(1/) e M7 (22). (8.66)
(8.67)

(VDo C Q; Borel set ).

where
Jp, [P (E)(w)v(dw)

Jo[FE)](w)v(dw)

D W)(Dy) =

s

R

Proof. Tt suffices to prove a simple case since the proof of the general case is similar.

For example, consider the following figure, which is essentially the same as Figure (8.65).

Pick up a ball from the urn behind the curtain

Ul(% wl)
oJoleoleX > g’\l x ‘:, .
0000 e = S
75 % people believe that [x] = Us.

25 % people believe that [x] = U;.
20 % people guess that a white ball will be picked. 30 % people guess that a white ball will be picked.
5 % people guess that a black ball will be picked. 45 % people guess that a black ball will be picked.

Assume that a “white ball ” is picked in the above picture. Then, we see:

Ur(~ wr) A
oJoJelel = X = -
0000 ® = S
75 % people believe that [*] = Us.

30 % people guess that a white ball will be picked.
45-%people-guess—thatablack ball-will- be-picked.

25 % people believe that [x] = Uy.

20 % people guess that a white ball will be picked.
5-9 eople-guess—that-ablack-ball-will-be-picked-

which is equivalent to the following figure:
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Ul(% wl)
0000® = ok | -
0000® = S
40 % people believe that [x| = Uy. 60 % people believe that [x] = Us.

Thus we see that Bayes theorem holds for belief measurements. That is because Theorem

8.20 (Bayes theorem for belief measurements) says:

M (2) 3 vy(= priori belief weight) +— (posterior belief weight :)R(EO’O)(I/O) e M}, (Q). (8.68)

where
G = A (i — )
f [F({w})](w)ro(dw) X+ x2 100
(RO (1)) ({w}) = =2 _
e JolE(Qwh)] (@) ro(dw) 49 g e
(8.69)

Although this proof is easy, it should be noted that this is different from the proof of
Bayes theorem for a statistical measurement. That is because Proclaim 1 (8.20) can not
be used in the proof of Theorem 8.26.

O
Remark 8.21. (Extensive interpretation in theoretical informatics). Seeing Figure
(8.65), some may think that the belief weight v (in Mc) (O = (X, F,F), Sp(v)sw)
represents the only “public opinion”. However, this is wrong. Recall the spirit of the-
oretical informatics (in the footnote below the statement (1.12) in Chapter 1), i.e.,
“extensive interpretation”. Thus, we consider that the belief weight v (in Mg @) (O =
(X, 3, F),S(V))pw) often represents “personal belief”.

[

8.6.2 The principle of equal weight

As mentioned in the previous section (i.e., §8.6.1) we have the following notation:
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Notation 8.22. [Mc)(O, Su(¥),,) |- The symbol Mcq) (O, Su(v)),.), (v €
M (), is assumed to represent the measurement Mc) (O = (X, 5, F), Sy) un-
der the hypothesis that the belief weight of the system S} is v. And it is called a belief
measurement.
[
Now let us explain “Bayes postulate” (= “the principle of equal weight”). Assume
that € is finite (i.e., Q = {w;,ws, ...,wn}). Then, there is a reason to think that the mixed
state v, (€ M7 (12)) defined by

D
(o)=L wpcg (5.70)
represents “the loosest belief” or “knowing nothing about Sj;”  (The v, is called the

“equal weight”? Cf. Remark 8.23 later). If §2 is infinite, we have no firm opinion!? Thus

in this section we always assume that € is finite.

We add the following remark.
Remark 8.23. [Mathematical properties of equal weight v, [42]]. Let Q = {wq,wa, ...,wn}
be a finite set with the discrete topology. Let pg* be arbitrary belief weight (i.e., p§’
€ M7, (€2)). Then, define the entropy H(pg") of the pg* by

H (o) = ~ 3 A ) o ().
Here, it is well known that -
() sup {H (o) : ol € MI(Q) | = log N, (8.71)
(i) Pt ({wn}) = 1/N(¥n)” = “H(p}") = log N

(iii) Let Thy : C(Q) — C be the average functional on C(Q), i.c., a linear positive
functional such that:
(a)  Tw(1)=1
(b)  Tw(f)=Tw(fod)  (Vf€C(Q),V bijection ¢ : Q@ — Q)
where (f 0 ¢)(w) = f(d(w)).

12For example, we may consider as follows: Let Q be not finite. Let 8g be a subset of {® | ® : C(Q2) —
C(€2) is a Markov operator }. Assume that the 8g has the unique invariant state v, (€ M7 (Q2)), that
is, ®*v,, = v, (V@ € S8q). And further assume that v, (U) > 0 (VU( C Q, open ). Then, we may say that
the v, represents “no belief weight (concerning 8q)” or “completely shuffled weight” Also, see [47].
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(iv) Tup is uniquely determined such as T,,(f) = [, f(w)vu(dw) < = M) (Vf e
C()).

Therefore, we can assert:

The principle of equal weight (= “PEW” = Bayes’ postulate).
[The belief interpretation of mixed states]. — Consider a system Sy, for-
mulated in C(§2) where the state space Q) (= {w1,ws,...,wn}) Is a finite
set. The belief weight is represented by a mixed state v (€ M7T,(2)). In
particular, the equal weight v, (= ~ Zgzl du, € M (S2)) represents “the

N
loosest belief™ (8.72)

Thus BMT is summarized as follows.

[BMT, | the equal weight v, ( € M7;(€2)) represents “the most loosest belief”.

[BMT, ] After we get the measured value z by a belief measurement M¢ (o) (O = (X, 2%, F),
Su((p5), ), the new belief weight of the system Sy, is changed to pl,, (€ M7, (2))

bw

such that p  (B) = ﬁg&ﬁﬂgg;g 2:((3:; (VB € Bg, Borel field).

Define the map [R?;’f)] c ML (Q) — M (K2) such that:

~p [Pz )l(w)v (dw)

(070) m
By 16™) = T R @)

{z}

(VDo C Q; Borel set ). (8.73)

Then, we can symbolically describe it as follows:

[BMT,] the loosest belief weight «—  v,( € M7, (Q2))

[BMT] = (8.74)

(O, St (P)bw)

[BMTa]  Sp (0o ——

x is obtained

SR

which should be compared with the characterization (5.80) of “Iterative likelihood function
method”
Example 8.24. [= Example 5.24 (the urn problem)]. There are two urns w; and ws.

The urn wy [resp. wo] contains 8 white and 2 black balls [resp. 4 white and 6 black balls].
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50% people believe that [x] = U;. 50% people believe that [x] = Us.

Figure(8.75)
Assume that they can not be distinguished in appearance.

e Choose one urn from the two. (8.76)

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball”

(Q1) Do you believe which the chosen urn is, wy or we?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Do you believe which the chosen urn is, wy or we ?
And further,

(Q3) Also, study the case that the urn is chosen by a fair coin-tossing in (8.76).

[Answers]. In what follows this problem is studied in BMT. Put Q = {w;,ws}. O =
({w, b}, 20, F) where [F({w})](w1) = 08, [F({b})](w1) = 0.2, [F{w})](w2) = 0.4,
[F({b})](w2) = 0.6. The PEW (8.72) says that the loosest belief is represented by v,
(ie., v,({wr}) = v,({w2}) = 1/2)]. Thus we have the belief measurement M¢q)(O,
S (VD)

Ay). Thus, consider M) (O, Si(v . Since the measured value “w” was obtained,
( (o) (v,

bw

the new belief weight p”

o FloDl@r(d).  osxl 2 B
RO @) )= 08T i 0l — 5 el =3

Prew({w1}) (=
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(A2). Next, consider the measurement Mc ) (O, Sy ( Pty ). )- Since the measured

value “0” was obtained, the new belief weight pI . is represented by

m S EEDIW)pne(dw)y 02x 2 2
pneﬂ({“”( JolF({b)](w)pi, (dw) ) T 02x2406xL 5

m S [FQODI@)p(dw)y 06 xL 3
Pnew({wz})< JolF({b})](w)pm (dw) ) 02X §+ 0.6 x % 5

(A3) Also, when the urn is chosen by a fair coin-tossing, the above pI’ . and p . acquire
the probabilistic interpretation. That is, pi,, and p . are regarded as statistical

states.

[Remark]. In order to make a belief measurement M¢ (o) (O, Sp(v4)),, ) change a statisti-
cal measurement Mc(q)(O, Si( v, ), we have two methods. One is the fair coin-tossing
method as mentioned in the above (A3) (and (Q3)). Another will be proposed as SMTpgp
in §11.4, i.e., “the principle of equal probability”. Also, note that Theorem 11.12 says that

the two methods are equivalent.

|
8.6.3 Is BMT necessary?
Now we have the following classification:
( PMT=measurement + the relation among systems
[Axiom 1 (2.37)] [Axiom 2 (3.26)]
SMT = PMT + “statistical state”
MT (Axioms 1 and 2) (the probabilistic interpretation of mixed state) (877)
BMT = PMT + “belief weight”
L (Axioms 1 and 2) (the principle of equal weight)

However, we must consider and answer the following question:
(Q) Is BMT necessary?

In fact, some may think that

(A) BMT is not necessary. It suffices to substitute SMT for BMT carefully. In theoretical

informatics, the “economical” should come before the “exact”.
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I may agree with them. However, it should be remarked that
(R) It is clear that we can not use SMT carefully without the understanding of the

relation between SMT and BMT (i.e., without the understanding of the contents in
§8.1 ~ 8.6.2). Especially, note that Proclaim 1 (8.10) is not valid in BMT.

If this (R) is admitted, I agree to the above opinion (A). Thus, I recommend readers to
use BMT at least until becoming accustomed to BMT. Also, it should be noted that there
is a great confusion in the conventional statistics.

Remark 8.25. [The term: “subjectivity”]. Since the term “subjectivity” is frequently
used in statistics, we must be careful for the usage of “subjectivity”. For example, consider

the following phrase:
e the probability that tomorrow is fine. (8.78)

The above term:“probability” is usually called a “subjective probability”. However, the
“probability” in (8.78) is the same as the “probability” in the following problem (which
is due to Newtonian mechanics, and thus, deterministic). In spite of the deterministic

system, we have the following question:

“Calculate the probability that the ball surmounts the mountain M.” (8.79)
That is, the case (a) or (b)?

—

VU

Ball .
|
I

x
bumpy

where the initial condition x(position) and ¥/(velocity) are values with errors, and also,
the differential equation is not completely known. However, it should be noted that this
problem is usual in engineering. Thus, if this is subjective (or, if a dearth of information

implies “subjective”), we consider that almost every problem in engineering is subjective.!?

13Recall the argument in Chapter 1. That is, in theoretical physics we must be in the objective standing
point. On the other hand, in theoretical informatics (and its applications) we are, more or less, in the
subjective standing point. Recall the engineer’s spirit “Use everything available”. Thus we may ask the
excellent bookmaker about the problem (8.79). However, it should be noted that the bookmaker may
calculate the “subjective probability in the sense of BMT (or, parimutuel betting among general people)”.
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There is a reason to consider that the probaility in the problem (8.79) can be regarded
as the “subjective probability in the sense of parimutuel betting among a certain set
of specialists”. However, it is so, every probability may be regarded as the subjective
probability. Thus, in this book, the term: “subjective probability” is used in the case

that it is regarded as the probability in the sense of parimutuel betting.
|

Remark 8.26. [Differential geometry and operator algebra, cf. Table (1.8a)(4)]. In
mathematics, differential geometry is flexible, but the theory of operator algebras (i.e,
C*-algebra and W*-algebra) somewhat lacks adaptability. Thus, in MT' we can not
prepare so many ready-made theories. For example, we have two ready-made theories
(i.e., BMT and SMTpgp (¢f. §11.4)). This fact (i.e., few ready-made theories can be
proposed) is just what we want. That is because to choose one from too many ready-
made theories is essentially the same as to create a made-to-order theory. On the other
hand, in order to create a made-to-order theory in theoretical physics, the flexibility of

differential geometry is essential.
[

8.7 Appendix (Bertrand’s paradox)

As mentioned in Remark 8.4, a natural mixed state is not always a ststistical state.
In fact we see, in §8.6, that the no informational weight v, (€ M7, (€2), where € is finite)
defnied by (8.70) can not be unconditionally regarded as the statistical state.!> (As seen
later (in §11.4), the term “unconditionally” is important.) In this section, we study
Bertrand’s paradox, which promote our understanding of the relation between a natural

mixed state and a ststistical state.

8.7.1 Review (Bertrand’s paradox)

Here, let us review the usual argument about Bertrand’s paradox (c¢f. [35]). Consider

14 Although Fisher information is closely related to Riemann manifold (in differential geometry, cf [5],
[24]), it is not the axiom of MT but a kind of method.
5The v, is invariant concerning any bijection ¢ on €, i.e., ¢(v,,) = v,. In this sense, it is natural.
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the following problem:

(P;) Given a circle with the radius 1. Suppose a chord of the circle is chosen at random.
What is the probability that the chord is longer than v/3 (i.e., the side of an inscribed

equilateral triangle)?

The problem has apparently several solutions as follows:

(Fig.1) (Fig.2)

N ° ’
\_/
[First Solution (Fig.1)]. The “random endpoints” method: Choose a point A on the
circumference and rotate the triangle so that the point is at one vertex. Choose another
point on the circle and draw the chord joining it to the first point. For points on the
arc between the endpoints of the side opposite the first point, the chord is longer than a
side of the triangle. The length of the arc is one third of the circumference of the circle,

therefore the probability a random chord is longer than a side of the inscribed triangle is

one third.

[Second Solution (Fig.2)]. The “random radius” method: Choose a radius of the circle and
rotate the triangle so a side is perpendicular to the radius. Choose a point on the radius
and construct the chord whose midpoint is the chosen point. The chord is longer than
a side of the triangle if the chosen point is nearer the center of the circle than the point
where the side of the triangle intersects the radius. Since the side of the triangle bisects
the radius, it is equally probable that the chosen point is nearer or farther. Therefore the

probability a random chord is longer than a side of the inscribed triangle is one half.

8.7.2 Bertrand’s paradox in measurement theory

We assert that

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

20CHAPTER 8. STATISTICAL MEASUREMENTS IN C*-ALGEBRAIC FORMULATION
onr Cﬁear%rmtmg, ee Ahttp:ﬁwww. elo-up.co.jp l?upf\mfomt}w

(8) If Bertrand’s paradox is a paradox (i.e., if the argument in §8.7.1 is considered to

be strange), it is due to the confusion between statistical states and mixed states
(cf. (8.11)).

In what follows, we shall explain it. Consider the following problem:

(P,) Given a circle with the radius 1. Define the state space € by the set composed of
all chords of this circle. Then, find a natural mixed state p ( € M7,(2)).

The reader will find that the (FP%) is essentially the same as the problem (P;) in §8.7.1.

Thus, the above problem has also apparently several solutions as follows:

(Fig.0)

Represent a chord [
by a natural coordinate!

(Fig.1") (Fig.2")

—2\ 2\
Pl

7

[First Solution (Fig.1’)]. See Fig.0 (Represent a chord by a natural coordinate!). In
Fig.1’, we see that the chord [ is represented by a point («,3) in the rectangle Ry =
{(a, ) | 0 < < 2w, 0 < < m/2(radian)}. That is, we have the following identification:

= l(aﬁ) — (Oé,ﬁ) € R.

Under the identification, we get the natural mixed state p; (€ M7, () ~ M7, (R;)) such
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that p1(A) = ﬁ;ﬁ;ﬁ]} = Ar7er32a 4 (VA € Bp,), where “Area” = “Lebesgue measure”,

Therefore, we see

p1({l(ap) € Q| 7the length of [, 5" > V/3})
_Area[{(a,8) |0 <a<2m, 0 <3< 7/6}]
~Areal{(a,8) |0 < a <27, 0< 3 < 7/2}]
2 x (m/6) 1
“onx (m/2) 3

(8.80)

[Second Solution (Fig.2')]. See Fig.0 (Represent a chord by a natural coordinates). In
Fig.2', we see that the chord [ is represented by a point (r,6) in the rectangle Ry =
{(r,0) |0 <r <1, 0<6<2r}. That is, we have the following identification:

Q> g «— (r,0) € R,.

Under the identification, we get the natural mixed state p, (€ M7, (Q2) = M7, (R,)) such

that pa(A) = ﬁg:;g] = Ar;?[A] (VA € Bpg,). Therefore, we see

p2({l(a,3) € 2| "the length of I, 9" > V3})

_Area[{(r,0) |0<r<1/2,0<0<2r}] 1
T Areal{(r,0)|0<r<1,0<6<2r}] 2 (8.81)

Since the above argument is related to “mixed state” and not “statistical state”, we
have no paradox in the above arguments. That is, if Bertrand’s paradox is a paradox
(in §8.7.1), it is due to the confusion between mixed states (mathematical concept) and
statistical states (measurement theoretical concept).

Some may assert that:
e it suffices to test (8.80) or (8.81) experimentally.

However, it is not true. For completeness, we add the following remark.

Remark 8.27. [Mixed state and statistical state]. In the above arguments, note that p;
(€ M7(2)) and py (€ M7T,(€2)) are mixed states and not statistical states. In order to
regard a mixed state p; (€ M7, (€2)) as a statistical state, we must add the probabilistic

interpretation to the mixed state p;. This is, for example, done as follows:

(R;1) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 17, “ball
27 ...,“ball 100" ). Pick out one ball from the urn A. Assume that the ball is “ball
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m”.  Next, pick out one ball from the urn B. Assume that the ball is “ball n”.
Define (a, #) in the rectangle R; such that:

2mm ™

“=To0° 7= 200

Then, if (o, 3) is chosen according to the above rule (R;), the mixed state p; (€ M7, (2))
acquires the probabilistic interpretation. And thus, it can be regarded as a statistical state.
In fact, if we take an exact measurement, we see that the probability that the length of
the chord is longer than v/3 is given by 1/3. Of course, by a similar way, we can add
the probabilistic interpretation to the py (in the second solution). That is, it suffices to

choose a chord as follows.

(R2) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 17, “ball
27 ...,“ball 100" ). Pick out one ball from the urn A. Assume that the ball is “ball
m”.  Next, pick out one ball from the urn B. Assume that the ball is “ball n”.
Define (7, 6) in the rectangle R; such that:

m g, 2m

100’ 200

Summing up, we conclude as follows. Consider the following problem:

(P1)" Given a circle with the radius 1. And choose a chord. Find the probability that the

chord chosen is longer than v/3 (i.e., the side of an inscribed equilateral triangle).
Then, we see:

(A;) If we know that the chord was chosen by the rule (R;) in Remark 8.27, we can
conclude that the probability that the chord chosen be longer than /3 is 1/3.

(Ag) If we know that the chord was chosen by the rule (R;) in Remark 8.27, we can
conclude that the probability that the chord chosen be longer than /3 is 1 /2.

(A3) If we know that the chord was chosen by the physical experiment (conducted in
[49]), we may conclude that the probability that the chord chosen be longer than
V3 is about 1/2 (cf. [49]).

(Ay) etc.
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We consider that something like a (physical) coin-tossing (such as Brownian motion,
radioactive atom, etc.) is hidden behind the physical experiment (in (As)). Thus, we

again stress that

e A “coin-tossing” is always hidden behind a statistical state. Or there is no statistical

Y2l 13

state without a “coin-tossing” (or, “dice-throwing”, “urn problem”).

Also, it should be noted that we are in theoretical informatics and not in theoretical

physics.
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Chapter 9

Statistical measurements in
W*-algebraic formulation

The Statistical MT (= SMT) has two kinds of formulations. One is SMTC" (i.e., the C*—algebraic
formulation of SMT), which was introduced in the previous chapter, that is,

SMTC" = statistical measurement + the relation among systems in C*-algebra.  (9.1)
[Proclaim 1 (8.10)] [Axiom 2 (3.26)] (=(8.2))

In this chapter we introduce another formulation of SMT (i.e., SMTY "), that is,

SMT"W" = statistical measurement + the relation among systems in W*-algebra, (9.2)
[Proclaim™1 (9.9)] [Proclaim™ "2 (9.23)]

which is called the W*—algebraic formulation of SMT. Of course, “SMT"” and “SMT"Y 7 are
essentially the same. The difference between the two is that of the mathematical tools (i.e.,

C*-algebra and W*-algebra). Thus, “SMT"" should be understood by an analogy of “SMTC 7.
Although the C*-algebraic formulation is most fundamental, the W*-algebraic formulation is rather
handy from the mathematical point of view.

9.1 Statistical measurements (W *-algebraic formula-
tion)

The Statistical MT (= SMT) has two kinds of formulations. One is the C*—algebraic
formulation of SMT (= SMT®"), which was introduced in the previous chapter. In order

to develop “Statistical M'T”, in this chapter we introduce the W*-algebraic formulation of

Statistical MT (= SMT"")! Here, it should be noted that “SMT®"” and “SMT""” are

10Of course, the (pure) measurement theory (= PMT) has also two kinds of formulations, i.e., PMTC
and PMT"V". However, the commutative PMT"" has a demerit such that a pure state can not be
represented in the commutative PMT" ™ in general. (cf. the statement (9.3)). Thus, we usually focus
on SMT"" and not PMT"" However, it should be noted that as far as quantum mechanics, PMT" is
superior to PMTY" Cf. 89.3.

225
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essentially the same. The difference between the two is that of the mathematical tools
(i.e., C*-algebra and W*-algebra).

The C*-algebraic formulation stated in the previous chapter is, of course, most fun-
damental. However, from the mathematical (or technical) point of view, the topology of
a C*-algebra A is somewhat too strong. Note that any C*-algebra A can be imbedded
into B(V'), the algebra composed of all bounded linear operators on a Hilbert space V'
(c¢f. Theorem 2.4 (the GNS-construction in [50, 76, 82])). Thus, using the imbedding:
A C B(V), we may start from the weak*-closure A (of A) in B(V). This A is called a W*-
algebra. This method (i.e., to formulate measurement theory in terms of W*-algebras) is
called the W*-algebraic formulation. Though this method is somewhat methodological,

it is rather handy from the mathematical point of view. (For example, this will be seen

in Theorem 10.1 in Chapter 10.)
Let N be a W*-algebra, that is,

[f1] N is a weak™ closed subalgebra of a certain B(V).
It is well known (see, for example, [76]) that this is equivalent to
[f2] N is a C*-algebra with the pre-dual Banach space N, (i.e., N = (N,)*).

Also, it is well known that the uniqueness of the pre-dual Banach space N, is assured.
However, we may sometimes call the pair (N, N,) a W*-algebra.

An element F in N is called self-adjoint if it holds that F' = F™*. A self-adjoint element
F in N is called positive (and denoted by F' > 0) if there exists an element F in N such
that F' = FjjF, where F{j is the adjoint element of Fy. Also, a positive element F is called
a projection if F' = F? holds.

Now we can define the normal state-class &"(N,) such as

S (N ={p" €N, : [

N, = L and p" >0 (ie., p"(T*T) > 0 for all T € N)}.

The element p" (in &"(N,)) is called a normal state (or, density state). The linear
functional p™(7T) is sometimes denoted by <p”,T>, or precisely, <p",T>N. Also, note
that

e a IW*-algebra N has a lot of projections,

that is, the set of all finite linear combinations of projections is dense in N in the weak*

topology o(N;N,). Also, note that
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e N has always the identity Iy.

Example 9.1. [(i): Commutative W*-algebras ; L>(, 1))]. Let (2, B, 1) be a measure
space. For any 1 < p < oo, define LP(S, p) < = L*(Q, Bg, )> = {f : f is a complex
valued measurable function such that ||f|z» = [ [, |f(w)[Pp(dw)]? < oo }. (Here7 of
course, || f||r=~ = ess.sup {|f(w)| : w e Q}) Then, the N = L>°(, ) is a commutative
W*-algebra with the pre-dual Banach space N, = L'(Q,u). We see, of course, that
G"(N,) = L (Qpn) = {p* € L'(Qpu) : p" >0, [, " (w)u(dw) = 1, ie., p" is a density
function on 2 }. Also, it is well known that any commutative W*-algebra N is represented

by some L*(£2, ). It should be noted that

e a “pure state” can not be generally represented in terms of the commutative

W*-algebra L (2, p), (9.3)

since we see” that d,, (i.e., a point measure at wy ( € )) does not necessarily belong to

LY (9, ). Summing up (and recalling Example 2.2), we see,

’ H commutative C*-algebra \ commutative W*-algebra ‘

concrete form C(Q) L>(Q; )

dual space M(Q) (=C(2)") not important

pre-dual space nothing LY u) (= L°(Q p).)

pure state duy € ME,(Q2) = Q (no representation in general)
mixed (normal) state || v € M’ () pe Ll (Qp

characteristics® topological approach measure theoretical approach

[(ii): The case that € is countable or finite]. Of course, the above table is in the case
that € is general. In the case that Q = {w;,ws,...,w,} is finite, we can easily see that
“commutative C*-algebra” = “commutative W *-algebra”, that is, we see the following

identifications:
C{w1,wa, ...,wn}) = C"(cf. the formula (2.15)) ~ L ({w1, wa, ...,wn }, 1) (9.4)

where p is a measure such that p({wi}) > 0 (Vk = 1,2,...,n). Next consider the case that
Q = {wy,ws, ..., wg, ... } is countable infinite. The commutative W*-algebra N is defined by

2In this sense the W*-algebraic formulation is fit to SMT rather than PMT. However note our spirit
(8.12) : “There is no SMT without PMT? Thus we think that PMT (i.e., the concept of “pure state”)
is not only hidden in the C*-algebraic formulation of SMT but also in the W*-algebraic formulation of
SMT.

3The © in C(R) is a topological space. On the other hand, the  in L°(Q; u1) is a measure space. Cf.
Remark 9.14 later.
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L>(Q, 1), where p({wi}) >0 (Vk =1,2,...). In this case, a pure state p,, (k=1,2,...),
is defined by p,, (w) = = (if w = wy), =0 (if w # wy).

#({wr})
|

Example 9.2. [Non-commutative W*-algebras; B(V)]. When N = B(V), we see
that N, = Tr(V) (c¢f. Example 2.3) and &"(N,) = Tr (V) = {p" € Tr(V) : p" >
0, p" | 7,y = 1} Also, note that TT(V><p”, T>B(V) =tr[p"T]y. Here, tr[A]y =3, a{ex, Aex)v
where {ex|A € A} is a complete orthonormal basis in V. Also, it is well known that the
value tr[A]y is independent of the choice of a complete orthonormal basis {ex|A € A} in
V. Further, any p" (€ Tr7(V)) is represented by p" = Y, axles)(es| (in the trace
norm || - [|r,v)) for some complete orthonormal basis {ex|A € A} in V' and some sequence
{ax}rea of non-negative numbers such that ), ., ax = 1. Also it should be noted that
any |v){v|, (]lv]| = 1), is just a pure state!. Summing up (and recalling Example 2.3), we

see,

’ H non-commutative C*-algebra \ non-commutative W*-algebra ‘

concrete form (V) B(V)
dual space Tr(V) (=C(V)") not important
pre-dual space nothing Tr(V) (= B(V),)
pure state lv)(v] € Trt (V) lv)(v| € Trh (V)
mixed (normal) state || mixed state: p™ € Tr7 (V) | normal state: p" € Tr7y (V)
(9.5)
|

The following definition is the W*-algebraic form of Definition 2.7 (C*-observables).

Definition 9.3. [W*-observables|. Let N be a W*-algebra. A W*-observable ( or in

short, observable, fuzzy observable) O = (X, F, F) in N is defined such that it satisfies
that

(i) [o-field]. (X,F) is a measurable space, that is, F ( C 2%) is a o-field on X, i.e., it
satisfies that

4This fact (i.e., a pure state can be represented in terms of W*-algebra B(V)) is remarkable. Thus,
The W*-algebra B(V') has a power to describe quantum PMT as well as quantum SMT. Cf. §9.4.
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(ii) for every = € F, F(E) is a positive element in N (i.e., 0 < F(Z) € N) such that
F(0) =0 and F(X) = In, where 0 is the 0-element and Iy is the identity element
in N, and,

(ili) [ countably additivity |. For any countable decomposition {=;,=s,...,=Z;,...} of =,

(1e, =5 € FURE; =5, NS, = (jfj;éz)),jtholds that

E)=) F(E
j=1
where the series is convergent in the sense of the weak*-topology o(N;N,) in N.

If F(Z) is a projection for every = ( € F), a W*-observable (X, ¥, F) in N is called a crisp
W*-observable in N. Also, a crisp observable O = (R, Bg, F) (or, (R", Bg», F)) in N is
called a quantity (or, R"-valued quantity) in W*-algebra N.

|

Now we show several W*-observables (in Example 9.4 ~ 9.7).

Example 9.4. [Crisp W*-observables in L>(€2, 1)]. (i). As a typical crisp W*-observable
in L>(Q, ), the ezact observable Oy, = (2, Bq, X,,) is frequently used where x. is the
characteristic function of = ( € Bg) (i.e., Xz(w) = 1w € E),=0 (0therwise)>. This
observable is finest in L*>(€), ), i.e., it includes all projections.

(ii). Consider the commutative W*-algebra L>(£2, ). Let a : Q@ — R be a measurable
function. Then, we can define the crisp W*-observable O, = (R, Bgr, F) in L>®(, p)
such that [F(Z)](w) = Xe-13)(w) (VE € Br,Vw € ). Note that we can identify the

real-valued measurable function a( - ) with the O,. That is, we see

a:Q—R — (R,Br,F) in L®(Q,u)

(real valued measurable function on ) (crisp observable) ’
That is because it holds that [F(( — oo, A))](w) =0 (if A<a(w)),=1(3G A > a( )) and
therefore, the a(w) is determined by the equality a(w) = [ Ma(w)(dN) = [g A[F (w)

(a.e. ). A real-valued measurable function on Q is called a (classical ) quantzty in
L>(Q, i) (though it is not always a bounded function).
|

Example 9.5. [Gaussian W *-observable]. Define the IW*-observable O = (R, Bg, F{,))
in N = L*>°(R, dw) such that:
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1 (u—w)?
FZ(w) = e 22 du Yw € R, V2 € Br). (0?: variance).

This is, of course, the TW*-algebraic form of the Gaussian C*-observable O = (R, BY!, F{.))

(¢f. Example 2.17). Note that the Bg in O is a o-field, and the B5% in O is a o-ring.
[

Remark 9.6. [The vagueness of a crisp observable]. Let v be a probability measure
on an index set ©. For each # ( € ©), consider a crisp observable Oy = (X, 7, Ep) in
W*-algebra N. Define the observable O = (X, F, F) in W*-algebra N such that:

F(E) = / Ey(E)u(ds) (V= e F)
e
which is not crisp but fuzzy in general. Thus we think that

(F) “fuzzy observable“<= “To understand a dearth of information concerning a crisp

observable by a fuzzy observable”

This is one of the aspects of “fuzzy observable” When we want to stress this statistical
aspect, the “observable” is often called a “fuzzy observable” (or, “random observable”).
This will be again discussed in §11.4.

[
Example 9.7. [(i): Crisp W*-observables in quantum B(V')]. Here, consider the quan-
tum version of the (ii) in Example 9.4. Let A be a self-adjoint operator (not necessarily
bounded) on a Hilbert space V. Recall the spectral representation: A = [p AEA(d)).
Here, the spectral measure O4 = (R, Bgr, E,4) is of course the crisp W*-observable in
B(V). Conversely, any crisp W*-observable (R, Bgr, F) in B(V) determines a unique
self-adjoint operator Ap on V such that Ap = [ AF(dX). Therefore, we have the identi-
fication:

A «—0,4=(R,Bgr, F) in B(V) (i.e., A= /\F(d/\)>
(self-adjoint operator on V) (crisp observable)

A self-adjoint operator A on a Hilbert space V' is called a (unbounded ) quantity in B(V)
(though A is not always a bounded linear operator).
[(ii): Position quantity, momentum quantity]. — Put V = L*(R;dq)), and define the
(unbounded) self-adjoint operator @ [resp. P], which is called the position quantity [resp.

momentum quantity |, such that:

i)

(QY)(q) = q-v¥(q), resp. (Py)(q) = —i da
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By the following spectral representations,

Q- / NEg(d\) and P / NEp(d)),
R R
we see the following identifications:

Q <—>6Q = (R, BR, EQ) in B(V)

(self-adjoint operator on V') (crisp observable)
and

P <—>6P = (R, BR,EP) in B(V)

(self-adjoint operator on V') (crisp observable)

Here note that
[Eq(E)¢)(q) = x=(q) -¥(q) (V¥ € L*(R),V= € Br,q € R)
and

Ep(E)Y =F(x=-(F¥)) (V¢ e L*R), VE € Br,q € R),

where the Fourier transform § : L*(R, dz) — L*(R, dy) is defined by

= \/g/qu(x)e_mmydx.

231

Note that both the position observable and momentum observable, which are most im-

portant in quantum mechanics, can not be defined in the C*-algebraic formulation.

[(iii): Glauber-Sudarshan representation]. Consider ¢y ( € V = L*(R;dq)) such that

%0l 22(r) = 1 and
(10, Pio)v = 0, (1o, Qbo)v = 0.
If we define ¢, ,(q) = €¥1ho(q — ), then an elementary computation shows that
(Posy bay)r2m) =Y, (Qbzy, Poy)r2m) = .
Here we can define the 1W*-observable (R?, Brz, G) in B(L*(R;dq)) such that:
6@ = [[16s)0nfdndy (¥ € Bre),

This observable is essential in semi-classical mechanics (cf. [34]).
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The following theorem is the W*-algebraic form of Theorem 2.13. Since W*-algebra
N has a lot of projections, it is much more useful than Theorem 2.13.
Theorem 9.8. [The W*-algebraic form of Theorem 2.13, c¢f. [42]]. Let N be a W*-
algebra. Let O, = (X1, J1, F1) and Oy = (Xy, 5, Fy) be W*-observables in N such that
at least one of them is crisp. <So, without loss of generality, we assume that Oy is crisp) }

Then, the following statements are equivalent:

(i) There exists a quasi-product observable O = (X| x X, F1 X Fy, Fy C)if Fy) with

marginal observables O; and O,.
(ii) O; and Oy commute, that is, F}(Z1)Fy(Z2) = Fo(Z2) F1(Z1) (V21 € F1,VE, € Fy).

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of O, is guaranteed.
(So, we can write that Oy, = (X} X Xy, F1 X Ty, F} X ) = O; X 0,.)
Proof. The proof is essentially the same as that of Theorem 2.13. O]

The purpose of this chapter is to propose the W*-algebraic formulation of SMT, that
is,
SMTY"" = statistical measurement + the relation among systems in W*-algebra .
[Proclaim™"1 (9.9)] [Proclaim™ "2 (9.23)]

(9.7)
(=(9-2))

In order to do it, we must recall the C*-algebraic formulation of SMT, that is,

SMTY" = statistical measurement + the relation among systems in C*-algebra .
[Proclaim 1 (8.10)] [Axiom 2 (3.26)]

(9.8)
(=(9.1))

As mentioned before, we want to understand SMT" " by an analogy of SMT®". Here, it

should be recalled that

e [Proclaim 1 (8.10), (The probabilistic interpretation of mixed states)]. Consider a
statistical measurement Ma (O = (X, F, F), S(p™)) formulated in a C*-algebra A.
Then, the probability that x ( € X), the measured value obtained by the statistical
measurement Ma (O, S(p™) ), belongs to a set = ( € F) is given by

p(F(E) (= a (o FE)a).
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By an analogy of Proclaim 1, we can propose Proclaim"” 1 as follows: Cf [44].

PROCLAIM" 1. [Statistical measurements in the W*-algebraic formu-
lation].  Consider a statistical measurement My(0 = (X, F, F), S(p"))
formulated in a W¥*-algebra N.  The probability that x ( € X),

the measured value obtained by the statistical measurement Mx(O =
(X,F,F),S(p")), belongs to = ( € F) is given by

p'(FE) (= (0" FE)x)- (9.9

This will be easily read by the above [Proclaim 1] and the following [TABLE (Statistical

measurement theory)].

Statistical measurement theory (9.10)

Proclaim 1 (8.10) — Proclaim""1 (9.9)
S"(A*) 3 p™ — p" e 8" (N,)
C*-observable O = (X, J, F) — W*-observable O = (X, J, F)
MA(O = (X,5,F),S(s")  —  Mn(0= (X5, F),5(p")

Remark 9.9. [The W*-algebraic formulation of PMT]. Though the commutative PMT""
has a demerit such that a pure state can not be represented in the commutative PMT" " in
general (cf. the statement (9.3)), a pure state can be represented in the non-commutative
PMTY"" (i e., in B(V), ¢f. Example 9.2). Thus, it is worthwhile mentioning the following
Axiom""1 (9.11). f N = B(V) or N = L>°(Q, 1) (where  is finite or countable infinite),
the concept “pure state” is valid (¢f. (9.4) and (9.5)). Thus, in this case, we can propose

“Axiom""1 (9.11)” (i.e., the W*-algebraic formulation of Axiom 1) as follows:
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AXIOMY 1. [The W*-algebraic formulation of Axiom 1]. Consider a measurement
My (6 = (X,7, F),g[pp]) formulated in a W*-algebra N, where pP is a pure state. Assume
that the measured value x ( € X) is obtained by the measurement My (6, g[pp]). Then, |
the probability that the x ( € X) belongs to a set = ( € ¥F) is given by pP(F(2)) ( =

AP FE@), ). (9.11)

In the following example, we see that the C*-algebraic formulation and the W*-
algebraic formulation are essentially the same.
Example 9.10. [(i): The review of Example 8.1] . There are two urns w; and ws.
The urn w; [resp. ws] contains 8 white and 2 black balls [resp. 4 white and 6 black
balls]. We regard Q ( = {wi,ws}) as the state space. And consider the observable
O( = (X = {w,b},2"" F)) in C(Q) where

F({w})](w) = 03, F({B])] () = 0.2,
[F({w})](ws) = 0.4, [F({b})](w2) = 0.6.

0000 e
0000 e

Here consider the following procedures (P1) and (P3).
(P1) One of the two (i.e., wy or wy) is chosen by an unfair tossed-coin (C),;_,), i.e.,
Head (100p%) — wq, Tail (100(1 —p)%) — ws (0 <p <1).

The chosen urn is denoted by [*](€ {wi,ws}). Note, for completeness, that we do
not know whether [] is w; or w,. Here define the mixed state vo(€ M7, (€2)) such
that vo({w1}) = p, vw({wa2}) = 1 — p, which is considered to be “the distribution of
[¥]”

(Py) Take one ball, at random, out of the urn chosen by the procedure (Py). <That is,
we take the measurement Me ) (O, S[*]).)
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[(ii): Continued from the above (i): C*-algebraic formulation]. As seen in Example 8.1,
e “(P)+ (P»)” is notated by Mcq)(O = (X, 2%, F), S(n)).
Of course, we see

e the probability that the measured value x ( € {w,b}) is obtained by the measure-
ment M) (O, Siy(w)), is given by

e (40 P ey (= [ i (5r U Yy ()

:{ 0.8p+0.4(1 —p) (ifz=w),

0.2p +0.6(1 —p)) (if z=b). (9.12)

[(iii): Continued from the above (i): W*-algebraic formulation]. Define the measure p on

), for example, such that

p{wi}) = p{ws}) = 1.

Thus we have the commutative W*-algebra L>(€, 11). And consider the observable O( =
(X = {w, b}, 2t F)) in L>(€, p) where

Also define the normal state p™ (€ L1,(, p1)) such that®
plwi) =p,  plw2) =1-p.
Then, we have the W*-measurement Mo, (O, S(p")) in L>=(€2, ). Of course, we see,

e the probability that the measured value x ( € {w,b}) is obtained by the measure-
ment My(q,) (O, S(p")), is given by

o (P FUTD Y (= [ [PUDI@D )

— 0.8 _'_0'4(1_ ) (ifx:w),
B { 0.22 +0.6(1 — Z1;)) (if 2 = b). (9.13)

®Note that u is arbitrary (cf. the formula (9.4)). If u({wi}) = 1/3 and p({ws}) = 2, it suffices to
define that p™(w1) = 3p and p™(w1) = (1 —p)/2.
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Thus we see that Mc(q)(O, Su(10)) and Mz« (O, S(p")) are essentially the same (cf.
(9.12) and (9.13)).
Also, we see:

The illustration of Mz (q (O, S(p"))

Pick up a ball from the urn behind the curtain
w1
p / — N 1-p
0000® = K | =
0000® N J

9.2 The relation among systems (Proclaim"" 2 in SMT"")

We mentioned “statistical measurement” [Proclaim™1 (9.9)] in the previous sec-
tion. Thus in this section, we devote ourselves to the “relation among systems (i.e.,
Proclaim"2)” in the W*-algebraic formulation of SMT ©. That is, we want to propose

SMTW"" = statistical measurement + the relation among systems in W*-algebra N .
[Proclaim""1 (9.9)] [ProclaimW "2 (9.23)]

(9.14)
(=(9:2))

Let N; and Ny with weak*-topologies o(Ny, (N7).) and o(Na, (N3).) respectively. A

continuous linear operator ¥, 5 : Ny — Nj is called a Markov operator, if it satisfies that
(1) Wy9(F3) > 0 for any positive element F, in N,
(ii) Wyo(l2) = L1, where I, is the identity in N}, (k =1, 2).

Here note that, for any observable (X, J, Fy) in Ny, the (X, F, Uy 2F}) is an observable
in Ny, which is denoted by ¥1,0,. For example, it is easy to see that, for any countable

decomposition {Z;}22, of =, (T, = € F),

SIf N = B(V) or N = L>®(, u) (where € is finite), the concept “pure state” is valid (c¢f. (9.4) and
(9.5)). Thus, in the case, we can propose “pmMTV (i.e., the W*-algebraic formulation of PMT) as
follows:

PMTY" = statistical measurement + the relation among systems in W*-algebra N .
[Axiom"1 (9.11)] [Proclaim™ "2 (9.23)]
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(V12 B)(2) = (w)- lim Uy p(Fo(Ujy E))) = (w)- lim Uip( ) Fa(Z))

j=1

=(w)- lim Z[‘PM(FZ)] (Z5)-

J=1

Also, a Markov operator Uy 5 : Ny — Nj is called a homomorphism (or precisely, W*-

homomorphism), if it satisfies that
(1) Uy 2(Fo)Wq2(Ge) = Wy 9(F2Gs) for any Fy and Gy in No,
(i) (U19(F2))* = Wy o(Fy) for any Fy in No.

Then the following mathematical result is well known.
(a) (V12)«(E"((N1).)) € &"((Na).)-

Let (W12). : (N1)s — (N2). be the pre-dual operator” of a Markov operator ¥y 5 : Ny —
N7, that is, it holds that

(N7p)« <p?7 \Ill~2F2>N1 = (Ng)» <<\I]1~2)*I07117 F2>N2 (Vp? € (Nl)*v\V/FQ € NQ) (915>

Suppose that Ny and Ny are commutative W*-algebras, i.e., Ny = L*°(Qy, 1) and Ny =
L>°(Q, p12). Then, under the identification that &™(N7) = L1 (2, 1) and &™((Na),) =
LY, (99, o) (¢f. Example 9.2), the above (a) implies that the pre-dual operator (V).
of a Markov operator W5 can be identified with a transition probability rule M (wq, Bs),

(wl € Ql, By € BQQ), such that:

/B [(P12).(P1))(w2) p2(dw2) = g M(wr, Ba)pl (wi)p(dwr) (Vo) € Ly (@, 1), Y B2 € Bo,).

Also, it is well known that, a Markov operator Wy 5 : L™®(Qy, u2) — L>®(Q4, p11) is homo-

morphic, if and only if there exists a measurable map 9 » from €2; into {2, such that:

(W12f2)(w1) = fa(¥12(wn)) (almost all p) (9.16)

for all fo € L®(Qq, us).

"The symbol * is used in the three following ways (1) ~ (v) in this book. (i) involution operator (e.g.,
F*), (ii) dual operator (e.g., U*), (iii) dual space (e.g., A*), (iv) pre-dual operator (e.g., ¥,.), (v) pre-dual
space (e.g., Ny).
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Let (T, <) be a tree-like partial ordered set, i.e., a partial ordered set such that “t; < t3
and ty < t3” implies “t; <ty or tp < " Put T2 = {(t1,12) € T? : t; < t5}. An element
to € T is called a rootif tg < t (Vt € T') holds. Note that the sub-tree Ty, ={t € T'| t > t,}
has the root ty. Thus we always assume that the tree-like ordered set (7', <) has a root.

We assume that T is not always finite. (In the next Chapter 10, T is always assumed to

be inﬁnite.)
Definition 9.11. [General systems]. The pair S(pf) = [S(p}), { Pyt : Niy — Niw bty ez

is called a general system with an initial state S(p}.) if it satisfies the following conditions

(i)~(iii).
(i) With eacht (€ T'), a W*-algebra N, is associated.

(ii) Let to (€ T') be the root of T. And, assume that a system S has the normal state
P (€ 6™((Ny,)+)) at to, that is, the initial state is equal to pj.,.

(iii) For every (t1,t2) € T2, Markov operator @ ;, : Ny, — Ny, is defined such that
q)tthq)tQ’m = (I)tl,tg, holds for all (tl,tg), (tg,tg) c Té

The family {®y, 4, : Ny, — Ny, }g, p)er2 18 also called a “Markov relation among systems”.
Let an observable O, = (X, 2Xf,Ft) ;n a W*-algebra N; be given for each t € T. The
pair [{O}rer, { Pty 4y : Np, — Niw bty toyerz | is called a “sequential observable”, which is
denoted by [O7], i.e., [O7] = [{O}hier, {Pt,4y : Niy — Ni bt ez |-
7 m
Before we explain Proclaim"™ 2, we prepare some notations. For simplicity, assume
that T is finite, or a finite subtree of a whole tree. Let T' ( = {0,1,...,N}) be a tree
with the root 0. Define the parent map © : T\ {0} — T such that 7(t) = max{s €
T : s < t}. It is clear that the tree (T' = {0,1,..., N}, < ) can be identified with the
pair (I" = {0,1,...,N}, 7 : T\ {0} — T). Also, note that, for any ¢t € T \ {0}, there
uniquely exists a natural number h(t) (called the height of ¢ ) such that 7"®(t) = 0.
Here, 72(t) = n(n(t)), () = m(72(t)), etc. Thus, the general system S(p2) = [S(pR),
{Werto : Ny = Nistoy ioreqo, N}i] is sometimes represented by [S(p3), N; 0Ny (
t€{0,1,..., N}\ {0})]. Also, we define the @, : N, — Ny such that ®, = ¥, that is,

(I)O,T = \P077rh(7'>71(T)\Ijﬂ'h‘("—)71(T)),Trh(7>72(7') R \PWQ(T)JT(T)\IJﬂ'(T),T' (917)
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Let O; = (X;, F;, F}) be an observable in N, (V¢ € T). The “measurement” of {O, : t € T’}
for the S(p} ) is symbolically described by 9M({O¢}ier, S(py)). The Markov relation
{4, 4, : Niy, — Ntl}(tl,tQ)eTg is also denoted by {N; Prgs Nz brer\{oy

Example 9.12. [A simple_general system. Compared to Examples 3.4 and 8.12]. Suppose
that a tree (T'= {0, 1, ...,6, 7}, m) has an ordered structure such that (1) = 7(6) = 7(7) =

0,7(2)=n(5)=1,7(3) =n(4) = 2. (See the figure (9.18).) Consider a general system

~ — q)ﬂ t),t . « e, ol
S(pr) = [S(pn), {N, = Nr#) ter\qoy] with the initial system S(pp).

Dy 3
. N /Ng
N
(I)Ol N q)24N4
— N
Ny T~ N5
% ‘
(I)o,7 Ny

(9.18)

Also, for each t € {0,1,...,6, 7}, consider an observable O, = (X;, 2%, F}) in a W*-algebra
N,. Thus, we have a sequential observable [{O,};cr, {®¢r) : Ne — Nry hervoy |- Now

we want to consider the following “measurement’,

(1) for a system S((p3)) where pi € &"((Np).), take a measurement of “a sequential
_ _ @,

observable [O7] = [{Obier, (N, 5" Nr@ beervgoy] 7 ie., take a measurement of

an observable Og at 0( € T'), and next, take a measurement of an observable O; at

(eT), - , and finally take a measurement of an observable Oy at 7( € T),

which is symbolized by MM ({O;}ier, S(p2)). Note that the M({O; }ier, S(pf)) is merely a
symbol since only one measurement is permitted (cf. §2.5 Remark (II)). In what follows

let us describe the above (1) (= 9MM({O;}ier, S(p?))) precisely. Put
0,=0, andthus F,=F (t=3,4,56,7).
First we construct the quasi-product observable (~)2 in Ny such as

qp  9qp

62 _ <X2 x X3 X X4, 2X2><X3><X47 ﬁ2> where ﬁg = [y % (xt:3,4 q)Q,tﬁt)? (919>
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if it exists. Iteratively, we construct the following:

P01 D12

No — Ny — N,
qp ~ gp ~ qp ~

FO X (I)O,GFG X @077F7 F1 X @1’5F5
| | (9.20)
~ P01 ~ P12 ~
Fy — F — F;

ap ~ aqp ~ qp ~ qp ~ ap ~ qp ~ gqp ~
(FoxX ®0,6FsX o 7F7rX o 1F1) (F1X ®1 5F5X ®12F) (FoX P2 3F3X P2 4 Fy)

That is, we get the quasi-product observable 0, = (Hf:1 X, QHfﬂXﬁ, ﬁl) of Oy, (131,262
and (1317565, and finally, the quasi-product observable 60 = (HZZO Xt,2nz=0Xi,]50) of
0Oy, @07161, @07666 and <I>077(~)7, if it exists. Here, (~)0 is called the realization (or, the

-~ (I>7r t),t
Heisenbery picture representation) of a sequential observable [Or] = [{Oyber, {N; =

Nz beer\{oy]- Then, we have the measurement

M, (0o = (J X0, 2Meer ¥, £y), 5(p5)), (9.21)

teT
which is called the realization (or, the Heisenberg picture representation) of the symbol
M({O¢}ier, S(pf))-
[
Examining Example 9.12, we have the following arguments. Let (7= {0,1,..., N}, 7 :
T\ {0} — T) be a tree with root 0 and let S(p?) = [S(pf), N e Ny (t € T\{0})] be
a general system with the initial system S(p?). And, let an observable O; = (X;, F;, F})
in a W*-algebra N; be given for each t € T. For each s ( € T), define the observable
0, = (ILer, Xe, Tier, T, .ﬁs) in N, such that:

- { 0, (if s € T\ n(T)) 922)

O,=¢ _ap ap

O,X ( Xyer1((s)) Pr(ys01) (i 5 € 7(T))
if possible. Then, if an observable 60 (i.e., the Heisenberg picture representation of the
sequential observable [O7] = [{O;}ser, {Prr@w) : Ne = Na beerjoy |) in No exists (such
as in Example 9.12), we have the measurement

M, (00 = ([T X0 [ % Fo). S(o5)),

teT teT

which is called the Heisenberg picture representation of the symbol IM({O; }ier, S(pF)).
Summing up the essential part of the above argument, we can propose the following

axiom, which corresponds to “the rule of the relation among systems” in SMT"".
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PROCLAIM"Y 2. [The Markov relation among systems, the Heisenberg
picture] The relation among systems is represented by a Markov relation
{®r1, : Niy = N Ymyerz- Let Oy (= (X4, 5, F)) be an observable
in N; for each t ( € T). If the procedure (9.22) is possible, a sequential
observable [Or] = [{Ohier, { P41, : Np, — Nty Y1, t2)er2 | can be realized

as the observable Oy = (ILer Xe, [ Licr T Fy) in No. (9.23)

Also, we must add the following statement:

o Let S(p;) = [S(p), { Pty ty : Ny — Niw oy to)erz] be a general system with an initial
state p (€ 6"((Ny)+)). And then, a measurement represented by the symbol
M({O¢}eer, S(p})) can be realized by Miny (0o = (IT,er Xe. [Ter Fo. Fo), S(p8)), if

Oy exists.

which explains the relation between Proclaim"1 and Proclaim™" 2.

Remark 9.13. [How to read ProclaimW*Z]. For completeness, we mention how to read

Proclaim""2 as follows: Recall Axiom 2 (3.26), that is,

e [Axiom 2. (The Markov relation among systems, the Heisenberg picture)] The rela-
tion among systems is represented by a Markov relation {®y, 4, : Ay, — Ay, }(tl,tz)eTi-
Let O; ( = (X4, F:, F')) be an observable in A, for each t ( € T). If the proce-
dure (3.25) is possible, a sequential observable [Or| = [{O¢}ier, {Pty 1, = A, —
At} to)erz | can be realized as the observable O, = (ILer Xe: I Lier T, Ey) in Ag.

Using this and the following correspondence, we can easily read the above Proclaim" 2.
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Statistical measurement theory (9.24)
[SMTC" (C*-algebraic formulation)] — [SMTW" (W*-algebraic formulation)]
Proclaim 1 (8.10) — Proclaim""1 (9.11)
S™(A") 3 p™ — p" e G"(N,)
C*-observable O = (X, JF, F) — W*-observable O = (X, JF, F)
MA(OE(Xv§7F)>S(pm)) A MN(GE(X>3:aF)a§(pn))
Axiom 2 (3.26)  «—  Proclaim™ 2 (9.23)
general systemS(p™) — general systemS(p")
(:[S(pm)7{\pt1»t2:At2_)Atl}(tl,tg)eTi}> <:[§(pn)’{‘yt1’t2:Nt2_>Nt1}(t1vt2)€Ti])
sequential observable[Or] — sequential observable[O7]
<:[{Ot}t€T7{‘I’t1,t21At2 —Ayy }(tlat2)€T2 }) <:[{6t}t€Tv{‘l’t17i2:Ni2_’Nt1 }(tl,t2)€Ti }>
M{Oc}ier.S(p™)) <= M({Osher,S(p"))

Remark 9.14. [The C*-algebraic and the W*-algebraic formulations]. Now we have two
formulations of SMT, i.e., the C*-algebraic formulation and the W *-algebraic formulation.
Recall that any commutative C*-algebra [resp. commutative W*-algebra] is represented
by some C(2) [resp. L*(2,u)]. Thus, we can say that the C*-algebraic formulation
and the W*-algebraic formulation are respectively topological and measure theoretical.
Therefore, from the mathematical point of view, the W*-algebraic formulation is handy
for us to deal with “limit” or “convergence”. For example, this will be seen in Theorem
8

10.1 (the W*-algebraic generalization of Kolmogorov’s extension theorem):

The following theorem is essentially the same as Theorem 3.7.

Theorem 9.15. [The measurability of a general system; Compared to Theorem 3.7].

Let (T = {0,1,..., N}, 7 : T\ {0} — T) be a tree with root 0 and let S(p?) = [S(p}),
q>7r t),t . o e, ral
N, W Nzw (t € T\ {0})] be a general system with the initial system S(pj). And, let

an observable O, = (X, Fi, Fy) in a C*-algebra Ny be given for each t € T. For each s

8If readers have some knowledge of Riemann integral (defined in terms of topology) and Lebesgue
integral (defined in terms of measure, cf. [29]), they can easily understand the mathematical handiness
of “measure theoretical approach”
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( € T), define the observable 65 = ([Ler, Xo, Iier, T, fs) in Ny such that:
- {65 (ifseT\n(T))

O,=<¢ _ap ap

OSX( Xier-1({s}) @W(t),tét) (ifS € 7T(T))

if possible. Then, if an observable 60 (i.e., the Heisenberg picture representation of the
sequential observable [{O;}er, {Pire) : Nt — N heer\ioy ) in Ny exists, we have the
measurement

MN0(60 = (HXhHrftva)’§<pg))7 (925)

teT teT

which is called the Heisenberg picture representation of the symbol IM({Oy}er, SpLL)).
If the system is classical, i.e., Ny = L>(Q, p) (Vt € T), then the measurement always
exists, while the uniqueness is not always guaranteed. Also, it should be noted that,
for each s( € T), it holds that ®r(s) s Fs(IT,er, Et) = Fuo)((ier, . Xe) X (Ier, Z2))
V=, € F, (VteT)).

Proof. The proof is the same as that of Theorem 3.7. O]

Remark 9.16. [Summing up]. In Chapters 2 ~ 8, we studied the C*-algebraic formula-
tion such that

PMTC" = measurement + the relation among systems
[Axiom 1 (2.37)] [Axiom 2 (3.26g)] Y (In Chap. 2~7)

MT¢"
SMT¢" = statistical measurement + the relation among systems (In Chap. 8)
[Proclaim 1 (8.10)] [Axiom 2 (3.26)]
In this chapter, we study the W*-algebraic formulation as follows:

PMT"" = measurement + the relation among systems (in )
[Axiom"™ "1 (9.11)] [ProclaimV "2 (9.23)]

MTW
SMTW" = statistical measurement + the relation among systems (in N)
[Proclaim™"1 (9.9)] [Proclaim™ "2 (9.23)]

(9.26)

Here we add the remarks as follows:

(i) MT¢" is fundamental,
(ii) MT"" should be understood by an analogy of MT¢". Cf. Table (9.24).

(iii) From the mathematical point of view, SMT"" is more handy than SMT¢". (Cf.
Remark 9.14).
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(iv) When N = B(V) or N = L>(Q, u1) (where  is finite or countable infinite), PMT""
is meaningful (¢f. Example 9.1).

(v) Most results in MT¢" hold in MT"". However, we omit “Fisher’s maximum like-
lihood method” and “Generalized Bayes theorem”, etc. in MT"" since the proofs

are the same.

9.3 Quantum mechanics in B(L*(R))

9.3.1 Schrodinger equation and Heisenberg kinetic equation

Recall the C*-algebraic formulation (in €(L?(R))) of quantum mechanics (cf. §3.1).
However, as far as quantum mechanics, the 1W*-algebraic formulation (in B(L*(R))) is
more handy than the C*-algebraic formulation (in €(L*(R))). (Cf. [71].) Thus, in this
section, we explain the W*-algebraic formulation of quantum mechanics (¢f. §3.1). though
it is similar to the C*-algebraic formulation of quantum mechanics,

We begin with the classical mechanics. For simplicity, consider the one dimensional

case, i.e., R, = {¢ | ¢ € R}. Thus ¢(t), —oo < t < 0o, means the particle’s position at

time ¢, and thus, p(t) ( = mdz—(;)) means the particle’s momentum at time ¢. Let RZ

(={(¢;p) | ¢.p € R} be a phase space. Define a Hamiltonian J : RZ , — R such that:

2

H(q,p) = 2p—m(:kinetic energy) + V/(q)(=potential energy). (9.27)

Thus we see

E =H(q,p) = p_2 + V(g) : (9.28)

(total energy) (kinetiQCTreLnergy) (potential energy)

Put H = L*(R,,dq), i.e., the Hilbert space composed of all L*-functions on R,. And put
N = B(L*(R,,dq)). Applying the quantumization:
0 0

E— iﬁa, D —iﬁa—q, qgrq (9.29)
to the (9.27), we obtain the Schrodinger equation:

0 0 h20*
! Jtlg, = 8q) 2mdq? +

BT V(q) (9.30)

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

9.3. . QUANTUM MECHANICS IN B([L*(R) ) 245
For Clear I%rlntlng, ee ﬁttp: www.l?elo-u .co.jp/kup/mfomt/
or, precisely
9 292
tho¥(a,t) = —miﬁ(q, t)+ Vig)v(a,t). (9.31)
This solution is formally written by
Plg,t) = e FHOTE (g, 0). (9.32)
Put U(t) = e_%H(q’_ma%)t, and ¥ (-,t) = ;. Then, we see,
Ve = U(t)to. (9.33)

Thus, the time-evolution of the state |¢;) (1| is represented by

[0) (W] = (@) (o) {0l ) = U ()N U (1)

Let Op = (X,J,F,) be a W*-observable in B(H). Then, the time-evolution of the
observable O, = (X, J, F}) is represented by

(X,F,F) = (X, F, UL FU1)) = (X, F, 3°F). (9.34)

Also, it should be note that it holds that

dF;
d_tt = F,H — HF,, (9.35)

which is the Heisenberg kinetic equation. Put W, ,, = ®{ _, , And let p be any element
in Tr™ (H), i.e, a normal state. Then, we get the general statistical system [S(p), {4, s, :
B(H) — B(H)}t,<t,). Also, let p, be any element in Tr% (H), i.e, p, = |u)(ul, a pure
state. Then, we get the general system [S|,,j, {1, : B(H) — B(H )}, <.

Although the two formulations (i.e., the W*-algebraic formulation (in B(L*(R))) and
the C*-algebraic formulation (in €(L*(R))) are similar, it should be noted that the position

observable and the momentum observable can not be represented in the C*-algebraic

formulation but the W*-algebraic formulation (c¢f. Example 9.7).

9.3.2 A simplest example of Schrodinger equation

Consider a particle with the mass m in the box (i.e., the closed interval [0,2]) in the
one dimensional space R. The motion of this particle (i.e., the wave function of the

particle) is represented by the following Schrodinger equation

292

2madq?

ih%@b(q, t)=— (g, t) + Vola)v(q,1).
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where

0 (0<¢<2)
oo ( otherwise )

XM@Z{

Vo(q)

Y(q,t)

Put
P(q,t) =T(t)X(q) (0<¢<2).

And consider the following equation:
R2o?

Wqﬁ(q,t)-

0
h— t) = —
Then, we see

Tt)  2mX(q)

ZEON X”(‘? — K(= constant ).

Then,

6, 1) = T(H)X(q) = Cy exp(i k) (01 exp(in/2mE [h q) + Coexp( — in/2mK /h q).)

Since X (0) = X(2) = 0 (perfectly elastic collision), putting K =

n?n2h
8

T we see

in’m2ht

o(q,t) =T (t) X (q) = Csexp( ) sin(nmq/2) (n=1,2,...).

Assume the initial condition:
¥(q,0) = ¢y sin(mq/2) + co8in(2mq/2) + c3sin(3wq/2) + - - - .
where [, [#(q,0)[?dg = 1. Then we see

U(g,t)
im?ht . . idm?ht . i9m2ht
=c; exp( o~ )sin(mq/2) + c2 exp( v ) sin(27q/2) + 3 exp( o

)sin(3mwq/2) + - -
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9.3.3 The de Broglie paradox

247

Consider the same situation in §9.3.2, i.e., a particle with the mass m in the box (i.e.,

the closed interval [0,2]) in the one dimensional space R.

Vo(q)

Y(q,t)

\
=

Now let us partition the box [0,2]] into [0,1]] and [1,2]. That is, we change V;(q) to
Vi(q), where

0 (0<¢g<1)
_J oo (g=1)
M= 0 1<g<2)
oo ( otherwise )
Vi(q)
192(%75) —
o\ V(0" 2 "

Next, we carry the box [0,1] [resp. the box [1,2]] to New York (or, the earth) [resp.
Tokyo (or, the polar star)}.
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New York Tokyo

(g, 1)

V1(q,t1)

0 1 1 2

Note that the probability that we find the particle in the box [0, 1] [resp. the box [1,2]]
is given by [g [¥1(q,t1)|*dg [resp. [g |[2(q,t1)|?dg]. Here, we open the box [0,1] at New
York. And assume that we find the particle in the box [0, 1]. Then, quantum mechanics

says that at the moment the wave function 1y vanishes.

New York Tokyo

“Vanish”

0 1 1 2

Note that New York [resp. Tokyo] may be the earth [resp. the polar star]. Thus, the
above argument implies that there is something faster than light. This is called “the de
Broglie paradox” (c¢f. §2.9.1, [78]).

9.4 The method of moments

9.4.1 The moment method

In this book we mainly devoted ourselves to Fisher’s maximum likelihood method (cf.
Corollary 5.6) in (pure) measurements, and Bayes’ method (Cf. Theorem 6.6 and Theorem
8.13) in statistical measurements. In this section we study “the method of moments” (or,

the moment method ) in measurements theory (particularly, repeated measurements, cf.
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Definition 2.27).

249

In what follows, we shall review “the method of moments” (c¢f. Definition 2.27).
Let MA(O = (X,F, F), S[pg]) be a (pure) measurement, which may be constructed
as in (8.13) of Remark 8.3. Assume the p§ (in Ma(O, S[pg})) is unknown. And fur-
ther, we get the sample space (X,JF,1p) from the measured value T (= (z1,29, ...,
zr) € XT) obtained by the repeated measurement ® ,Ma(O = (X, 5, F), S[pg]) < =
Mga( ®th1 O,S[®tT:1pg])>. That is, vy = %221 O, <i.e. n(E) = M) Theorem
2.25 says that that pP(F(Z)) =~ 1p(2) (V= € F) if T is sufficiently large. Therefore,

e [Generalized moment method]; there is a very reason to infer the unknown pf ( €

GP(A*)) such that:

Ao, pp(F(+)) ) = min A(wo, pP(F(-))), (9.36)

pPESP(A*)

where A is a certain semi-distance on M7, (X).

This method is called “generalized moment method” or “moment method”

Note that the “semi-distance A on M7 (X)” is not always unique. In this sense, the
moment method is somewhat artificial. If X is a finite set, it is usual to define the distance
A on M (X)) such that:

Al ) =Y [n({a}) — va({z})| (Vo1 € M (X)), (9.37)
zeX
More generally, assume that X is an infinite set (and moreover, a metric space). Let

fi: X =R, 1 =1,2,...,L, be a continuous function on X. Then, the semi-distance

Aggye, on M (X) is defined by

Ay, v, v2) = Z ’ /X filz)(vi(de) — wa(da))|  (Vvr, 1, € M (X)). (9.38)

The above argument is quite general. We usually use the following moment method.
Remark 9.17. [The simple case of (9.36)]. The minimization problem (9.36) may be
somewhat troublesome. Thus, we often want to solve the equation A(vy, pi(F(-)) ) =0
(i-e., the case of “minesrax) A(vo, pP(F(-)) ) = 07 ). That is, our concern is to solve

the following equation:

i‘/}(fl(f)l/o(dx)—/sz($)p8(F(d:p)) =0.
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Or, equivalently,

( [y Ai(@)ve(de) = [y fi(x)p(F(dx))

Ix fo(@)w(dx) = [ fo(x)pp(F(dz))
(9.39)

| Sy fr(@)wo(de) = [ fo(@)ph(F(dx)).

This is usually called the method of moments.

9.4.2 Example 1 [Normal distribution (= Gaussian distribu-
tion)]

Let p, , be the Gaussian state in the commutative W*-algebra L>°(R, dw) such that:

pol) =~ exp- Y (e R),

2mo? 20?2

2

where the average p and the variance o2 are assumed to be unknown. Let Opyx, =

(R, Br, x,,) be the ezact observable in L*(R, dw) (cf. Example 9.4 (i)).

Consider the statistical measurement MLM(R,W) (Opxa, ?(ﬁu,o)), which may be identified
with the (pure) measurement Mg, mrxr+) (Oc = (R, Br, G), S, 1) in Co(R X R") (cf.
Remark 8.3 (hybrid measurements)), where O is defined by i.e.,

)= \/2;7/56)(1)[_ (1;2_05) ldz  (VE € Br,V(u,0) e Rx RT).  (9.40)

Assume that we take the measurement My (®,dw) (Opxa, g(ﬁ}w)) T times, that is, we take

(GE)(u, o

the measurement MLW(RT@thldw) (®,0xxa, S(®L1 P,.,)), which may be identified with
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the (pure) measurement @;_; Mc,(rxr+)) (Oc = (R, Br, G), Sis,,,.,1) <1.e., M, (RxR+)T)
(®7,06 = (R”, Brr,®L,G), Sis ) in Co((R x R*)T) (¢f. Remark 8.3)). Again

note that the average p and variance o2 are assumed to be unknown. Here, we have the

251

tT=16(,u,0)]

following problem:

(P) Under the assumption that the measured value (Z1, T, ...,T7) (€ RT) is
obtained by the measurement @;_;Mc,(rxr+)) (O¢ = (R, Br,G), 5[5(%@]),

infer the unknown average ji and variance o*. (9.41)

[(i): Answer (Moment method)]. The problem (P) says that we have the sample
space (R, Br, 1) such that:

vo = %25@( c Miﬁl(R)). (9.42)

teT

Thus, it suffices to solve the following equation:

Atsy 13 (10, [G( )] (o, 00) ) = 0, (9.43)

where f; : R — R is usually defined by fi(z) = z and fo(x) = 2. That is, seeing (9.39),

we have to solve

(1).  Jrawldz) = [ 2[G(dz)] (1o, 00)
(9.44)
(2). Joauld) = f a?[G(d)] 0, 00).
The above (1) clearly implies that
it dat et Er
o = T ( = Ar say,) (9.45)
Also, calculating (2)- (1)x(1), we get that
o0 = \/(fl —ArP G Ar o+ G = Ar (9.46)

This is the answer by the moment method.
[(ii): Answer (Fisher’s maximum likelihood method)].
Next, we present the answer by Fisher’s likelihood method. Note that the observable

®,0¢ = (RT, ByY, LG = G) in Co((R x R)T) is represented by

[6(51 XX ET)](,LLl, 01, 42,02, ", UT, JT) = H?:l [G(Et>] (/’Ltv Ut)'
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Assume the condition in the above (P), and further add that

€

== [Ty —€,7y + €], (for sufficiently small positive €).

Since we take the (pure) measurement Mc,(mxr+)7) (®1—-10¢ = (R”, Brr, ®_,G),
Siet 5.0, 1 Co((R x RT)T), we see
“maxi blem” G(E§ x -+ x 25
maximum problent” © s [0 0,10+ 1)
T
<= “maximum problem” : " Uglelg)i e F exp [ ; 52 } (since € is small)
(9.47)
(i) p = BHtertar (« 2(947)=0)
T (1) 0? = Gt ey (— 2(947)=0) (9.48)

(where p is defined by in the above (i)) .

Thus, Fisher’s maximum likelihood method says that there is a reason to infer that

a:1+:r2+ -4+ 27 \/(jl_AT)2‘|‘(i'2_AT)Z—F"'—F(Z%T—ATP

= AT, g = .
T T

(9.49)

This is the answer by Fisher’s likelihood method

9.4.3 Example 2 (measurement error model in SMT)

Put Qy = Q; = R,0 = R? and define the map %) : Qy( = R) — Q;( = R) such
that:

P () = 01w+ 60, (Vw € Q( =R),VY(ho,6:) € © =R?). (9.50)

Also, put (X, 3, F) = (R, B, G™) in Cy(Q) and (¥,9,G) = (R, BR, G™) in Cy(0)
(cf. Example 2.17 (Gaussian observable)), that is,

1
G%(2)|(w) =
(@) = =
Define the product observable O 90 01 = (X xY,FxG, H(g(l’ 19712 G x Wlo.0) Go2) such
that:

2
207

RY
/exp[ — M]dx (V2 e By, YweR, i=1,2).

[H(90 91)( % F

(01,02)

—w)?  (y— (biw +6))?
- dxdyd 9.51
27r 2/20102 /QO [xl" exp|— 201 203 |ddydw ( )
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(VE,vI' € BY, Vwe Qy=R),
where 6y, #; and o, are assumed to be unknown, but o; is known.
Let v, ,, be the Gaussian state in M, (€2y) such that:
_ 1 (w—p)?
Vhs(D) = 5 / expl= e (VD € o) (9.52)

where the average y and the variance (03)? are assumed to be unknown.
Here we have the measurement My (qg) (0% g (Py.05))- Define the observable O

(01,02)

= (X xY,Fx G, H)in Cy(6 x (R")? x R)? such that:

~ 00,0
[A(Z % T)](60, 01,01, 02, 05, m - Mmo><vﬂ,03, HYD(EXT) )

—w)? (Y= (w+6))?  (w—p)?
27r 3/2010203/ / exp|— - 3 Sy 2 |dxdydw

201 205

(9.53)

(VE,VI' € By, Ywe Qp=R).
Thus we have the identification:

~ (0.0 ~
MCO(QO)(O( 00 75(7/#,03)) — MCO(GX((R+)3XR)(07 5[5(90,91,51,02,03,#)])'

(01,02)

Thus, we have the sample space (R?, B, v(%0:01.0102.05.0) qych that:

P0001.01.02.050) (2 5 T) = [H(Z x T)](0g, 01, 01, 09,03, 1) (VE,VT € Br). (9.54)

Here, we have the following problem:

(P) Assume that we take the measurement Mcyoxm+)2xr)(O, 5[5(90791’01702’03%)}) T-
times, and get the measured value (T, 71, T, Go, -, I7,y7) ( € R*T). Here it is
assumed that 0y, 01, 09, 03 and p are unknown (but oy is known). Then, infer 0y and
01 (and moreover o9,03 and u) from the measured value (T1,71, T2, Y2, - 1, Y1)

(€ R*T) and the known a. (9.55)

[(i): Answer (Moment method)].

9f © x (R*)? x R is required to be compact, it suffices to consider [—L, L]? x [(1/L), L]® x [-L, L]
(for sufficiently large L) instead of © x (R*)3 x R.
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Under the notation in the problem (P), put

Ty +Ty+ -+ 27 Y1 +y2t+-+yr

Ay = T : ~A¥ = A (9.56)
VAX (51—A¥)2+(551—Ai)2+---+(35T—A¥)27 (9.57)
o T— AX)2 T— AX)2 L. T — AX)2
V?Y _ (yl T) + (yl ;) + + (yT T) ’ (958)
—xv (@ — AR — AN) + (@ — AP (G — AY) + - + (@ — AD) (I — AY)
T - T .
(9.59)
Recall (9.54), and put
[X =y Ouy =01, O =03, Oxx =03, [y = / ylHR x dy)]. (9.60)
R

Then we see that

A} = /R yHR X dy)l( = py) =00+ Oipx,  Af = /R z[H(dr x R)] = px, (9.61)

and

=YY 27117 2 2 2

T / (v — iy IHR x dy)] = 820% + 02, (0.62)
R

Vi = | (zr —pux)?[H(dx x R)] = 6105, (9.63)
R

—XX e 2 2

Vi = [ o= )= ) x dy)] = 0y + 0 (9.6
R2

which is easily solved. Thus, the moment method says that there is a reason to infer that
—=XX

0=V —o)'Vy',  bo=AL— (Vi —od) AV, (9.65)

[(ii): Answer (Fisher’s maximum likelihood method)].
Next, we shall answer the problem (P) by Fisher’s likelihood method. Put, for suffi-

ciently small positive e,
E::[j:t_ﬁit—i_dv Fiz[gt_gvgt—i_e] (t:1727 7T) (966)

The probability that the measured value (1, J1, Zo, Go, ..., 27, 9r) ( € R*T) belongs to
L (26 x T%) is given by

nr, [[ﬁ[(zg % T)](80, 01, 01, 7, 03, 1) .. (9.67)
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Since € is sufficiently small, we see, for some fixed oq, that

max N7 [H(Z€ x T 0y, 01,01, 09, 03,
(60.0r.02.05 1) O (R+)2 R =1 (2} (0o, 01, 01,02, 03, 1)
1 [ E=9)? @ 0t60)?  (wop)?)
= max H?—l[T/ e i 203 275 dw].
(60,01,02,03,1)€EOX(RT)ZXR (277) 120109073 Qo(=R)
(9.68)
Thus, Fisher’s maximum likelihood method says that it suffices to find the (6, 01, 02, o3, 1t)
such that:
. 1 - @—;)2 _ (ﬂt—(91W2+90))2 _ =)
H - e 20’1 20‘2 20'3 dw
t_l[(27r)3/2010203 /R ]
. 1 - m—;)?_<z7t—<91w2+6o>)2_<w—;5>2]
= max I_ |-/ e *71 273 23 “dwl. (9.69
(60,61,02,03,1)EO X (RT)2XR t_l[(27T)3/20'10'20'3 /R } ( )

However, it may be difficult to solve it analytically. Thus, the numerical computation
may be recommended.

Remark 9.18. Comparing (9.65) and (9.69), readers may consider that the moment
method is simple and powerful. However, it should be noted that the moment method is

somewhat artificial since the semi-distance is not unique. Summing up, we see,

Inference Example
(pure) measurement Fisher’s likelihood method Examples 5.8 and 5.9
(Theorem 5.3, Corollary 5.6) Regression analysis (6.7), (6.48)
statistical measurement Bayes’ method Example 8.6
(Theorem 8.13, Remark 8.14) Generalized Bayes theorem (Theorem 8.13)
repeated measurement moment method (Definition 2.27) | Normal distribution (§9.4.2)
(product sample space) See §9.4.1 measurement error model (§9.4.3)

(9.70)
[ |

9.5 Principal components analysis in MT

Our present purpose is to study “principal components analysis” in the framework of
MT.

Consider the following two cases [I] and [I1]:
[I: Homomorphic type]. Let Q2 be a compact space. For each k (= 1,2, ..., K), consider a

continuous map f : 2 — R. For example, we may consider that

(#) the Q ( = {wy,ws,...,wn} represents the class of students in some high school. And

further, assume that
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(a) fn(wy)--- the student w,’s height

(b) fw(wy)--- the student w,’s weight

Q
4 P e ()
- 0 100 200
0 100 200

[IT: Markov type]. Let £ be a compact space. For each k ( = 1,2, ..., K), consider a map
¢; : Q@ — M7 (R) in the C*-algebraic formulation (or7 ;0 Q — LY (R;dm) in the
W*-algebraic formulation). For example, we may consider that

(£) the Q ( = {w1,ws,...,wn}) represents the set of students in some high school. And

further, assume that

(a) ®%H(wy)--- the student w,’s scholastic ability of physics (or, the distribution

of the student w,’s marks (e.g., deviation values) in physics)

(b) ®%(wp)--- the student w,’s scholastic ability of chemistry (or, the distribution

of the student w,’s marks (e.g., deviation values) in chemistry)

Q

Pp(w)
4 I

0 50 100

100

Here consider the following problem:

(P) What kind of relation among the height and weight in [I] (or, the scores of physics
and chemistry in [I1]) of the students of the high school can we find?

This problem (P) is usually studied by “principal components analysis”  Thus, in

what follows, we shall study it in the framework of PMT"" (though it can be also studied
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in PMT®" since a cyclic measurement is also formulated in PMT¢"). Clearly the homo-
morphic type [I] is the special case of the Markov type [II]. Thus, from here, we devote
ourselves to the Markov type [I1].

Let €2 be a finite set, i.e., Q = {wy,ws, ...,wn}, which is assumed to have the counting
measure v, that is, v.(A) = §[A] (VA C Q). For each k£ ( = 1,2,..., K), consider a
Markov operator ®; : L>*(R,m) — L*(Q,v.), where m is the Lebesgue measure on R.
Let O = (R, Br, Euxa) be the exact observable in L>(R,m). Define the observable 0=
(RE, Bric, X 1y @ Exa) in L¥(2, 1) such that

K K

[k>:<1 Oy Euxal(E1 X Eg X -+ X Eg) = k>:<1 O Euxa(Zr) (E1 X Eg X -+- X Ei € Brr)

which is realization of the sequential observable [{O}_ |, {®, : L=(R,m) — L>(Q, v.) },].

Thus we have the cyclic measurement @Y M (q,,.) (O, S (P, axi)))s Where p, € L (Q,v.),

(s =1,2,...,N), is defined by p,, (w) =1 (if w = wy), = 0 (if w # wy).

Assume that, by the cyclic measurement ®§-V:[iMLOO(Q’VC)<6,§(ﬁme ani) <or, the re-
peated measurement ®§£MLO®(Q’UC)<6,§<1/N)), cf. Example 8.7 (ii) >, we get a mea-
sured value (z1,xa, ..., xnr), where

ry = (21,23, ..., 28) )

(] 2
Ty = (g, T5, ..., T4
O R K
TN = (Tp, Thy ooy TN)
| 2 K
TN+1 = (TNg1s TNp1s -0 TN41)

o ) (9.71)
ToN = (xQNwrQNa "'7x2N)
L3N = (xil’;N’xZQ’,Na ~-7$§(N)
LTLN = (x}VL’x?VD "'v‘T%L) )
Here, note that it holds:
lim ﬁ[{] S {1,2,,NL} S Z1 X Hg X e X EK}]
L—oo NL
X Dy Eua (2
:/ [ k=1 "k ]S_XA( k>]<w> I/c(dW) (VEl X EQ X e X EK € BRK>
Q
Put
Yihe Y Xhaf
(Ml;/’b% 7:U’K) ( NL ) NL ) ) NI ) ( )
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and put

ZNL (37% - Mp) (ZU?; - #q)

Chy = == NI (9.73)

<For simplicity, here we are not concerned with the normalization, though it is reasonable.)

Then, we have the correlation matrix C' such that:

Oll 012 e ClK
Coy Coy ... Chg
= prm— . 4
¢ [Cpq}lgp,qu : ST (9.74)
OKI CKQ e CKK
which is represented by
C = PAP*
where A is a diagonal matrix such that:
A0 0
0 A 0
0 0 ... g

€11 €12 ... €1 €1k
o o €21 €22 ... €3k . €1k

P— €1, €2, yEK | = ) € = )
€K1 €2 ... EKK €1k

where

@i ={ o itk 2 )

Here, €, is called the k-th principal component. Also, The k-contribution ratio is defined

by —pk—.
nyiMi

Remark 9.19. [(i): Several interpretations of principal components analysis]. Principal

components analysis (i.e., {(€, \x) }5_,) has several interpretations, which are important.

For example, the following figure is frequently stated in usual books of statistics.
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However, we are not concerned with it, because what we want to say here is the following
(ii).

[(ii): Markov type and homomorphic type|. Note that the data (9.71) is obtained by the
exact measurement. Thus the \/@p is not the error. In the case of Markov type, the
following calculation is wrong. However, if &, : L*°(R,m) — L*>(Q,v,) is homomorphic,
and if the observable O has the form such as (R .Bgx, X vy PrG%) in L®(Q, v.) where

_(w—p?
GZF(p) = ok du (Vu e R=R, V= € Br). (oi: variance),

\/ 27T0'k

(¢f. Example 9.5 and Example 2.17), then the following calculation should be recom-

mended: Put
= (Zz 0 x1+lN Zz 0 m1+lN Zz 0 leN)
L 2 2 ’ 2 ’
= (Zz 0 9‘72+zN iy T3 N - Zz 0 5’72+ZN>
27 L L ’ L ’
= (Zz 0 xN—&-lN Yo 0 TN4IN Zl =0 xN-HN)
N L L ’ L '
Put
N N N
- L m T X T 2o Ty 0.75
(MbﬂZ?"'?MK)_ N ) N y T N ) ( : )
and put
N I
_ T —
Cou = Z] 1( — [ip) (T} Mq)' (9.76)

N
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Then, we have the correlation matrix C such that:

C:'n @12 leK
B B Cy1 Oy ... Oy
¢= [Opq} 1<p,q<K - : o :

CKl C_’KQ ... C_’KK

up/m

Thus, by a similar way, we can get the k-th principal component and the k-contribution

ratio, etc.

Note that it holds:

Chp Cp ... Ok Cii+(01)> O
oaay— | G2 o x| On Ot (o)
Cir Cra .. Crx Crr Cies
(1)> 0 ... 0
—(9.77) + 0 (U?)Q - 0
0 0 ... (ox)

though the situations are different.
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Chapter 10

Newtonian mechanics in
measurement Theory

In the previous chapter, we propose the W*—algebraic formulation of SMT:

SMT"" = statistical measurement + the relation among systems in W*-algebra .

[Proclaim™ 1 (9.9)] [Proclaim™ "2 (9.23)]

As mentioned in Remark 1.1 (b), in this book, “Newtonian mechanics” in MT is called the “clas-
sical system theory (or dynamical system theory)”. In this sense, we will study “Newtonian
mechanics” in SMTW™. We first introduce “the W*-algebraic generalization of Kolmogorov’s ex-
tension theorem” This theorem is essential to MT just like Kolmogorov’s extension theorem is
so in his probability theory. Using this theorem, we can define “particle’s trajectory” by “the

sequence of measured values” And further we prove:

(i) the existence of “particle’s trajectory” in Newtonian mechanics,

(ii) the existence of Brownian motion.

Thus, we can understand the difference between the concepts of “particle’s trajectory” and “state’s
evolution” in both classical and quantum mechanics. Throughout this chapter, readers will see
that, from the mathematical point of view, the W*—algebraic formulation is more handy than the

C*—algebraic formulation.

10.1 Kolmogorov’s extension theorem in W *-algebra

In this section we study “Kolmogorov’s extension theorem” in the (W *-algebraic) Sta-

tistical MT. It is generally said that Kolmogorov’s extension theorem is most fundamental

in Kolmogorov’s probability theory. That is because this theorem assures the existence

of a probability space (i.e., sample space). On the other hand, our theorem (= Theorem

10.1, i.e., the W*-algebraic generalization of Kolmogorov’s extension theorem) assures

261
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the existence of a measurement (or, observable). Recall the our spirit (see Remark (in
§2.3(1))):
(#) there is no probability without measurements.

Thus, in measurement theory, the concept of “measurement” is more fundamental than
that of “sample space”.  Therefore, this theorem (i.e., the W*-algebraic generalization
of Kolmogorov’s extension theorem) is very important in MT. That is, this theorem (=
Theorem 10.1) is essential to MT just like Kolmogorov’s extension theorem is so in his
probability theory. Using this theorem, we can define “particle’s trajectory” by “the

sequence of measured values” And further we prove:
(i) the existence of “particle’s trajectory” in Newtonian mechanics,
(ii) the existence of Brownian motion.

Thus, we can understand the difference between the concepts of “particle’s trajectory” and
“state’s evolution” in both classical and quantum mechanics.
Let A be an index set. For each \ € /AX, consider a set X,. For any subsets A; C Ay( C

o~

A), T, A, s the natural projection such that:

TAL, A - X X)\—> X X/\.
AEA2 AEA

Especially, put 7y = TAR- For each A € /A\, consider a W*-observable (X,,J,, F\) in
W*-algebra N. Note that the quasi-product observable O = (X reiXn, Xaeada, Fy) of
{ (X, %, FA) | A€ A }is characterized as the observable such that:

Fi(mpl(Ea) = FA(Ey)  (VEx € FaVAED), (10.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed
in general. The following theorem says something about the existence and uniqueness of
the quasi-product observable.

Theorem 10.1. [W*-algebraic generalization of Kolmogorov’s extension theorem, cf.
[43]]. For each A € A, consider a Borel measurable space (Xx, Fy), where X, is a separable
complete metric space. Define the set Po(A) such as Po(A) = {A C A | A is finite }.
Assume that the family of the W*-observables { Op = ( Xaea X, XaeaTn, Fa) | A€
Po (_/A\) } in a W*-algebra N satisfies the following “W*-algebraic consistency condition”:
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e for any Ay, Ay € TPO(/A\) such that Ay C Ay,

Fro (732, (Ea)) = Fa (Ba,) (V24 € A;<A Fy). (10.3)
1

Then, there uniquely exists the W*-observable 6K = (X red X Xyer I, ﬁK) in N such
that:

Fi(731(20)) = FA(Ea) (VEa € X Ty, VA€ Po(A)). (10.4)

Proof. Let p be any normal state, i.e., p € &"(N,). Then, the 5(Fx(-)) is a probability
measure on the product measurable space (X ep Xy, Xaea Fy) for all A € ?O(K). (If
N = L*>®(Q, u), the existence is assured.) It is clear that the family { (X ea Xi, Xaea Fa,

B(Fa(-)) | A€ Po(A) } satisfies the “usual consistency condition” in Kolmogorov’s
probability theory. Therefore, by Kolmogorov’s extension theorem®®, there uniquely
exists a probability measure Pg on the product measurable space ( X e Xn, Xyea )

such that:
P2(m3}(24)) = A(FA(En)) (VEx € X Ty VA€ Po(A)). (10.5)
Define the subfield X% _; &y of X, ; F) such that:

ﬁ —~
X Fy={my'(Ea) [ Ex € X Fy, A€ Py(A)}. (10.6)
PYENN AEA
Then, we see, by (10.5), that there uniquely exists the countably additive function F/ﬁ\ ;

X ﬁ,\eK F)» — N (in the sense of weak*-topology o(N,N,)) such that:

i
(=Y _ =t (=t =
P{(Z%) = p(F5(2})) (V=5 € éx Fr). (10.7)

Define the map ﬁ?\ 0 Xex Fa — N such that:

F

—

Z3) = inf ) > FE(EEY), (10.8)
k=1

—t,k _
=R}, €Q(ER

=\ — =k = —hk bk ¢ =
where Q(Z;) = { kRl | B C U ERF 2t e xE g fﬂ} (VZ; € X, 1 Fn). It
clearly holds that

F;(ThUT%) < FR(Th) + Fy(T%)  (VILT% ¢ A><K Fy).
S
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Also, we see that, for any =3 in X, 3 F),
PE(23) = inf Z PE(EM) (by Caratheodory theorem, cf. [29])
A\TA ko - A\TA R

{“/A\ }kfleQ(:f\) k=1

= imf > p(FE(EERY) (by (10.7))
=3 }kfleQ(:X) k=1

> ﬁ( o inf ) Z F/E\ (E%k)> (by the property of N)

=3 }kzleQ(:K) k=1
=p(F%(Z3)) (by (10.8)).

Similarly we see that Pf(E‘i) > 5(F; (E%)) where =% = ( X,z X)) \ 3. Thus we see,
by (10.9), that

-

1= P2(Z3) + PL(E) > P(F3(5z)) + p(FR(2%)) > ﬁ(fx(AXKXA)) =1L

This implies that Pg(EK) = p(F5(Z3)). Thus we see that

ﬁ(ﬁf\(WXl(EA))) = P2(my'(En)) = ﬁ(FA(EA)> (V2 € A>€<A T, VA € Po(R)),

which implies (10.4). This completes the proof. ]

10.2 The definition of “trajectories”

Now we shall propose the definition of the “trajectories” in SMT"". Let S(p,) =
[S(Po)s { Wty : N — N}t1,12)erz ] be a Wr-general system with an initial system S(Py)-
Let O = (X, T, F) be a crisp observable in N. For each time ¢ € R = {teR |t >0},
consider a W*-observable O; = (X;, F;, F}) in N such that:

o (X, F,.F) = (X,F,F)foralltcR". (10.9)

R S(p,))” in what follows. Let A € P (f_{+)
< ={Ay € 9R" . Ay is finite }), that is, A = {t1,t9,....t,} where 0 <t <ty < --- < t,.
Then, we can uniquely define the observable O, = (X", FA, Fy\) at time 0 such that:

Let us represent the “measurement ({0, }

FA(Etl Et2 Xoees Etn) = \IIO,t1 (F(Eh) T \Ijtn72,tn71 <F<Etn71)(\Ijtn,htnF(Etn))> Tt ),
(10.10)
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though the existence of O, is not always guaranteed except for the classical cases. <For

265

the uniqueness, recall Theorem 9.8. ) Assume that the observable O, exists for any
A e (]30(1:_{+). It is clear that the family { O, | A € ’PO(I_{JF) } satisfies the consistency
condition (10.3). Thus, by Theorem 10.1 we have the observable (~)ﬁ+ = (Xﬁ+, ?ﬁ+, ﬁﬁJr)
in N, which is called a trajectory observable (concerning O = (X, F, F)). Therefore, we
get the Heisenberg picture representation MN((N)E+,§@0)) of M({0}, rtr S(0o) )-
Now we can propose the following definition, which is our main assertion in this
chapter.
Definition 10.2. [Trajectory (= particle’s trajectory)]. Assume the above notations.
The measured value obtained by the measurement MN(6E+, S(py)) is called a trajectory

(concerning O = (X,F,F) ) of the W*-general system S(p,) = [S(By), {Wi,o : N —

N} (i1, 2)erz |-
|
The difference of “particle’s trajectory” and “state’s evolution” is clear in Definition
10.2. That is,
“state’s evolution” co o (Wor)upg, (0<t<00),
N (10.11)
“particle’s trajectory” - - the measured value of Mn(Og+,S(5)))-

Note that in quantum mechanics, the existence of 6ﬁ+ is not usually guaranteed, and
thus, the concept of “particle’s trajectory” is meaningless in general (cf. [37, 40]).

Recall DST(1.2a), that is,

=2 = g(z(t),ui(t),t), (0) = xo --- (state equation) ,

“dyn. syst. theor.” ‘:

y(t) = f(x(t), uat),t) ( measurement equation).
(10.12)
(=(1.20))

In order to compare (10.11) and (10.12), we add the following remark.
Remark 10.3. [(i): The case that ug = 0 in (10.12)] (The generalization of Definition
10.2). The condition (10.9) can be easily generalized as follows:

o (X}, F, F,)iscrisp for all t € R'. (10.13)

Under the condition, by a similar way of (10.10) we can easily define a trajectory (concerning

{(Xp, T, Fy) | t € E+}) of the W*-general system S(p,) = [S(By), {Yi,p, : N —
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N}t11s)emz - Here, consider classical cases, i.e., N = L*(Q, u). And, for each ¢ € R,
consider a measurable function f; : € — R™, which can be identified with a crisp ob-
servable (R™, Brm, F}), (¢f. (ii) in Example 9.4). Thus, by Theorem 10.1 we have the
observable 6ﬁ+ = ((Rm)ﬁJr, (BRM)§+,ﬁE+) in N, which is called a trajectory observ-
able (concerning { O; = (R™, Brm, F}) | t € E+}. Thus we can also define a trajectory
(concerning {f; | t € E+}) of the W*-dynamical system S(p,) as the trajectory concerning
{ (R™,Br,F) [te R}

[(ii): The case that us # 0 in (10.12)] (The generalization of Definition 10.2). The

condition (10.13) can be easily generalized as follows:
o (X, Fy, Fy) is not always crisp for all ¢ € R (10.14)

By a similar way as in the above (i), we have the observable 6ﬁ+ = (X, vt Xo» X, g+ T
ﬁﬁ+) in N (= L®(;p)), which is called a trajectory observable (concerning { O, =
(X, %, F) | teR)).

10.3 Trajectories and Newtonian mechanics

In the previous section, we proposed Definition 10.2, in which the concept of “par-
ticle’s trajectory” is characterized as a measured value of the measurement. Thus, our

Y

concern in this section is to show that the “particle’s trajectory” is represented by the
Newton equation. If it is true, we can completely understand “Newtonian mechanics” in
measurement theory.

First we review Liouville’s equation. Put N = L>(R; X R;,m**) and N, = L'(R; X R;,
m?), where R X R} = { (¢,p) = (¢1.¢2," " . ¢s, 01,02, =+ »ps) | ¢,p; € Rj =
1,2,---,s } and (R; X R;,B(R; X R;),m*) is the 2s-dimensional Lebesgue measure

space. Liouville’s equation with an initial density function p, is as follows:

s

9ps(q,p) 0H(q,p,t) Op(q,p)  OH(q,p,t) Ips(q, p)
bt 2% LA _ : 10.15
ot ;( 0q; Ip; Ip; g ) 1015
po€G"N,)=1{p : |Ipller =1, p >0}, (10.16)
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where H : Ry X R} X R — R is a Hamiltonian. By using the solution of (10.15), we can
define the operator [¥y, ;. : L'(R; X R;,m*) — L'(R; X R,,m*) such that:

([\Iltlh]*ﬁtl)(q,p) =1i,(q,p) V(g,p) € Ry X Ry, V(t1,t2) € Ri. (10.17)

That is, the “state’s evolution” is represented by the Schrédinger picture {[Wy, 4, ]« | (t1,12) €
Ri }, which is induced by Liouville’s equation (10.15) for states. And furthermore, putting
Wiy = ([We,1,]4)%, we get the Heisenberg picture {Wy, 4, | (t1,t2) € R}, which is also in-
duced by Liouville’s adjoint equation (i.e., Liouville’s equation for obs:ervables). Thus, we
get the W*-dynamical system S(p,) = [S(Py), {¥t,.1, : N — N}(t1,t2)ER2<]' Also, it should
be noted that the dynamical system S(p,) is deterministic, i.e., each Wy, 4, : N — N is
(bijective) homomorphic.

It is well known that Liouville’s equation is mathematically equivalent to the following

Newton equation:

G0 = G000, Gl = S a)p0).0, =120 s (1018)

(¢(0),p(0)) € Ry X R}, (10.19)

Using the solution of the Newton equation (10.18), we define the continuous map v, 4, :

R; X R, — R; X R, such that:
Vi (q(tn),p(t1)) = (q(t2),p(t2))  (V(a(t1),p(t1)) € Ry X R;). (10.20)

Thus we can get the (bijective) homomorphism Wy, ,, : L*(R; X R;, m**) — L*(R; X R;,

m?*) such that:

(Ve 1, F)(¢,0) = F(,15(q,0))  (V(g,p) € Ry X R}, VF € L®(R; X R;}),V(t,12) € R?).
(10.21)

Of course, this Wy, 4, is the same as the Wy ;, derived from Liouville’s equation. Since
Liouville’s equation and Newton equation are mathematically equivalent, there is a reason
to say that the time evolution is also represented by Newton equation. However, note
that the term “Newton equation” [resp. “Liouville’s equation”] is, in this book, defined
to be the equation that represents “particle’s trajectory” [resp. “time evolution of states

or observables”].
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For simplicity, we put (€2, B,dw) = (R; X R}, B(R; X R;),mQS). And, put (N, N,)
= (L>(Q), L'(2)). Consider the deterministic W*-dynamical system S(5,) = [S(p,),
{U4 1, : N — N}(tl,tz)eRiL which is induced by Liouville’s equation (10.15) and (10.16).

Define the state space observable (or, ezact observable) O = (Q,B, F) in N (= L=(Q))
such that:

F(E)=x. V=€B, (10.22)

which is, of course, crisp. Thus, by the same arguments appearing above Definition 10.2,

~ =t =t o~
we can get the trajectory observable Og+ = (OR  BR ,Fﬁ+) concerning the state space

observable O = (2, B, F). And therefore, we get the measurement MLoo(Q)(Oﬁ+, S(py))
(cf. Remark 10.3). Assume that

e a measured value & (= (w;), g+ € QﬁJr) is obtained by Mpe(q)(Og+,5(p))-

Note that the measured value & is precisely the “particle’s trajectory” in Definition 10.2.

ﬁ+
t€ﬁ+ c Q ),

that is, we shall show that the trajectory @ is represented by the Newton equation (10.18)
and (10.19). Let D = {tg,t1,t2,--- ,t,} be a finite subset of E+, where tp = 0 < t; <

ty <o <t Put = = x P (6 Bﬁ+) where =, = Q (Vt ¢ D). Then, we see that

teR =t

Now we shall investigate the properties of the measured value @ (= (w;)

e the probability that &W( = (w;) belongs to the set ==X ZﬁJf =; is given by

teﬁJr)

Bo(Fe+(2)) =70 (F(Eo)‘l’o,tl (F(Etl) oW it (F(Etnfl)(‘I’tnfl,tnF(Etn))) )
=Dy (HZ:()(‘I’O,th(Etk))) (because each Uy, | ¢, is homomorphic)
=70 (o (051, (1))

:/Q (HZZOXWT},C(E%)(w))po(w)dw- (10.23)

Let =y be any element in B such that on Po(w)dw # 0. Thus, under the hypothesis that
we know that wy € =, ie., O(= (W), g+) € Zo X QR" (where RT = (0,00)), we can

calculate the following conditional probability:

PP (XPe20) ey (Mo 2 (@) ) Folw)de

Do (Fe+ (Z9 X QRT)) Jz, Po(w)dw

(10.24)
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Thus, we see that
Do (Fat ( X ot E4)) 1 if woe M Yyl (B,)
lim R IR z{ O = E=1TOmAT (10.25)
Zo—{wo} Py (Fg+ (S0 X QR+)) 0 otherwise.

<Th0ugh the above argument is somewhat rough from the mathematical point of view,

we can easily check it in mathematics.) This implies that
w=vos(wy)  (VEER). (10.26)

a1
ert € OR ) is the solution of the Newton equation.

Also, note that the (10.25) is independent of the choice of the initial normal state p,.

That is, the measured value & (= (w;)

Summing up, we see,

e In Newtonian mechanics, the state’s evolution is represented by Liouville equation,
and the existence of the trajectory (concerning the state space observable) is al-
ways guaranteed. That is, it can be represented by the Newton equation. Also, in
quantum mechanics, the state’s evolution is represented by Schrodinger equation.

However, the existence of the trajectory is not always guaranteed.

That is,
\ H state’s evolution \ particle’s trajectory \
’ Newtonian mechanics H Liouville equation ‘ Newton equation ‘
’ quantum mechanics H Schrodinger equation \ (meaningless)’ ‘

(10.27)

10.4 Brownian motions

As emphasized throughout this chapter, the concepts of “state’s evolution” and “par-
ticle’s trajectory” are completely different. This is, of course, a matter of common knowl-
edge in quantum mechanics. And moreover, we can point out that the difference is clear
in diffusion processes for classical systems. Therefore, in this section we examine diffusion

processes in SMT"". The examination will promote a better understanding of our theory.

1For the measurement theoretical model of Wilson chamber and its numerical analysis, see [37, 40].
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Put N = L*(R,,m) and N, = L'(R,, m), where (R,, B(R,), m) is the 1-dimensional
Lebesgue measure space. The diffusion equation with an initial density function p, at the

time ¢ = 0 is as follows:

aﬁt(Q) _ 82@(‘1)
ot 0q?

(10.28)

po€{pe L' (Rym) : [lpll =1, p >0} (10.29)

By using the solution of (12.28), we can define the operator [¥, 4], : LY (R, m) —
L'(R,,m) such that:

o0

(00 ()) (@) = 7@ = [ 7 )Guumisla — yhmldy), (v(t1,12) € R2) (1030)

— 00

where Gy(q) is the Gaussian function, that is, G;(q) = ﬁexp [— g—j} The “state’s

evolution” is, of course, represented by the Schrédinger picture {[Wy, 4], | (t1,t2) € R2 }.
For simplicity, we put (£, B,dw) = (R, B(R,),m). And therefore, put (N, N*)iz
(L>=(Q), L'(Q2)). Putting Uy, 4, = ([¥y, 1,]+)*, we get the Heisenberg picture {Uy, 4, | (t1,12) €
R?}, and consequently, the W*-dynamical system S(p,) = [S(7,), { W44, : N — N}t t2)erz |-
Consider the state space observable O = (Q,B,F) in N (= L*(2)) such as in Exam-
ple 9.4.(i). Thus, by a similar way in the previous section, we get the measurement

M () (Og+, 5(7,)). Assume that

e a measured value & (= (w;), g+ € Qﬁ+) is obtained by My (q)(Og+, S(py))-

Note that the measured value @ is precisely the “particle’s trajectory” in Definition 10.2.
Also, it may be usually called a “path”.

By a similar way in the previous section, we shall investigate the properties of the
ert € Qﬁ+). Let D = {to,t1,t2,- - ,t,} be a finite subset of
— ~ =+
R+, where to = 0 < t] <ty < --- < t,. Put 2 = Xtiﬁ*Et (G BR ) where =, = Q2

Vt ¢ D). Then, by Proclaim"" 2, we see
( y

measured value O (= (wy)

e the probability that &( = (w;) belongs to the set = = X feﬁ* =, is given by

teﬁ+)
o(FE)Wou (FE) Wit (FE) (Wi, F(E)) ) )

= L[ oL () TGl antodon) - o) eo

n—1 tn k=1
(10.31)

I
o
A
=+
w
I
I
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Let =y be any element in B such that on Po(w)dw # 0. Suppose that we know that

271

wo € Zp. ie., W = (wy) ) € Zp X QR". Under the hypothesis, we can calculate the

teR"
following conditional probability:

5 (o b_ .= Jo Po(wo) ( Jz, - Jo TThiei Groetp s (wk — wi—1)dwy, - - - dwy ) dw
Po(Fgr (Xeg+Ee)) e PolWo) Uz, Uz, L=t Gt (W = W1 AW 1) dwo

Do (Fig+ (Eg X QRT)) Jz, Po(wo)dwo

(10.32)

And therefore, we see that

Do(Fer (X Pt 2 n
lim _’)O(NR{ 1R f) :/ / 1 GCreve (@ — wh 1)y - deor. (10.33)
Eo—{wo} (Fﬁ+ (29 X QR )) Sty Stn o1

Thus, under the hypothesis that we know that O( = (wi),.g+) € {wo} X QR”. the mea-

sured value &( = (wy) has the property like Brownian motion with the initial value

1er*)
wp. Also note that the (10.33) is independent of 7.

B(= @i)yext)

Wo

5

Remark 10.4. [Complex system theory|. Here I shall mention my opinion for the relation
between Brownian motions and “complex system theory” (or, “chaotic system theory” )
as follows:

[(i): Chaotic system theory]. It is a matter of course that Brownian motion is used
to analyze stochastic phenomena (cf. [32]). It should be noted that Brownian motion

is, from the computational point of view, generated by “pseudo-random number” And
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moreover, it should be noted that random number generator is regarded as a kind of
chaotic equation ( ¢f. [19]). In this sense, we consider, from the computational point of
view, that Brownian motion analysis is regarded as a kind of chaotic equation. However,
chaotic theory (or complex system theory, cf [87]) should not be overestimated as “the
third physics (i.e., relativity theory, quantum mechanics, complex system theory)” 2.
Chaotic theory is not such a theory. This is easily seen if chaotic theory is investigated
in the framework of MT (in which “probability” (related to Axiom 1) is never born from
“equations” (related to Axiom 2), c¢f. Chapter 4 (“staying time interpretation” and not
“probabilistic interpretation”) and Remark 8.4 (Bertrand’s paradox)).

[(ii): Information compression|. Newtonian mechanics may be regarded as a kind of
“information compression” In fact, if we want to know the motion of particles, it suffices
to solve the Newtonian kinetic differential equation. Also, it should be noted that the
differential equation is, numerically, solved by iteration method (= “loop (in computer
programming)” ). Thus, there is a reason to think that an iteration (= “loop” ), which is
mainly related to Axiom 2, is regarded as a kind of information compression method of
“analytic function”, “pseudo-random number”, “self-similar figure (Julia and Mandelbrot
set)”, etc. Inother words, any figure (or graph) treated in mathematical science is always
generated by iteration. Thus, we assert that MT is also a kind of information compression
method. That is, mathematical science always has the aspect such as “mathematical
method of information compression”

[(iii): Butterfly effect]. “Butterfly effect” is mentioned as follows:

(8) The flutter of a butterfly’s wings in China could, in fact, actually effect weather

patterns in New York City, thousands of miles away.

It is impossible to test the above (#). In this sense, we do not tell whether the (f) is true
or not. However, recall the spirit of the mechanical world view (1.12), i.e., “at any rate,

study every problem in the framework of MT’? Thus, if a certain differential equation

2This overestimation is like the proverb “It’s always darkest just beneath the lighthouse” I have an
opinion that Einstein’s relativity theory, quantum mechanics and dynamical system theory (=DST(1.2))
are the most influential mathematical scientific theories in the 20th century, though DST is too familiar
to us. The dropping of two atomic bombs (Einstein’s relativity theory) is obviously one of the most
tragic events in World War II. Also, Kalman filter (DST) and IC technology (quantum mechanics) lead
the Apollo plan to success. This feat promoted the end of Cold War. And further, I think that this
opinion is improved in this book (i.e., “quantum theory” 4+ “DST” = “MT” ) and it is realized in Table
(1.7), in which we may assert that “relativity theory (or, TOE)” < “the first physics”, and “MT” < “the
second physics”.
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suggests the above fact (f), we have to agree that there is a possibility that the above (f)

is true.

n
10.5 Conclusions

Summing up, we conclude (cf. [43]),

state’s evolution (=Axiom 2) | particle’s trajectory(sample space)

|

’ Newtonian mechanics

Liouville equation Newton equation

’ quantum mechanics Schrodinger equation

stochastic differential equation?®

|

|

(meaningless) ‘

diffusion equation ‘

H ) [p
H |
| |
H |

’ diffusion process

(10.34)
Thus there is a reason to say that the state equation in DST(1.2) should be called “tra-
jectory equation”, though DST(1.2) is sometimes called “state space method? Therefore,
in this book we say that DST(1.2) is the “sample space method] in which the theory of
differential equations and Kolmogorov’s probability theory play essential roles.* Thus we

can symbolically say:

(our proposal)
—

“MT” “DST” 4+ “statistics” (10.35)

(sample space method)

Here we have the following problem:

e Can we propose another mathematical scientific theory for data analysis?  (cf. the

third theory in Table (1.7))

I think that it is impossible to propose “the third theory” in mathematical science but
computer science. Cf. Remark 1.5.

Also, recall we are not concerned with “Newtonian mechanics” in physics (which is
represented in terms of differential geometry) but “Newtonian mechanics” in MT (which
is represented in terms of operator algebra). Thus, it should be noted that our viewpoint

(proposed in this book) is, of course, one-sided.

3Recall (1.2). It should be noted that the stochastic state equation (= stochastic differential equation)
n (1.2) is not “state equation” but “trajectory equation (i.e., the equation that represents particle’s
trajectory)”

41 believe that “Kolmogorov’s probability space” is essentially the same as “the sample space in MT".

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)
For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

Chapter 11

Measurement error

Let Q = (R, B,G) and O = (R, B, F) be respectively a crisp W*-observable (i.e., quantity) and a
W*-observable in a W*-algebra N such that Q and O commute. Under the assumption that O is
regarded as the approximation of Q, we define the measurement error A (MN (Q x 6,?(?))) by

A(Mx(@ % 0.5(7))) = [//R M= MPB((G X F)(dhdh)] 2 (11.1)

This is also called the distance between Q and O concerning p. The purpose of this chapter is to
investigate the measurement error. Readers will see that the A(MN (Q x 67§(ﬁ))) is superior

to the “conventional definition” such as |“true value” — “measured value

77‘

11.1 Approximate measurements for quantities

Let N be a W*-algebra. Let Q = (R, B, G) be a crisp W*-observable (i.e., quantity)
in N. Let O = (R, B, F) be a W*-observable in N such that Q and O commute. Let Q x
O = (R?, B2, G x F) be the product observable of Q and O. Consider the simultaneous
measurement My (QxO, S(p)). According to Proclaim" "1 (9.9), the probability that the
measured value (A1, A\g) ( € R?) belong to 21 x =5 ( € B?) is given by p((G x F)(Z1 x Zy)).

Thus, the variance of |\ — Ao| is given by

S =26 x @) (112)

Here we have the following definition.
Definition 11.1. [Error (or precisely, Measurement error), cf. [44]]. Assume the above

notations. And assume the situation that we hope to approximate Q ( = (R, B,G)) by

275
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O (= (R, B, F)), that is, O is the approximation of Q. Then the measurement error,
A(MN (Q x O, g(ﬁ))), is defined by
o . 1/2
M@= O50)) = [ [[ = naPa(@ x Pavan)] g
R2
This is also called the distance between Q and O concerning p (or, the error of O for Q

concerning p).
|

It should be noted that every measurement is exact. Thus the above definition is based

on the following assumption:

() We want to take a measurement My (Q, S(p)). But it is impossible for some reason.
Thus, instead of the My (Q, S(p)), we take a measurement My (O, S(p)). In this
sense, we regard M (O, S(p)) as the approximation of Mn(Q, S(p)).

The following examples will promote the understanding of Definition 11.1.
Example 11.2. [(i): Gaussian observables]. Consider the exact observable Opx, =

(R, Br, X,,) and Gaussian observable O¢ = (R, Bg,G%) in N = L>(R, du) such that:

— 1 _(@—w)? _
G (2)|(un) = W[e 207 dx (Vu € RVE € Br), (11.4)

(where 02 is a variance). Then we see, for each density function p ( € L (R, dp)),

A(My (O x 06.5()) = | / [ = a6 G7)(dMdx) | v

_[/ A — A \2</ (1) ! / e—(z;‘?gdg;x—( )d )}1/2
o1 X s | pp)dp
—0, (11.5)

which is independent of p.
[(ii): Triangle observable, c¢f. Example 2.19]. Let € be any positive number. Define the
membership function (i.e., triangle function) Z_ : R — R such that:

1-2 0<w<e

©4] —e<w<0 (11.6)
0 otherwise .

2 (w) =

Put Z, = {ek : k€ Z={0,+1,42,..}}. Define the W*-observable Or = (R, BR,T(E,))
in the commutative 1W*-algebra L*(R, dw) such that Te(w) = Y- .oy Z.(w —x) (V2 €
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Br, Vw € R). This W*-observable Or is called a triangle observable in L>®(R,dw).
Consider the exact observable Ouxy = (R, Br, X<»>) and the triangle observable Oy =
(R, Br, T;)) in N = L*(R, dw). Then we see, for each density function 7 ( € L},(R, dw)),
. _ 12 ¢

A(Mu (s x 07, 5(3) = o] | (0= o)1 = bl +whi)as] < 3

where [w], is the integer such that [w], <w < [w], + 1. |

G
Example 11.3. [Self-adjoint operators]. Let A; and A; be commutative self-adjoint
operators on a Hilbert space H. For each i ( = 1,2), consider the crisp observable O; =
(R, Br, E4,) in B(H) which is the spectral measure of A;, i.e., A; = [g AE4,(d)). Then,
we see that

1/2

A(MB(H)@ x Oy, 5(|u) <u|))> - [/R I\ — >\2|2<u, EAl(dAl)EAQ(d)\Q)uﬂ
= [[(Ay = Ag)u?. (11.7)

11.2 The estimation under loss function in statistics

Let Q = (R,B,G) and O = (X, J, F) be a quantity (i.e., a crisp observable on R)
and a W*-observable in a W*-algebra N respectively. Consider the measurable map
h: X — R, and the image observable Oy = (R, B, F(h~'(+)) ) in N. This measurable
map h : X — R is called a statistic. Also assume that Q and 6[;4 commute. Thus, the
distance between Q and Oy, (concerning p € &"(N.,)) is defined by A(My(Q x Oy, S(p)) )
as in the above definition.

Now we have the following problem:

Problem 11.4. [The estimation under loss function in statistics]. Assume the above
notations. Then our present problem is as follows:

(#) how to choose a proper image observable Oy (e, O (=(X,F,F))and h: X — R)
as the approximation of a quantity Q (= (R, B, G)).

Our interest is concentrated on the problem (#), which is regarded as a kind of “inference’
Note that this (f) is entirely different from Fisher’s spirit in Chapter 5, that is, how to

infer the unknown state from the measured data obtained by a measurement.
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Of course, it is desirable that O and & in the above (#) satisfy the following (A;) and
(As).

(A1) (unbias condition). There exists a dense set D ( € &"(N,)) such that:

[ A wlo G = [ X PO @), (e D)
R

R
(A2) A(Mn(Q x Opy, S(p)) ) is small (where Q and Oy, commute ).

In what follows, we shall study Problem 11.4 in Example 11.5 and Problem 11.6.
Example 11.5. [Heisenberg’s uncertainty relation, cf. [31], [36], Chapter 12]. Let A;
and Ay be a position quantity and a momentum quantity respectively (i.e. A; and A,
are self-adjoint operators on a Hilbert space H satisfying that A1 Ay — Ay Ay = ih, h is
“Plank constant” /(27)). As mentioned before, we identify A; with the spectral measure
A; = (R,B,G;) in B(H), ie., A; = [ AG;(d)). Since A; and A; do not commute, the
product observable does not exist. Therefore, consider an observable O = (X, J, F) in
B(H) and measurable maps h; : X — R, (i = 1,2), and define the image observables
Op, = (R,B,F(h;'(-)) = Fy(+)) in B(H). And furthermore, assume the conditions:

(i) There exists a set D ( C H) such that D (=“closure on D)= {u € H | |lu|| = 1}
and it holds that (u, A;u)y = [g Mu, Fi(d\))u)y (Vu € D, i=1,2

(ii) Q; and Oy, commute (i = 1,2).
Then we get the following inequality:

A(MB(H) (Q, x 6[,“],?@))) : A(MB(H) @, x 6[h2],§(ﬁ))> > 1/2  forall p € Troy(H).

(11.8)

This is just Heisenberg’s uncertainty relation, of which non-mathematical representation

was proposed by W. Heisenberg in the famous thought experiment of v-rays microscope
(cf. [31]). This will be discussed in Chapter 12.

|

The following problem is a main part of this section. The reader should find “estima-
tion under loss function in statistics” in the following problem.
Problem 11.6. [= Example 5.9 (Urn problem)]. Let U;, j = 1,2,3, be urns that contain

sufficiently many colored balls as follows:
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\ H blue balls \ green balls \ red balls \ yellow balls \
urn U, 60% 20% 10% 10%
urn Uy 40% 20% 30% 10%
urn Us 20% 20% 40% 20%

Put U = {U,, U,, Us}. By the same argument in Example 5.9, we consider the state space
Q ( = {w1, wo, w3} ) with the discrete topology, which is identified with U, that is, U 3 U;

U = w

Us ~ w3

®O®®®
®OO®®Y

®OOB®O®
OBO®OQ

Let @ be a quantity in C(Q2), ie., @ : Q (= M:,(Q)) — R is a real valued continuous
function on Q2. For example we may consider in what follows. Assume that the weight of a
blue ball is given by 10 (gram), and green 20, red 30 and yellow 10. (Thus, we can define
the map W : X — R such that W(b) = 10, W(g) = 20, W(r) = 30 and W(y) = 10.)
Therefore, we can define the quantity @ : 2 — [0, 50] such that the average weight Q(w; ) of
the balls in the urn U is given by 14 (= (10-60+20-20+30-10+10-10)/100), and similarly,
Q(w2) = 18 and Q(ws) = 20. Define the observable O = (X = {b,g,r,y, },2*,F,)) in
C(€2) by the usual way. That is,

F{b}(wl) = 6/10
Fy(w2) = 4/10
F{b}(a@,) = 2/10

Fgy(wr) = 2/10
Figy(we) =2/10
Fgy(ws) = 2/10

F{T}(wl) = 1/10
Fiy(w2) = 3/10
F{T}(wg) = 4/10

F{y}(wl) = 1/10
F{y}(WQ> =1/10
F{y}(w3) = 2/10.

Now consider the iterated measurement Me(q)( Xz_; O = (X2, 2X* X321 F), Spy) where

(x2_, F)z,x=,(w) = Fz,(w) - Fg,(w). Also, assume that

e the measured value (b, r) is obtained by the simultaneous measurement M) ( X7_,

0, S).

Now we have the following problem.
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(1) How do we infer Q(x) from the measured value (b,r) obtained by the simultaneous

measurement Mcq)( X5, O, Suy) ?

[
In what follows, we provide four answers to the above problem.

Answer 1. [Fisher’s method, cf. [44]]. Recall “[II]” in Example 5.8, in which we infer,
by Fisher’s method, that the unknown urn is Us. That is, applying Fisher’s method (cf.
Corollary 5.6), we get the conclusion as follows: Put E(w) = F)(w)Fgy(w). Clearly it
holds that E(w;) = 6-1/10* = 0.06, E(ws) = 4-3/10*> = 0.12 and E(w3) = 4-2/10% = 0.08.
Therefore, there is a very reason to think that [ * ] = d,,, that is, the unknown urn is
Us,. Since we inferred that [+ ] = d,, ( <> ws) in Example 5.8(I1), we can immediately

conclude that (or more precisely, Regression analysis I (6.48))

Q(x) = Qw2) = 18.

Answer 2. [Moment method] Recall “Remark” in Example 5.8, in which we infer, by the
moment method, that the unknown urn is U;. Thus, we conclude that Q(x) = Q(Us,) = 18.
Answer 3. [Bayes’ method in SMTpgp|. Next study the above problem (f) in SMTpgp-
method (cf. §8.6.2, and Theorem 11.12 later). Thus, we assume that the [ ] is chosen
by a fair rule (e.g., a fair coin-tossing, a fair dice-throwing, etc.). Consider a statistical
measurement Meq)( X7_; O, Sp(pf') ), where we assume that pf' = pi,, ie., pli; =
3 Z;’:l b, on 2. When we get the measured value (b, ) by the measurement Meq)( x7_,
O, Siy(pi) ), we infer, by Bayes’ method (for example, (B;) in Remark 8.14, or more
precisely, Theorem 8.13), that the new state pl’  is

1
mo_ 0.06-6, +0.12-5,. +0.08-4,
Prew = 0706 7 0.12 + 0.08 ot 2 T 5)
1
= (6-§ 12 -6 -0 ).
6+12+8(6 b ¥ o 8 0ug)

Thus there is a very reason to consider that

Q( ) is approximated by [;, Q(w)pi, (dw) = HELE2HE0E — 1769 ..

Also, the variance o2 is given by

(14— 17.69)% -6 + (18 — 17.60)* - 12 4 (20 — 17.60)* - 8112 _
6+12+38
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Answer 4. [The estimation under loss function in statistics, cf. [44]]. Let Mg
(%7, 0, Su(pg) and @ : Q — [0,50] be as in Problem 11.6. Put O = (X = {b,g,7,y},
2%, Fy) in C(Q) ( = C({wi,w2,w3})) and py* is any mixed state € M7 (). Consider
a measure v on €, for example, v({w;}) = 1 (j = 1,2,3). Define the W*-observable O
in L>=(Q,v) such that O = O, and define the normal state p ( € L1,(,v)) such that
Py (B) = [ p(w)r(dw) for all B ( € Q). Then, we can identify Me(q)( X3, O, Sui(pf"))
with M=) ( x7_; O, S(p)). Note that Q is equivalent to the crisp observable Q =
(R, B,G?) in L™(Q,v) such that GZ(w) = X wreaownes; (W) for all = € B and all w € €.
Define the map h : X2 — R such that:

h(z1, 2) = %(W(fm + W(x2)> (V(x1, 22) € X2 = {b, 9,7, y}?) (11.9)

where W (b) = 10, W(g) = 20, W (r) = 30 and W (y) = 10. Consider the image observable
(x3,0)n = (R, B, F = (x3_,F)y1y). Then, A(Mye(o,(@Q x (x3_,0)1, 5(7))). the
2
k=

(
distance between Q and (x2_,0);, concerning p, is calculated as

A(Mp (@ (3200 50)) = [ [ I =262 x Fyandn)]

[ T Al — bl w) PFy ) P ()]

J=1 (z1,22)€X?

- [ZQﬁ(wl) + 385(ws) + 38p(w3)} v (11.10)

Therefore, we see that (11.10) < /38 = 6.17 for all p € L1,(Q,v). Now we can also

answer the problem () in Problem 11.6. That is, we see,
Q(*) = LW (r) + W (b)) = (30 + 10)/2 = 20,

though it of course includes the error 6.17.

The map h : X™ — R, (n = 2), in (11.9) may be chosen by the hint of “the law of large
numbers”. That is, if n is sufficiently large, the map h : X™ — R (defined by h(x, ..., z,)
= L3 W(a)) has a proper property, i.e., lim, .o A(MLOO(Q’V) (Qx (x?_,0)p, g(ﬁ)))
=0 for all p € L},(Q,r). However, there are several ideas for the choice of h.
Definition 11.7. [Admissible]. Let Q = (R, B,G) and O = (X, J, F) be a quantity and

W*-observable in a W*-algebra N respectively. For each 1 = 1,2, consider a measurable
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map h; : X — R, and the image observable O, = (R, B, F(h;*(-))) in N. Also assume
that Q and Oy, commute.

(i) When it holds that
A(Mn(Q % On,,S(p) ) < AMN(Q x Op,, S(p)) ) Vpe &"(N,),  (11.11)
we say that Oy, is better than Oy, as the approximation of Q.

(ii) Also, Oy, is called admissible as the approximation of Q, if there exists no hy that

satisfies (11.11) and the following condition:

A(Mn(Q x Oy, S(po)) ) < AMN(Q % Oy, S(p,)) ) for some p € G"(N,).
(11.12)
|
As a well known result concerning “admissibility’, we mention the following example.
Example 11.8. [Gaussian observable and admissibility]. Let O = (R, Bgr,G?) be the
Gaussian observable in N = L*(R, du), that is,

o 1 _wmw? —
GZ(p) = \/W/Ee 207 du (Vu, € R, V= € Bgr). (11.13)

Consider the quantity @ : R — R such that Q(n) = p (Ve € R), which is identified with
the observable Q = (R, Bg, F, (Q)) where FZ (1) = x.(u). Consider the product observable
xp_,0 = (R", Bgrn, X}_;G?) in L>®(R,du). Define the map h : R* — R such that
R" 5 (A1, .., A\n) 2 Adetdn e R, Then, it is well known (cf. [86]) that ( x}_; O), is
admissible as the approximation of Q.

|

11.3 Random observable

Recall the probabilistic measurement Me(q) (O, Sp([0w,; p] @ [0wy; 1 — p])) in Example
8.1 (8.8). Here, the symbol [d,,;p] @ [0w,; 1 — p] is called a “probabilistic state” The
concept of “probabilistic state” urges us to propose the “random observable” as follows:

For simplicity, in this section we devote ourselves to the classical case (i.e., C'(Q2) and
L2, ).

Let O = (X, F, F1), O = (X, F, F), .-+, Oy = (X, F, Fy) be observables in C().

In a similar way in the procedures (P;) and (P) of Example 8.1, define the “random
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observable” ®&_,[0,,; p,], where 25:1 m=10<p,<1(n=1,2,..,N)). That is, we

assume that:

e To take a measurement M) (P2, [0; pal), Sps))- (This measurement is called a

“random measurement’f)
<

e To take one of {M¢)(On, Ss.1) | n = 1,2, ..., N} according to the probabilistic rule
(p1, D2, -, pn). That is, to take the measurement Mc(q)(On, Sps,]) with probability

Pn.-
Here, it should be noted that

e the statistical property of Mc(q)(®2_1[On; pnl, Si.]) is equal to that of MC(Q)(G,
Sis.), Where O = (X.9,F) is defined by F(Z) = SN puF,(2). That is, for each
E(eF)andw (€ Q),

“the probability that a measured value obtained by Mc(q)(BY_1[O0n; pnl, Ss.)

belongs to =”

=3 plFE)W) (11.14)

= “the probability that a measured value obtained by MC(Q)(@, Ss.)) belongs

7
to =7,

which is easily seen by a similar argument such as stated in Example 8.1.

Again note that

(1) to take a random measurement Mcq)(BY_1[O0n; pnl, Sps.) (11.15)
—
to take a measurement Mc(q)(On, Sps,1) with probability p, (n =1,2,...,N).
(2) to take a probabilistic measurement Me(o) (O, Sp( @5, [0u,;Pn))) (11.16)
<~

to take a measurement M) (O, S5, 1) with probability p, (n =1,2,...,N).
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In the case that N = co. it suffices to prepare a probability space (A, F(A),r). And,
for each A( € A), consider an observable O, ( = (X, J, F))) in C(€2). Then, the random
observable ®2_,[0,,; p,] is generalized as §, Oxv/(d\) ( = (X, %, ¢, F,\I/(d)\))>.

The following example is typical (though the description is due to the W*-algebraic
formulation).

Example 11.9. [Gaussian observable as a random observable]. For each \( € R( = A)),
consider an observable O, ( = (R( = X), Br, F))) in L*(R( = Q), dw) such that

[F\E)]) = x(w—A) (VE€ Br(C2¥),Vw e R(=Q),VA € R( = A)).

Define the probability space (R( = A), Br, v) such that:

1 2
Nor: Se?a?dA (VS € Br). (11.17)

Thus, we have the random observable:

v(S) =

jiow(d»( — (R( = X), Br(= ff),fFW(dA))) (11.18)

A

which the probabilistic form of the Gaussian observable (R( = X),Br( = ¥),G?) in
L*(R( =), dw) such that:

6@ = [IREIEN = [ xlw- e 0

1 z—w)?
= - /_6_(202)dx (Vw € R(= Q) V= € Br( C2Y)), (11.19)

(Cf. Example 11.8.)

|

Although the following problem is easy, its measurement theoretical answer is quite
important.

Problem 11.10. [Which hand is the coin under?]. The following problems (P;) and (F2)

are essentially the same.

(P1) A coin is, intentionally or unintentionally, put under my right hand or my left hand.
Suppose that you do not know which hand the coin is under, and you choose one
of my hands which you guess that the coin is under. Is it reasonable to believe that
the probability that the ball is under the hand you choose is equal to 1/2. How do
you think about it?
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my right hand my left hand

Coin

Table

(P,) There are three boxes (i.e., Box 1, Box 2 and Box 3) and a ball. A ball is, intention-
ally or unintentionally, put in one box (i.e., Box 1 or Box 2 or Box 3). Suppose that
you do not know which box contains the ball, and you choose one of three boxes
which you guess the ball is in. In this case, it is often believed that the probability
that the ball is in Box 1 [resp. in Box 2; in Box 3] is 1/3 [resp. 1/3; 1/3]. How do
you think about it?

Ball
. & Box 1 Box 2 Box 3

o[The experimental answer to Problem (P;)]. We can easily say “Yes”, that is,
(A7) the probability that the ball is under the hand you choose is equal to 1/2.

In fact, it can be easily tested experimentally. For example, it suffices to ask to 1000
persons “Which hand is the coin under?”. About 500 persons will say “Right hand”,

and the other persons will say “Left hand” In either case, about 500 persons’ guess is
hit. Thus the above (A;) is true. Although this (P;) is the easiest problem throughout
this book, what I want to say is the measurement theoretical answer mentioned in what
follows.

o[ The measurement theoretical answer to Problem (F,)]. Since the two (P;) and (FP») are
essentially the same, it suffices to answer Problem (F,) from the measurement theoretical

point of view. When the conclusion is said first, we can say that:

(As) the probability that the ball is in your chosen box is equal to 1/3.
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In what follows we shall explain it. Put 2 = {w;,ws, w3}, where w; [resp. ws, ws] means
the state that the ball is in Box 1 [resp. Box 2; Box 3]. First we consider the case wy,
that is, the ball is in Box 1.

[(i): The case wy, that is, the ball is in Box 1]. Define three observables Of ( =
(10,1}, 2101 " Fe)), O (= ({0,1},208 ) F5)), O5 ( = ({0,1},2{% F¥)) such that:

[FY({0P](w1) =0, [FY({0p)](w2) =1, [FY({0})](ws) = 1,
[Er{1D)](wn) =1, [Fr({1D))(w2) = 0,  [FT({1})](ws) =0, (11.20)
[F5({0D)](wr) =1, [F5({0})](w2) = 0, [F5({0})](ws) = 1,
[F5({1D)](w1) = 0, [FE({1D))(w2) = 1, [F({1})](ws) =0, (11.21)
[F5({OD](wr) = 1, [FE({0D)](w2) = 1, [F5({0})](ws) = 0,
[E5({1)](w1) = 0, [F5({1D}(w2) = 0,  [F5({1})](ws) = 1. (11.22)

Note that we identify the following (S7) and (S3):

(S7) We take a measurement M¢(q)(Of, Sps,,,1). And we obtain a measured value 1. (Or,

we obtain a measured value 0.) (11.23)
(S3) We open Box 1. And we find the ball. (Or, we do not find the ball.) (11.24)
Similarly, we see the following identification:

(SF%) We take a measurement M (q) (O3, Sps,,,1) [resp. Mca) (05, Sps,,,1)]. And we obtain

a measured value 1. (Or, we obtain a measured value 0.)
(523) We open Box 2. [resp. Box 3.]. And we find the ball. (Or, we do not find the ball.)
Since “the state w;” = “the case that the ball is in Box 17, we can assume that

e the measured value obtained by M¢(q) (0¥, Sjs,,1) [resp. Mc(a) (05, Sps.,,1); Mc() (05,
Sis,,1)] s 1 [resp. 0; 0].

Since you have no information about the [*], your choice is the same as the choice by a

fair coin-tossing. That is, we assume that

“decision without having information” <= “decision by a fair coin-tossing”, (11.25)
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which is the fundamental spirit of “the principle of equal probability” in the following

section. Thus, it is reasonable to consider that

the probability that Box 1 is opened = the probability that Box 2 is opened
=the probability that Box 3 is opened = 1/3. (11.26)

Therefore, we see that

(a) the probability that the measured value obtained by Meq)( @i_, [0%;1/3], Ss,,,1)
is 1 [resp. 0] is given by 1/3 [resp. 2/3].

[(ii): The case wy, that is, the ball is in Box 2]. Similarly we see that

(b) the probability that the measured value obtained by the “measurement”

M) ( @3-y [0%;1/3], Sps,,,1) is 1 [resp. 0] is given by 1/3. [resp. 2/3].
[(iii): The case w3, that is, the ball is in Box 3|. Similarly we see that

(c) the probability that the measured value obtained by the “measurement”

M) ( @3- [0f;1/3], Sp,,,)) is 1 [resp. 0] is given by 1/3. [resp. 2/3].

[(iv): The case that we do not know which box contains the ball]. By the above (a), (b)

and (c), we see that

e the probability that the measured value obtained by the “measurement”

Mec o) @;_; [0F;1/3], Spy) is 1 [resp. 0] is given by 1/3 [resp. 2/3].

Note that “measured value 1 is obtained” < “open the box that contains the ball” Thus,
we can believe that the probability that the ball is in Box 1 [resp. in Box 2; in Box 3] is
1/3 [resp. 1/3; 1/3].

[Remark]. Recall BMT (in §8.6). Then, the system in Problem (P,) is clearly represented
by Sp(vu)bw, cf. §8.6.1. Here, v,({wr}) = 1/3 (k = 1,2,3). However, in the above
argument, we conclude that the “probability” that the ball is in Box 1 [resp. in Box 2; in
Box 3] is 1/3 [resp. 1/3; 1/3]. Therefore, we have the following question:

e Is the system represented by Sp(v.) (as well as S (V) pw)?

This will be discussed in the following section. [
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11.4 The principle of equal probability

Consider a measurement Mc()(0O = (X, J, F), Spy), where Q is finite, ie., Q =
{w1,ws, ...,wn}. There may be several definitions of “Having no information about the
[*x]”. As mentioned in §8.6, in this book we introduce three definitions of “Having no

information about the [*]” such as:

(a). iterative likelihood function method in §5.6,
(b). SMTpgp in SMT in this section and §11.4,
(¢). BMT in §8.6.

We want to change Spj((vu)sw (belief weight) to Spy(v.) (statistical state). This will be
done according to the spirit (11.25), that is,

“decision without having information” <= “decision by a fair coin-tossing”,

which assures that the principle of equal probability holds. This is the purpose of this
section.

Let 2 be a finite set, i.e., Q@ = {w1,wq, ..., wn}. A map ¢ : Q — is said to be ergodic,
if it is a bijection and if it holds that Q = {¢"(w) | n =0,1,..., N — 1} for any w ( € Q).
Also, a homomorphism ® : C'(2) — C(Q) is said to be ergodic, if there exists an ergodic
bijection ¢ : {2 —  such that

(®f)(w) = flo(w)) (Vf e C(Q),Vw e Q). (11.27)

Theorem 11.12. [The principle of equal probability (=“PEP”), SMTpgp method].
Consider a measurement M¢(q)(O = (X, F, F), Sp), where Q) is finite, i.e., = {wy, wa, ..., wn }.
And consider the measurement Mcqy( ©Y - [@"O;1/N], Sp) (where ® : C(Q) — C(Q)

is ergodic), which is called an unintentional random measurement.! Then we see

Mooy ( @nZ [@"0;1/N], Spy) == Mg)(0, Sy @52, [0,,;1/N])  (11.28)

identification

and

probabilistic form

Me()(0, S ( @y (00,3 1/N])) Me(0) (O, Sp (V) (11.29)

statistical form (=(8.9))

L Also, it is called a “completely random measurement”, “coin-tossing measurement”, “no information
measurement”.
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where v,, = % Zgzl 0w, - That is, we can assert that:

Mo EBnN:_OI [@"O;1/N], Sly) === Mc()(O, Si(vu)). (11.30)

identification

Proof. Let w € €). Then we see that:

to take an unintentional random measurement Mcq)( @5 [®"O;1/N], S5.))
—
to take a measurement Mc(q)(®"O, Sps,1)
with probability 1/N, (n =1,2,...,N)
<~
to take a measurement Me ) (O, S[%n(u)]) with probability 1/N
(n=0,1,2,..,N —1)
= (Note that © = {¢"(w) | n=0,1,..., N — 1}.)
to take a measurement M) (O, S5, 1) with probability 1/N, (n =1,2,...,N)
<~
to take a probabilistic measurement Mc(a)(O, Spy( @n=y [0u,; 1/N]))
<~

to take a measurement Mc (o) (O, Sy (vu)).
Thus we see that:

M) (&) [@"0;1/N], Sy) == Mco)(0, Sp(va)). (11.31)

identification

O
Problem 11.13. [Monty Hall problem, cf.[33]].
The Monty Hall problem is as follows (¢f. Problem 5.12, Remark 5.13, Problem 8.8) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 17, “number 2”7, “number 3”7 ). Behind one door is a car, behind the

others, goats.

(C) The host knows the fact that the probability that the car was set behind the
k-th door (i.e., “number k) is given by py (k = 1,2, 3), for example, p; = 3/7,
po = 1/7, p3 = 3/7. But you do not know this fact.
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You pick a door (strictly speaking, you pick a door at random), say number 1, and
the host, who knows what’s behind the doors, opens another door, say “number 3",
which has a goat. He says to you, “Do you want to pick door number 27” Is it to

your advantage to switch your choice of doors?

Door Door Door \/

Number 1 Number 2 Number 3 QP\ @\
_

[Answer]. Put Q = {w1,ws,ws}, where wy [resp. ws, ws] means the state that the car
is behind the door number 1 [resp. the door number 2, the door number 3]. Define the
observable O = ({1,2,3},2{123 F) in C(Q) such that

[F{ID)w) =00,  [F{2D)(w) =05,  [F{3})](w1) = 0.5,
[F{1)(w2) =0.0,  [F{2})](w2) =00,  [F({3})l(w2) = 1.0,
[F({1D](ws) = 0.0, [F{2Dl(ws) = 1.0,  [F({3})](ws) = 0.0, (11.32)

[Sy

Thus, we have the unintentional random measurement Me (o) (®2_,[®"0; 1/3], Spj) (where

d: C(2) — C(Q) is ergodic). Theorem 11.12 says that
Me(o)( @ [270;1/3], Suy) <= Moy (0, Sy (va)) (11.33)

where v, ({w1}) = vu({w2}) = vu({ws}) = 1/3. Thus, it suffices to consider the statistical
measurement Mc(q) (O, S(v,)). Here, note that

e By the statistical measurement M¢(q)(O, Sp(vy)), you obtain a measured value 3,

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,
the posttest state vpos; (€ MT4(Q2)) is given by

SR CHETN
(v F({3)

2Strictly speaking, F({1})(w1) = 0.5 and F({2})(w1) = 0.5 should be assumed in the problem (P)

(11.34)
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That is,
Vpost({wl}) =1/3, Vpost({WQ}) =2/3, Vpost({w?)}) =0, (11.35)

and thus, you should pick door number 2.

|
Remark 11.14. | Four answers to Monty Hall problem]. In this book four answers to the
Monty Hall problem are presented in Problem 5.12, Remark 5.13, Problem 8.8, Problem
11.13. However, I believe that the Monty Hall problem in Problem 11.13 is the most
natural.

|
Problem 11.15. [The problem of three prisoners, ¢f. Problem 8.10 and Remark 8.11].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free
and the other two were to be executed. But he did not know who was the one to
be spared. To the jailer who did know, A said, “Since two out of the three will
bee executed, it is certain that either B or C will be, at least. You will give me
no information about my own chances if you give me the name of one man, B or
C, who is going to be executed.” Accepting this argument after some thinking, the
jailer said, “C will be executed.” Thereupon A felt happier because now either he
or C would go free, so his chance had increased from 1/3 to 1/2. This prisoner’s

happiness may or may not be reasonable. What do you think?

“C will be executed]

>
>

p—
7

L
—=—=C \ (=)

l———\f/ S
N
— ()

— /@)

(Q) (Continued from the above (P)). There is a woman, who was proposed to by the
three prisoners A, B and C. She listened to the conversation between A and the
jailer. Thus, assume that she has the same information as A has. Then, we have

the following problem:
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(#) Whose proposal should she accept?

[Answer to (P)]. Let Q (= {wa,wp, w.}) and O = (X = {x4, 25,20}, 217425:2ct F) be
as in Problem 8.10. Since A has no information, the unintentional random measure-
ment Me (o) (Di_o[®*O;1/3], Si (1)) (where @ : C(2) — C(Q) is ergodic) is considered.

Theorem 11.12 asserts the following identification:

M) (®7_o[®*0;1/3], S) == Mc@)(0, S(n)) (11.36)

identification

where v (€ M7 (€2)) is defined by

v{wa}) =1/3, wvo({w}) =1/3, wo({we}) =1/3. (11.37)

Thus, we can assume that the (P) in the above is the same as the (P) in Problem 8.10.

Therefore, we get that

v({wa})
o)) = 2o = U9 sl ea) = s = 2
Vpost({we}) = 0. (11.38)
Therefore, we conclude that
e the prisoner’s happiness is not reasonable. That is because vy({w,}) = 1/3 =
Vpost({wa })-
[Answer to (Q)]. In the above (11.38), we see that
Vpost({wa}) = 1/3,  vpost({wp}) = 2/3,  Vpost ({we}) = 0. (11.39)
Thus, we conclude that
e she should choose the prisoner B. That is because
et ({0}) = 0 < o ({2 }) = 1/3 < tous ({}) = 2/3. (11.40)
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Chapter 12

Heisenberg’s uncertainty relation

Quantum mechanics is surely one of the most successful theories in all science. In fact, most of
the Nobel prizes of physics and chemistry are due to quantum mechanics. Also, as recent topics
(particularly, related to measurements), we see quantum computer [80], quantum cryptography
[91], quantum teleportation [10], etc. Although these are quite interesting and promising, in this
chapter, we devote ourselves to Heisenberg’s uncertainty relation, which is the most fundamental
in quantum mechanics.

Heisenberg’s uncertainty relation (c¢f. [31]).

(i) The particle position q and momentum p can be measured “simultaneously’] if the “errors”
A(q) and A(p) in determining the particle position and momentum are permitted to be
non-zero.

(ii) Moreover, for any € > 0 , we can take the above “approximate simultaneous” measurement
of the position q and momentum p such that A(q) < € (or A(p) < € ).

(iii) However, the following Heisenberg’s uncertainty relation holds:

Ag)-Alp) = 3, (12.1)

DO St

for all “approximate simultaneous” measurements of the particle position and momentum.

R4S

However, it should be noted that some ambiguous terms (i.e., “approximate simultaneous”, “error”)
are included in the above statement, Thus, we believe that it is not a scientific statement but a
“catch phrase” that was used to promote the paradigm shift from classical mechanics to quantum
mechanics. Thus, in this last chapter' we try to describe this uncertainty relation precisely in
terms of mathematics and further to derive it in the framework of the W*-algebraic formulation
of MT. For this, we first give the mathematical definitions of “A(gq)” (or “A(p)”) and “approximate
simultaneous measurement”, etc. in terms of MT.

IEvery result mentioned in this chapter was published in [36], which was the oldest result in our study
of “measurement theory” That is, our research of “measurement theory” starts from the paper [36]. On
the other hand, the philosophical assertion mentioned in Chapter 1 is the latest result in our study. In
this sense, the progress of our research is symbolically summarized as

“quantum” (physics) — “classical” (engineering) — “philosophical” (epistemology)
(in Chapter 12) (in Chapters 2~11) (in Chapter 1)

293
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12.1 Introduction

Although the uncertainty relation (discovered by Heisenberg in 1927) has a long his-
tory, the various discussions about its interpretations are even now continued. Mainly
there are two interpretations of uncertainty relations. One is the statistical interpreta-
tion. By repeating the exact (i.e. the “error” A(q) = 0) measurements of the position ¢ of
particles with same states, we can obtain its average value ¢ and its variance var(q). Also,
by repeating the exact (i.e. the “error” A(p) = 0) measurements of the momentum p of
the same particles, we can similarly get its average value p and its variance var(p). From

the simple mathematical deduction, we can obtain the following uncertainty relation:

N
N

[var(q)]? - [var(p)]> = 3, (12.2)

| St

where i =“Plank’s constant” /27. This is the statistical aspect of the uncertainty relation.
The mathematical derivation of the uncertainty relation (12.2) was proposed by Kennard
in 1927 (or more generally, Robertson 1n 1929). Cf. [54, 73]. Thus, this inequality (12.2)
is called Robertson’s uncertainty relation.

On the other hand, Heisenberg’s uncertainty relation is rather individualistic. Most
physicists will agree that the content of Heisenberg’s uncertainty relation is roughly as
stated in the following proposition (though it includes some ambiguous sentences as well

as some ambiguous words, i.e. “approximate simultaneous” and “error”).

Proposition 12.1. [Heisenberg’s uncertainty relation, cf. [31]]?

(i) The particle position q and momentum p can be measured “approximately” and
“simultaneously’] if the “errors” A(q) and A(p) in determining the particle position

and momentum are permitted to be non-zero.

(ii) Moreover, for any € > 0 , we can take the “approximate simultaneous” measurement

of the position q and momentum p such that A(q) < € (or A(p) < € ).

2It may be usually considered that the (12.2) is the mathematical representation of the (12.3). How-
ever, it is not true. In fact, in [84], J. von Neumann pointed out the difference between Robertson’s
uncertainty relation (= (12.2)) and Heisenberg’s uncertainty relation (= (12.3)).
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(iii) However, the following Heisenberg’s uncertainty relation holds:

Alg) - Alp) > 5, (12.3)

N | >

for all “approximate simultaneous” measurements of the particle position and mo-

mentum.

It should be noted that the above “proposition (= Heisenberg’s assertion)” is am-
biguous, that is, it is not a scientific statement but a “catch phrase” that was used to
promote the paradigm shift from classical mechanics to quantum mechanics. In fact, the
above “proposition” is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation), cf. §12.7.

Several authors have contributed to the problem to deduce Heisenberg’s uncertainty
relation. In [2] (Ali and Emach, 1974), [3] (Ali and Prugovecki, 1977), these were done by
means of the concept of (generalized) observable which has been developed by E.B. Davies
[17] (¢f. Definition 9.3 for B(V')). Hence, a certain part of this problem has been already
solved. In particular, the statements (i) and (ii) in the above Proposition 12.1 were de-
duced satisfactorily. However, concerning the statement (iii), there still seems to be some
questions. The mathematical formulation and derivation of the Heisenberg’s uncertainty
relation (iii) (in the above Proposition 12.1) was proposed by M. Ozawa [67], S. Ishikawa
[36] independently. We believe that this is the final version of Heisenberg’s uncertainty
relation concerning measurement errors. Thus, in this chapter we shall introduce this

formulation and derivation of the above Proposition 12.1.

Remark 12.2. [(i): A classical understanding of Heisenberg’s uncertainty relation].
Let us explain the classical understanding of Heisenberg’s uncertainty relation (which is
essentially equal to the thought experiment of y-rays microscope (c¢f. [31])). In order
to know the position ¢(ty) and momentum p(¢y) of a particle A at time ¢y, it suffices to
measure the position ¢(tg) of a particle A at time ¢y (i.e., light L; is irradiated at the
particle at time t), and continuously (i.e., after § seconds), measure the position ¢(ty+9)

at time to + 0. That is because (q(ty), p(to)(= “%(t))) is approximately calculated by
(q(to). m(q(to+§)—Q(to)) ).
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q1(to +9)

q(to)
to +9)

o

la]. However, if we want to know the exact position ¢(ty) (i.e., if we want Ag = 0), the

“Plank constant” x “lightspeed” )

wavelength A of the light L; must be short (i.e., the energy (= 5

of the light L; must be large), and therefore, the particle A is strongly perturbed. Thus,

the position of the particle A at time ¢y + 0 will be changed to ¢;(to+9). Thus we observe

that the momentum of the particle A at time ¢ is equal to M

from p(to)(= 244 (ty) ~ w) (i.e., Ap is large).

, which is away

[b]. Also, if we want to know the exact momentum p(ty) (i.e., if we want Ap =~ 0),
the wavelength A of the light L; must be long, and therefore, the particle A is weakly
perturbed. Although the position of the particle A at time t, + 0 will be changed to
¢1(to + 6), it is almost the same as ¢(to + ). Thus we observe that the momentum of
the particle A at time t; is equal to M, which is near p(to)(= mdq (to) =~
w) (i.e., Ap is small) if ¢ is large. However it should be noted that Aq is large
since the wavelength A\ of the light L, is long.

[c]. Therefore, Ap ~ 0 and Ag ~ 0 are not compatible, that is, the inequality “Ap - Ag >
constant” always holds. Although this explanation is, of course, rough, there is something
thought-provoking in the above argument.

[(ii): EPR-experiment [22]]. Let A and B be particles with the same masses m. Consider

the situation described in the following figure:

A B
where “the velocity of A” = — “the velocity of B?7 The position ¢4 of the particle A can be

measured, and moreover, the velocity of vg of the particle B can be measured. Thus, we

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

A 0 A S-
For Clear f-"?rl n%)r(\g]:4 e ?tg //wf\;\}rvﬁllUkRelcl){ EuLpL %16 Jp/kup/mfomt/ o

can conclude that the position and momentum of the particle A are respectively equal to
qa and —muwp. Is this contradictory to Heisenberg’s uncertainty relation? This question
is significant though their (i.e. Einstein, Podolosky and Rosen ) interest is concentrated
on “the reality of physics”

[

12.2 Example due to Arthurs-Kelley

Here, we mainly consider the following identification:

L*(R,dx) > u — lu)(u| € Trh, (L*(R, dx)).

i identification
(H“”LQ(R,dz):L urzetfu)

We first introduce Robertson’s uncertainty relation, which generally seems to be under-
stood (or, misunderstood) as the mathematical representation of Heisenberg’s uncertainty
relation. By repeating the exact (i.e. the “error” A(g) = 0) measurements of the position
q of particles with same states, we can obtain its average value ¢ and its variance var(q).
Also, by repeating the exact (i.e. the “error” A(p) = 0) measurements of the momentum
p of the same particles, we can similarly get its average value p and its variance var(p).

A simple calculation shows:

q:/Rx‘u(x)rdx and p:/RM[%u( )}dm <:/Rp’ﬂ(p)‘2dp> (12.4)

where @ is the Fourier transform of u, (that is, a(p) = \/2= [ u(x)e‘ihmpdx) And

further, we see,
2 2
var(q) = / 2 u(m)‘ dex = / |x|2‘u(x)‘ dr — ¢
R
ol |2 hd 2 o
var(p) = | |p—p|ap)| dp = [ |- u(e)Pde - 5 (12.5)
R r tdz

Immediately after Heisenberg’s discovery (=“Proposition 12.17, 1927), Kennard, by a

simple calculation, showed the following uncertainty relation:

D=
D=

>

Do | St

(12.6)
(=(12.2)

[var(q)]? - [var(p)]

(cf. Lemma 12.13 later). Of course, it is clear that there is a great gap between Heisen-

berg’s uncertainty relation (12.3) and Kennard’s uncertainty relation (12.6).
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Next we shall introduce the nice idea by Arthurs-Kelly [7], that is, a certain approx-
imate simultaneous measurement of the position ¢ and the momentum p of a particle A

in one dimensional real line R, which has a state function u(z) (€ L*(R), |lul|z2®) = 1).

Note that the position observable Q( = x) and the momentum observable P( = %)
do not commute, that is,
QP — PQ — m( £ o). (12.7)

Therefore, any simultaneous measurement of the position observable x and the momentum

observable % for a particle “A” can not be realized. However, Arthurs-Kelly’s idea is

excellent as follows: We first prepare another particle “B” with the state ug(y) such that:

/Ry‘uo(y)‘zdy = /RW[%%(@/)] dy =0 (12.8)

for example, uy(y) = W exp( — 3‘2’—2) Further we regard these two particles “A” and

“B” as a “particle C” in two dimensional Euclidean space R? with the state u(x)uq(y)
(€ L*(R?),||u - uollr2rzy = 1). Now consider the self-adjoint operators (z — y) and

19 + 22 in L?(R?), which commute, that is, it holds that:
Y

ho  ho ho  ho
—y) = (r — y)(— + — 12.
That is because we can easily calculate:

ho  ho

(Goz + 75, —vlf@y)
h ho

h ho ho ho
ho ho
=[(z - y)(@ + @)]f(%y)-

?

Thus the simultaneous measurement of observables (x — y) and % + % for a “particle

C” (= “A” + “B”) can be realized. Moreover, we can easily calculate these expectations

as follows:
[ i@t - ety sy = [ efuie @ a210)
and
//mm[(% - %)u(w)uo(y)}dazdy = /Rm[%u(az)]dm (12.11)

By the reason that the equalities (12.10)= g and (12.11)= p hold, we may say that

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

1%)3._ APPRQXIMATE SINJULTANEQUS MEASUREMENT 299
For Clear Printing, See http://www.keio-up.co.jp/kup/mfomt/

(#) An “approximate simultaneous measurement” of the position observable Q( = x)

_ hd

) can be realized.

and the momentum observable P( =

Here, the variances varqs,(q) and var,s,(p) in the approzimate simultaneous measure-
ment of the position ¢ and the momentum p of a particle “C” are given respectively
by:

2
Uarasm // T — uO dxdy - U() l’ - y)U(ZE)Uo(y)] dl‘dy‘
R?

/ ’azu d:zc— ’/ d.iE —i—‘RQ/ ‘yun ‘ dy‘ (12.12)
and
VT qom (D / ’Z o dx—) / dm +( / —uo (v)] dy.

(12.13)

Hence, we can get, by the arithmetic-geometric inequality and the well-known uncer-

tainty relation (Robertson uncertainty relation, c¢f. Lemma 12.13 later), the following
simultaneous uncertainty relation;
[Um”asm(qﬂl/2 : [Um’asm(p)]l/z

:2[/Rlxu(:z)2 ’/qux i x2]1/4>< [‘/’yuo(y)2 ]1/4
[/»m Fao | f Bt | x| [ ] ]|

(12.14)

This is Arthurs-Kelly’s idea. We believe that Arthurs-Kelly’s discovery (12.14) is the first

great step to the understanding of Heisenberg’s uncertainty relation.

12.3 Approximate simultaneous measurement

Since our main purpose in this chapter is to describe Proposition 12.1 in terms of
mathematics and further to prove it, we must clarify the ambiguous words (i.e., “approxi-
mate simultaneous”, “error”) in Proposition 12.1. For this, we prepare several definitions

in this section.
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According to the well-known spectral representation theorem (c¢f. [92]), there is a
bijective correspondence of a crisp observable (R", Br», E) in B(H) to an n-tuple (Aj,
..., Ap) of commutative (unbounded) self-adjoint operators on H such that A; = fRn A
E(dAy...d)\,). That is,

(Al,AQ,...,An) — (Rn,BRn,E) (1215)

(commutative self-adjoint operators on H) Ai=Jgn MiE(dA1..dAn) (crisp observable in B(V))
In particular, we frequently identify a crisp observable (R, Bgr, F) in B(H) with a (un-
bounded) self-adjoint operator A ( = fR A E(dA)) on H.

Note that Proclaim""1 (9.9) (or, Axiom""1 (9.11)) says as follows:

(4] Let O = (R", Bgr», F') be an observable in B(H). And consider a measurement
Mp)(O = (R, Br», F), S|p,)), where p, = |u){u|. When we take a measurement
Mgy (O = (R™, Brn, F), S|,)), the probability that the measured value A( € R™)

belongs to a set = ( € Brn) is given by

(w, FEu)n (= trlpF(3)]). (12.16)

n

Therefore, the expectation E [MB(H) (O, ?Lou])] ( = <E(i) [MB(H) (O, g[pu])D 1) of the

measured value obtained by the measurement Mp)(O = (R, Br», F), S|p,]) is given

by
E® [MB(H) (O, §[pu])]

:/ N(u, F(dhy - d\)uyy  i=1,2,...n, (12.17)

where p, = |u)(u|. Further, its variance var [MB(H) (O, g[pu])} ( = (var(i) [MB(H)(G,

1=

g[p“])Dé 1) is given by

var® [MB(H) (67 g[pu])]

_/n

- / N2, F(dD - - dA)u) i — ’/nMu,F(dAl---dAn)mH ’ (12.19)

2

(u, F(dX\y - - - dX\,)u) g (12.18)

A — EY Mp ) (O, gw)]

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa, Keio University Press Inc.



Sample PDF File (Low Resolution Printing)

12.3. APPRQXIMATE SINJULTANEQUS MEASUREMENT 301
For Clearf-"rlntlng, §<ee ttp://www. elo-up.co.Jp]iJkup/mfomt/
(i=1,2,..,n).

We begin with the following definition.
Definition 12.3. Let H be a Hilbert space with the inner product (-, ).
(1). A triplet (A)'}TIL%’"K = (K,s,(X,F,F)) is called a “tensor observable” (or precisely,
“tensor represented observable”) in B(H ® K), if it satisfies the following conditions (i)

and (ii):
(i) K is a Hilbert space and s is an element in K such that ||s|| = 1,

(ii) (X,F, F) is a crisp observable in B(H ® K), where H ® K is a tensor Hilbert space
with the inner product (-, ) peK-
(2). Let (X,J, F) be any observable in B(H). A tensor observable GZL%TK = (K,s, (X, 7,

F)) is called a realization of the observable (X,J, F') in tensor Hilbert space H @ K, if it
holds that

(w®@s, F(E)(u®s))nek = (u, FEWWy (Yue HVE € F). (12.20)
|
The following proposition is essential to our argument.
Proposition 12.4. [Holevo [34]]. Let (X,J, F') be an observable in B(H). Then, there
exists a tensor observable (A)ZL%’”K = (K, s, (X, ¥, F)) that is the realization of (X, ¥, F),
that is, it holds that

(w® s, F(E)(u®s))nex = (u, FEWy (ue H Z€F). (12.21)
Conversely any crisp observable (X,F,F) in B(H ® K) and any s( € K, ||s||x = 1) give
rise to the unique observable (X, F, F') in B(H) satisfying (12.21).
[
We shall use the following notations.
Notation 12.5. [Domain|. Let A ( = Jg A Ea(d)), the spectral representation of A)
be a (unbounded) self-adjoint operator on H. Then, we define the Dom(A), the domain
of A, by

Dom(A):={ue H: /R IN?(u, Eq(d)\)u) < oo}
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Let O = (R", Bgn, I) and GZ%TK = (K, s, (R", Br», F)) be an observable and a tensor
observable in B(H) and in B(H ® K) respectively. Then, we define that
[6]%" = (R, Br, [F|})") (it will be called the kth marginal observable of O)

where

FII5(Z2) = F = =e€B
[Fl" (2) (Rx---xRxExRx---xR) (V= € Br)

k — 1 times n — k times
Further, define that
Dom([ﬁ]?;gr)( — Doqu]g;g”)) ={ue H: [ [M2u, F(dA...d\)u) < oo},
Rn
Dom([é]g;g”)( —~ Dom([ﬁmgT)) =0 e HOK: [ |[MJ2(0, F(d\...d)\)0) i < o0,
Rn

~

Do, (047271157 ( = Domas ((F]557))

=fuecH: [ |MN*u®s, F(dA\..d\)(u® s))pex < oo}, (12.22)
R’I’L

where Dom([O]{") (or Dom([@]’&?r)) is called the k-th domain of O (or 6)

[

Now we have the following main definition.
Definition 12.6. [Approximate simultaneous observable]. Let Ay, ..., A, be (unbounded)
self-adjoint operators in H. An observable 6{}5}21 = (R", Bgrn, F) in B(H) is called the

approzimate simultaneous observable of Ay, ..., A, if it satisfies the following conditions

(i) (domain condition) for each i (=1,2,...,n), Dom([ﬁfﬁ%l]ma’”) N Dom(4;) is dense

(@)
in H
(ii) (unbias condition) for each i (=1,2,...,n),

(u, Aju) = /R Mu, [FIF (d\)u),  (u € Dom([Ofyy. J77) N Dom(A)). (12.23)

n
=1

n
Remark 12.7. [1]. As seen later (¢f. Lemma 12.14(iii)), it holds that Dom([ﬁaf]%l]g‘)‘”)
—ASO —ASO -

C Dom(A;) holds. Thus, Dom([Opy,- I7") N Dom(A;) = Dom([Opy,e J75")
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[2]. There is a very reason to assume the following condition (iii) or (iv) instead of the

above (i). <(iii) and (iv) are stronger than (i), more precisely, (iv) = (iii) = (1))

(iii) (self-adjointness) for each i (= 1,2,...,n), A; is essentially self-adjoint on

—ASO
Dom([Opy,pn Ji") N Dom(A;),

or

(iv) (commutative condition) for eachi (= 1,2,...,n), A; ( =[x A Ei(d)\)) and [6?5]?:1]?;)”

commute.

Although each of (i), (iii) and (iv) has merit and demerit respectively, the physical meaning
of the (iv) is the clearest. (Continued on Remark 12.12.)

[3]. Also, see the condition (i) in Example 11.5. This condition is equivalent to

e the formula (12.23) holds on a dense set NP, <Dom([6€5]?:l]z?)” N Dom(AZ-)>.

|
Definition 12.8. [Approximate simultaneous tensor observable]. Let Ay, ..., A, be (un-
bounded) self-adjoint operators in H. A tensor observable (A)ﬁi]?g = (K, s, (R", Bgrn, ﬁ))
is called an approximate simultaneous tensor observable of Ay, ..., A, if (A)ﬁ?]?_ol = (K, s,

(R", Br», F)) satisfies the following conditions:

(i) (domain condition) for each i (= 1,2,...,n), D0m®s([6ﬁf§i]?})‘l’") N Dom(4;) is

dense in H

(ii) (unbias condition) for each i (= 1,2,...,n),

(u, Au) :/n)\i<u®s,ﬁ(d/\1---d)\n)(u®s)) (12.24)

(u € D0m®s([0f£§j]%‘l’") N Dom(4;),).

|
. —ASO ~ . . . "
The relation between Oy, e and Oﬁfﬁo is characterized by the following proposition.
= =1

Proposition 12.9. Let Ay, ..., A, be (unbounded) self-adjoint operators in H.
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(i) Let (A)fg]?g = (K, s, (R", Br», F) be an approximate simultaneous tensor observable

of Ay,...,A, in H. Then, there exists an approximate simultaneous observable

—ASO " = . L —ASO
Opyjr, = (R, Br», F) such as O[ﬁ{?ﬁg Is a realization of Opyn .

. —ASO . .
(ii) Let O[Az]lil = (R", Bgr», F') be an approximate simultaneous observable of Ay, ..., A,
in H. Then, there exists a approximate simultaneous tensor observable 6&%1{10
=1

= (K, s, (R", Br», F) such as it is a realization ofﬁéi]%l.

(iii) Let 6{:7]?71 = (R", Bgrn, F') be an approximate simultaneous observable of Ay, ..., A,

in H. Let 6@*?]7{2 = (K,s, (R",Br», F) be an approximate simultaneous tensor

observable of Ay, ..., A, in H. And assume that 6{;&20 is a realization of Gﬁf}?ﬂ.

=1
Then, for each i (=1,2,...,n),

50 ymar O mar
Dom([O4,n ") = D0m®s([0€£§3}(i) ) € Dom(4;). (12.25)
Proof. The statement (i) is trivial. Also the statement (ii) and the equality “=" in

(12.25) immediately follow from Proposition 12.4. Also, the inclusion “C” in (12.25) is
proved in Lemma 12.14(iii) later. O

Definition 12.10. [Uncertainty| Let Ay, ..., A, be (unbounded) self-adjoint operators on

a Hilbert space H.

[1]. Let 6{}5]?:1 = (R", Brn, F) ) be an approximate simultaneous observable of Ay, ..., A,,.

(i). Then, the uncertainty (Aoﬁxs]% (Ai,u)> of 6@?]%1 for a state u (||u|lg = 1) is
l L
defined by

=1 =1

Ao (Auu) = / N, F(dD - - - d)ut) — / X2, As(d\)u) (12.26)
=1 n R

(u € H such that ||u|| =1 ),

where (12.26) should be interpreted that Agas

[Al]’lnzl

Dom([F]{i") € Dom(4;) in (12.25)). (“Aéas]% (A;,u) > 0” will be shown in Theorem
ti=1

12.15 Iater.>

(A, u) = oo for u & Dom([FI§") (cf.

(ii). Also the i-th variance var [6{:5]?:1,10] is defined by

—ASO
var [0S0 u] = / e — (u, Agu) 2, F(dy -+~ d\)u) i (12.27)
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(1=1,2,...,n),

[11] Let 6&%2 = (K, s, (R", Br», F') ) be an approximate simultaneous tensor observable

OfAl,...,An.

(i). Then, the uncertainty (AO{;S]TO (Al,u)) of 6{115§01 for a state u (jullp = 1) is
A= i=1 -

defined by

AO&S]TO (Aj,u) = / A (u® s, F(dA; -+ dA)(u® s)) — / M (u, Ai(d\)u)  (12.28)
Ui=1 n R

(u € H such that ||ul| =1 ),

where (12.28) should be interpreted that Agasro (A;,u) = oo for u ¢ Dom®5([ﬁ]?;)”)

[ iy
(cf. Dom®5([Fm)m") C Dom(4;) in (12.25)). (“AO[AS]TO (A;,u) > 0” will be shown in
Al
Theorem 12.15 Iater.)

(ii). Also the i-th variance vari; [OAS]T,LO, u] is defined by

var [Oéﬁfﬂo, u] = /n I\ — (u, Au) > (u ® s, F(d\; - - d\)(u ® s))per (12.29)
(i=1,2,...,n).

[ |

Proposition 12.11. Let Ay, ..., A, be (unbounded) self-adjoint operators on a Hilbert

space H. Assume that Gﬁfﬁg = (K,s, (Rn7BRn,ﬁ)) is a realization of O&S}O -

(R",Brn, F). Let u € H (||ul]|g = 1). Then it holds that

and
—AS0 ~
var(p) (O ul = var(i)[Ofgﬁg,u]. (12.31)
Proof. This immediately follows from Definition 12.10. O

Remark 12.12. [Continued from Remark 12.7]. Again note that, if the commuta-
tive condition (iv) in Remark 12.7 is assumed in the Definition 12.10, we can define
A(MB(H)(Ai X [Gafﬁzl]ﬁ)ar,g(pu))), the distance between A; and [6?5]2 ™ ¢of. Defi-
nition 11.1. And further we see that

— =ASO  ymar &
A(MB(H)(AZ- x [0 0, (pu))> - Agpso (Aiyu) (12.32)
1
(“error” defined in Definition 11.1) (“uncertainty” deﬁneld in Definition 12.10)
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Thus, in this case, the physical meaning of “uncertainty” is clear.
|

12.4 Lemmas

In this section, we shall prepare some Lemmas.
Lemma 12.13. [Robertson’s uncertainty relation]. Let A; and Ay be any symmetric

operators on a Hilbert space H. Then, it holds that

[l Avul = 1o, Ay P] v 1Azl — |(u, Agu) ] B %\<A1u,A2u> — ( Ay, A
(12.33)

for all u € Dom(A;) N Dom(A,) .

Proof. Using Schwartz inequality, we see

|[(Avu, Agu) — (Agu, Ayu)
:|<A1u — (u, Ayu)u, Asu — (u, A2u>u> - <A2u — (u, Agu)u, Aju — (u, A1u>u>|

1/2

<2l Al =, Ay)?] " [HAsul? — 1w, 4] (1230

]

Lemma 12.14. Let Ay,---, A, be any (unbounded) self-adjoint operators in a Hilbert

space H. Let (K,s,(R", Brn, F') be an approximate simultaneous tensor observable
for Ay, A, Put Ay = [0 AF(dAdAg - dA,) ( = [ AF] :(z')m‘"(d)\)) (k =
1,2,...,n). Then, the following equalities (i) ~ (iii) hold

(i)
, Ay = (0® 5, Ai(u ® 5)) = / Melv @ 5, Fldhddg -+ d\)(u @ s))  (12.35)

for all u € Dom®s(ﬁk) and allve H (k=1,2,...,n),
(i)
/ A (u @ s, F(dhdg - - dhy) (u @ s))
Rn

~ ~

= (Ai(u @ s), 4;(u® s))
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— (A, Aju) + (A — 4,0 Du®s), (A — A, @ Du®s)) (12.36)
for all i # j and all u € Domg,(A;) N Dom@,s(flj),
(iii)

/ X 2w ® s, F(dAyd)g - dX) (u @ s))

= [Ak(u @ 9)” = [ Agull® + (A — Ax @ D(u @ 8)[* > || Agul (12.37)
for all u € DOHIS(A\k) (k=1,2,...,n). Thus, it holds that, for each i ( = 1,2,...,n),
~ASO  mar mar

Dom([Opy I(5") = Dom®s([oﬁfl€0](l) ) C Dom(4;). (12.38)

Proof. First we prove (i). Fix k € {1,2}. We can see that, for any v, u € Domg,(Ay).

(v, Ayu)
= i{«v ), Ap(v + ) = (v —u), Ax(v —u))
)+ il(v — ), A(v — i)}
= i{((v +u) @ s, Ap((v+u) ® 5)) — (v —u) @ s, A((v —u) ® 5))
— (v + i) ® 5, Ap((v + i) ® 8)) + (v — iu) @ s, Ax((v — iu) @ 5))}
= (0 ® s, A(u®s))

:<v®s,/ )\kﬁk(d)\ld)\z---d)\n)(u®s)>:/ Ae(v @ s, Fp(dhdAs - - - dAy) (u ® s)).
(12.39)

—i{(v +iu), Ak (v + tu)

Since Domg,(Ay) is dense in H, we see that
(v, Ag)) = (v ® 5, Ap(u ® s)) = / (v ® s, Ag(dhdAs - - dA)(u®s))  (12.40)

for all u € Dom®s(ﬁk) and all v € H. This completes the proof of (i).
Next, we prove (ii). Without loss of generality, we put i = 1 and j = 2. Let u be any
element in Domg,(A;) N Domg,(A;). Then, we see, by the above (i), that

/ MAa(u @ s, F(dAdAs - - - dh)(u ® s))

- </ﬂ Alﬁ(d/\ld)q---d)\n)(u®s),/ )\Qﬁ(d)\ld/\Q...dAn)(u@S»

n
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— (A (u®s), Ay(u® s))
(A -4 DNu@s)+ (Au®s), (Ay— Ay @ I)(u® s) + (Ayu @ s))
= (A - A @ Du®s), (A — A @ DU s))
(A - A @ Du®s), Ayu® s)
F{Au®s, (Ay— A @ Du®s)) + (Aju® s, Ayu ® s)
(A A0 DNu®s), (A — A @ D(u®s))
+ (A (u® s), Ayu ® ) — (Ayu, Ayu)
+ (A ® s, Ay(u® s)) — (Ayu, Ayu) + (Ayu, A,)
= (A -4 D) (u®s),(Ay— A @ DNu®s)) — (Au, Au)
+ / nA2<A1u®s,ﬁ(dA1dA2)(u®s)>+ / A (F(dhdAs) (4 ® s), Ayu @ s)

n

= (Ayu, Agu) 4+ (A, — A, @ D)(u®s), (A — Ay @ I)(u ® s)). (12.41)

Hence, the proof of (ii) is completed. Also, the proof of (12.37) is carried out just in
a similar way. Lastly, we can easily see that (12.37) implies (12.38) since we see that
—ASO ~ .
Dom([Opqn ") = Dom®s([oﬁ§§g Jir) in (12.25). O
Now we have the following theorem, which is one of our main results.
Theorem 12.15. Let 6{?&?2 = (K,s, (R",’BRn,ﬁ) ) be a realization of an approxi-

mate simultaneous tensor observable 6{;51%1 = (R", Bgrn, I ) of Ay,..., A,. Put EZ =

~

Jr ALFIG" (dA). Then, we see that

Aaﬁs]j;o (A, u) =A—aso  (A;,u) :/ N (u, [F]ZP)‘”’(dA)w—/ M (u, Ai(d\)u)
= =1 R R

= Ai(u @ 5)|* = || Al (12.42)
(A - A@Dues)|>  (Yue H such that |u| =1  (12.43)

Proof. Tt immediately follows from Lemma 12.14. O]

12.5 Existence theorem

Now we shall mention the following theorem, which assures the existence of an ap-
proximate simultaneous tensor observable of arbitrary observables Ay, ..., A,,. For two

observables A; and A,, the similar theorem was proved by P. Busch, et al. [15, 14].
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Theorem 12.16. [Cf.[36]] Let Ay, ..., A, be (unbounded) self-adjoint operators on a
Hilbert space H. Let ai,...,a, be any positive numbers such that y . (1 +a;*)"" = 1.

Then, we see,

(i) there exists an approximate simultaneous tensor observable Oas}go = (K, s, (R", Bgn,

ﬁ)) of Ay, ..., A, such that:

Agasro (Aiu) = ail| A (u € Dom®s([of5fol]’g;f’“) i=1,2,..,n). (12.44)

[l]ll

and equivalently,

(ii) there exists an approximate simultaneous observable Off]on = (R",Bgrn, F) of

Ay, ..., A, such that:

Agaso (Aiu) = ai Al (u € Dom([Ofy)

Oran . ]?Z)M) i=1,2,...,n). (12.45)

Proof. By Proposition 12.11, it suffices to prove (i). Put K = C" = {z = (21, ..., 2,) :
zi € C (i = 1,2,...,n)}, ie., the n-dimensional Hilbert space with the norm |z|,, =
(20 |22 V2. Put e; = (1,0,...,0), e5 = (0,1,0,...,0) ,...., e, = (0,0,...,1) € C". Put
s =e;. And put P, : C" — C", (i = 1,2,...,n), a projection such that Pe; = e;, Piey =
0(k # 1), that is, P, = |e;){e;]. Put b; = (1 4+ a;®>)"/? and B; = b*4; (i = 1,2,...,n).

Consider the spectral representations

A; = / AEA(d)), B; = / AEg,(d)\), 0= / AEo(d\) in H
R R R

and

= / AES (dN), = / AEC"(d)\) in C™.
R R

Note that E4, (d(A\/b;?)) = Ep,(d\). Define the unitary operator U : H ® C" — H ® C"
by U = I ® U where a unitary operator U on C" satisfies that Ue; = ¥, e;/b;. And
define the crisp observable (R, Bg, E&_) in B(H ® C™) by

E; (d€) = U[Ep,(d€) ® P+ Eg(d€) @ (I - P)|U (i =1,2,...,n). (12.46)

Since E Ay E 1. commute, we can define a crisp observable (R", B, £ ) in B(H®C")
such that:

n

E1(d dg,...dE,) = H (dgy). (12.47)
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Now, we shall show that the tensor observable (A)tff}gK = (C", e, (R", By, E 1)) is an ap-
proximate simultaneous tensor observable of Ay, ..., A,,. Put fAlZ = fR” & E 7 (d&idEs...d¢y,)
(t=1,...,n). Then we see that,

| 16R e e Bxldeidea..d)(u s 1)
— [ 6Pt e By lde) e e
= /R &P (u@ e, [(I® U*)<E3i(d&) ® P + Eo(d&) @ (I — I%))(I @ U)|(u® ey))
— [ 6P Ea(de)u) - e, U" PUe)
R
= [ 6P Batdg)u) - (1, P )
R j k
=11 [ PG B (@) = [ NP, B @), (1248)
R R
Hence, Domg,(A;) = Dom(4;) (where s = e; ). Similarly we sce
E(u @ ey, E4(d€ydg,...dE,) (u © ey))
.
=172 | Mu, Eg ((dNu) = | Mu, Ea (d\)u). 4
b2 [ Mo B (@) = [ Mu Bafdn (12.49)

Thus, 6€4€§2 satisfies the condition (ii) in Definition 12.6. Also, noting that I(d\) =
I(1 € d)\), = 0(1 ¢ d)\), we also see that, for each i (i =1,2,...,n) and = € B,

E;(E1)- (Ba(E) @ )
= (U@ U)(Es(2) @ Pt B(E) @ (I = P)) (I ©U)(Ea(E2) © 1)
= (B4, (52) @ (I @ U) (EBi(El) ® P, + Eo(Z) ® (I — a)) (IeU)
= (Ea(E2) @ 1) - E5 (50). (12.50)

So, A; and A; ® I commute since A; = Jr€ Ez(d€) and A; @ I = [g € (Ea,(d€) @ I).
Hence, A; — 4; ® I on Dom(zzl\z-) N Dom(A; ® I) has the unique self-adjoint extension
[4; — A; ® I], which has the spectral representation

A- Al = / (61— £)B7 (d€)(Ea (&) © T). (12.51)
R2
Then, we see that

I[A; — A @ I(u®er)|? (12.52)
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= /R2 & — & (u® e, B3 (d1)(E4,(d€2) @ I)(u® er))
= [lePtue e, By @) s e)
R

—2 - §162(u @ e1, B (d1)(Ea,(d€) @ I)(u®ey))

311

+ / & (1 ® er, (Eay(des) © 1) (u® e1)
R

= (0 =2+ 1) [ JePu, Ea (d)u)
R
= laPll sl (1253

which implies that Domg,([A; — A; ® I]) = Dom(4;) (where s = ¢; ) and Ao{xs]To (A, u)
Ay
= a;||A;ul|. Therefore, the proof of theorem is completed. O

Remark 12.17. In the above proof, the following statements were also proved:

(i) A; and A; ® I commute, so A; — A; ® I on Dom(A;) N Dom(A; ® I) has a unique
self-adjoint extension [4; — 4; ® I] (i = 1,2),

(i) Domg,(A;) = Domg,([A; — 4; ® I]) = Dom(4;) (i = 1,2).

Thus the commutative condition (iv) in Remark 12.7 is satisfied.

12.6 Uncertainty relations

Now we propose the following theorem, which is our main result in this chapter.
We believe that this theorem is the final version of Heisenberg’s uncertainty relation
concerning measurement errors.

Theorem 12.18. [Heisenberg’s uncertainty relation, cf. [36, 67]]. Let A, and Ay be any

(unbounded) self-adjoint operators on a Hilbert space H. Then, we see,

(i) for any approximate simultaneous tensor observable Oﬁsfo = (K, s, (R2, Bgz, F))

of Ay and A,, the following inequality holds:

AOASTO (Al, ) AOASTO (A2, )

[l]ll []11

1
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for all w € H such that ||u|| = 1, where the left hand side of (12.54) is defined by

oo if Agasro (A;,u) = oo for some i,
[Al]lQ:1

and equivalently,

(ii) for any approximate simultaneous observable 6&?]?_1 = (R?,Bgz, F) of Ay and A,

the following inequality holds:

Agisg (Anu)- Agisa (Ag,u)2%|<A1U,A2u>—<A2u,A1u>| (12.55)

[Al]l2:1

for all w € H such that ||u|| = 1, where the left hand side of (12.55) is defined by

00 if Agasg (A;,u) = oo for some 1.
iz,

Proof. By Proposition 12.11, it suffices to prove (i). Put 121\1 = fR2 )\iﬁ(d)\ld)\g)

(i = 1,2). Let u € D(A)) N D(Ay). If u ¢ Domg,(A;) for some i, we see, by the

definition of the uncertainty, that Agasro (A;,u) = 00, so (12.55) clearly holds. Hence,
A2

=1

it is sufficient to prove (12.55) for u € Domg,(A;) N Domg,(As). Let u be any element in
u € Domg,(A;) N Domg,(As). We see, by the part (ii) of Lemma 12.14, that

(Ayu, Agu) + (A — A, @ D (u® s), (Ay — Ay @ N(u®@ s))
- / Mo(u @ s, F(dhdh) (u® s)
R2
= (Ayu, Ayu) 4 (Ay — A, @ D(u® s), (A — A @ D(u® s)) (12.56)
from which, we get, by Schwarz inequality, that
1
§’<A1U7 A2U> - <A2U, Al“)’
1, ~ ~
=s[{(A =A@ Dus), (A - A0 Nues))
— (A~ A @ N(u®s), (A — A @ (ues))
< (A = A @ D(u®s)|| - [[(A2 — A @ D(ues)|. (12.57)

Hence (by Theorem 12.15), the proof is completed. O

The following theorem was first discovered by Arthurs and Goodman [6]. However we
did not know their discovery in the preparation of [36].
Theorem 12.19. [Approximate simultaneous uncertainty relation, cf [6]]. Let A; and

Ay be any (unbounded) self-adjoint operators on a Hilbert space H. Then, we see,
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(i) for any approximate simultaneous tensor observable 6{2]?:01 = (K, s, (R? Bge, 13),

) of (Ay, As), the following inequality holds:

313

(var[Oﬁf]?g,u]l)l/z : (var[Offl}?j,u]g)lﬂ > [(Aju, Asu) — (Asu, Ayu)|  (12.58)
for all uw € H such that ||u|| = 1, where the left hand side of (12.58) is defined by co

if Uar[(/jfg]Tgo ,ul(i'" = oo for some i, also the right hand side of (12.58) is defined
=1

by oo if u ¢ Dom(A;) N Dom(A,),

and equivalently

(ii) for any approximate simultaneous observable 6{2}?:1 = (R? Bge, F ) of (A, As),

the following inequality holds:

—A —A
(varlOpaye ,ul)"? - (var[Oyp L ul)? > [(Aru, Asu) — (Apu, Ayu)|  (12.59)

for all w € H such that ||u|| = 1, where the left hand side of (12.59) is defined by oo

if var[()ﬁ]@@ ,ul(i'" = oo for some i, also the right hand side of (12.59) is defined
=1

by oo if u ¢ Dom(A;) N Dom(As).

Proof. By Proposition 12.11, it suffices to prove (i). Put A, = Jre Aiﬁ(d)\ld/\g)

(1 =1,2). If u ¢ Domgs(A;) for some 7, we see, by the definition of the variance, that

Uar[aﬁ*j]:go,u]m” = 00, 80, (12.58) clearly holds. Hence, it is sufficient to prove (12.58)
=1

(@)
in the case that v € Domgy(A;) N Domgy(As). Let u be any element in Domg,(A;) N
Domg,(Ay). Then, we see, by (iii) in Lemma 12.14, that

var[OfE uliy = |Ai(u @ 9)|* = [{u @ s, Ai(u® )| (12.60)
=[| Al + |(A; — A @ D(u® $)|* = [(u, Au)[?
<2([| Al = [(u, Aw) )2 - [[(A; — i@ D(ue )| (i =1,2), (12.61)

therefore, by Lemma 12.13 and Theorem 12.18 we get,

v&r[@ﬁ&?g ,ulp - var[aﬁf]?fl, ulo
> A([[ Ava® = [(u, Ar) )2 - ([ Al — [{u, Azu) )"/
A =A@ D s)| - [(A; = A © D(u@s)|
> [(Ayu, Ayu) — (Asu, Aju)|?. (12.62)
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Hence, the proof is completed. O

Now we have the following corollary?
Corollary 12.20. [Uncertainty relations concerning a pair of conjugate observables]. Let

Ay and Ay be a pair of conjugate observables in a Hilbert space H.

(i: ¢f. [7]) There exists an approximate simultaneous observable 6[:51}?:1 = (R?* Bg:.F

) of Ay and Ay. Thus, we can take an approximate simultaneous measurement

_— —ASO —
M) (04,2 5 Stupul)-

(ii: ¢f. [36]) For any positive number € and any k(= 1,2), there exists an approximate

simultaneous observable 6{?4?]?:1 = (R?,Br:.F ) of Ay and A, such that:

Agasg  (Ag,u) < €|l Axulln (Vu € H such that |ju|| = 1),
[Al]lz:l
(iii: ¢f. [36, 67]) (Heisenberg’s uncertainty relation) However the following inequality
holds
A~ aso (Al,u) . AaASO (AQ, u) > h/? (12.63)

Oz, A7,

forallue H (||u||lg=1),

(iv: ¢f. [6]) The following inequalities hold: (approximate simultaneous uncertainty

relation)

—ASO

—ASO
Julp)'/? - (UGT[O[AZ]?:la ul2)'? > h (12.64)

(var[Opy, 2

=1

forallue H (||lullg =1).

Proof. Note that (Aju, Asu) — (Asu, Ayu) = ih (u € Dom(A;) N Dom(Ay), ||ul|x
= 1). Then, the above assertions (i) and (ii) are consequences of Theorem 12.16. Also,
the above assertions (iii) and (iv) are respectively consequences of Theorem 12.18 and

Theorem 12.19. O

3There are other uncertainty relations, For the recent variants, see [68].
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12.7 EPR—experlment and Heisenberg S uncertainty
relation

Now we have the complete form of Heisenberg’s uncertainty relation as Corollary 12.20.
To be compared with Corollary 12.20, we should note that the conventional Heisenberg’s
uncertainty relation (= Proposition 12.1) is ambiguous. Wrong conclusions are sometimes
derived from the ambiguous statement (= Proposition 12.1). For example, in some books
of physics, it is concluded that EPR-experiment (Einstein, Podolosky and Rosen [22])

contradicts with Heisenberg’s uncertainty relation. That is,

(I) Heisenberg’s uncertainty relation says that the position and the momentum of a

particle can not be measured simultaneously and exactly.
On the other hand,

IT) EPR-experiment says that the position and the momentum of a certain “particle” can
Y

be measured simultaneously and exactly.

Thus someone may conclude that the above (i) and (ii) includes a paradox, and therefore,
EPR-experiment contradicts with Heisenberg’s uncertainty relation. Of course, this is a
misunderstanding. This “paradox” was solved in [36]. Now we shall explain the solution
of the paradox.

[Concerning the above (I)] Put H = L*(R,). Consider two-particles system in
HeoH = LR},

(e H® H = L2(R?q1m))) <or precisely, |us)<us|> such that:

In the EPR problem, we, for example, consider the state wu

1 1

us(q1, g2) = 2W€Ue_§(’“ @=0)* gz (@+e-b)?  id(a.0) (12.65)

where € is assumed to be a sufficiently small positive number and ¢(q1, ¢2) is a real-valued
function. This is the quantum form of EPR-experiment in Remark 12.2(ii). Let A; :
LX(R7, ) — L*(R7, ) and Ay: L2(R7, ) — L*(R{, ) be self-adjoint operators

(q1,92) (q1,92)
such that

ho
A = Ay = ——. 12.66
1 qi, 2 101 ( )

Then, Corollary 12.20 (i) says that there exists an approximate simultaneous observable

—ASO . .
Op4y A2 = (R* Bgr:.F ) of A; and Ay. Thus we can take an approximate simultaneous
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measurement MB( H) (6?5}?:1, §[|u5>(usu)- And thus, the following Heisenberg’s uncertainty

relation (= Corollary 12.20 (iii)) holds,

AGASO (A, us) - A6Aso (Ao, us) > h/2 (12.67)

(A2, (A2,

[Concerning the above (IT)] However, it should be noted that, in the above situation
we assume that the state u, is known before the measurement. In such a case, we may
take another measurement as follows: Define the self-adjoint operators A\l : L2(R%

qw]z)) -
L2(R% )) and As : LQ(R%qth)) — LQ(R%qth)) such that

q1,92
Al=b—qy, Ay=Ay=—— (12.68)
Note that these operators commute. Therefore,
(4) we can take an exact simultaneous measurement of A, and A, (for the state uy).
And moreover, we can easily calculate as follows (c¢f. Definition 11.1 and Remark 12.12).

A (M (A % A1,5(p) ) = I, — Ave|

:[//R2 ((b—q2) — 1) 273606—8;2(ql—qz—a)Z—;Q(qﬁqg—bF . gi®(a1,a2) quld%] 2
:[//R2 ((b—q2)—q) 2736068"12(q1q2a)28:2(q1+q26)2 2d(11d(h] v
=2, (12.69)
and
A(MB(H)(A2 x EQ,E(pus))) = || Ayu,s — Asu|| = 0. (12.70)
Thus we see
A (M (41 x A1,5(p.,)) - A (M (42 x 2. 5(p..))) = 0. (1271)

Since € ( > 0) can be taken sufficiently small, the above measurement (f) is superior to

the approximate simultaneous measurement MB( H) (6&?]?:1, §[|u5><u5”). (Here, g[\usﬂusl}

is identified with S(|u,)(us|) since |us){us| is a pure state.) However it should be again

noted that, the measurement (f) is made from the knowledge of the state w.
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[(I) and (II) are consistent, cf. [36] ] The above conclusion (12.71) does not contra-

dicts with Heisenberg’s uncertainty relation (12.67), since the measurement (f) is not an
approximate simultaneous measurement of A; and As.

[

In the above arguments, note that Theorem 12.19 (approximate simultaneous un-

certainty relation) is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation). That is because the concept “error” (or

“uncertainty” ) is not explicit in Theorem 12.19.
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POSTSCRIPT

In this book I propose “measurement theory“, that is,

an epistemology that is considered to be the mathematical

representation of “the mechanical world view”.

In this sense, I may not deny that this book is regarded as the book of philosophy.®
I surmise that a “postscript” is the part that is firstly (and most frequently) read
throughout a book. Thus, in what follows I would like to enumerate important new

results (~ my favorite results) in this book.

(1) MT (= measurement theory) is the mathematical representation of the epistemology
called “the mechanical world view”, and thus, it is also called GDST (= general
dynamical system theory). I hope that the following assertion (= Table (1.7)) will
be generally accepted.

Table (1.77)
logic, number theory, topology, differential geometry,
“Fourdetions of math.” complex analysis, real analysis, operator algebra, (cy)
oundations ol matih. differential equation, probability theory, etc.

Newtonian mechanics
quantum mechanics
Maxwell’s electromagnetic theory
- - Einstein’s relativity theory (C2)
TOE Weinberg-Salam theory
quantum chromodynamics
ete.

[My proposal in this book]

Sci.
Theor. Math. Sci. dynamical system theory
Theor. quantum system theory
practical logic
statistics, circuit theory
I Theor. Informatics I Control thcory

MT (= GDST) multivariate analysis (Cs)
information theory
chaotic system theory
automata theory
OR, game theory, etc.

economics, chemistry, biology, medicine, psychology,

| Usual Sci. Theor. | statistical mechanics, fluid mechanics,
engineering (also, see (I7) and (Is) in §1.2), etc. (Cs)

$In fact, this book can not be read and understood without Chapter 1 (the philosophy of measurement
theory).
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We assume that “measurement”, “its philosophy” and “its applications (~ informatics-

related engineering)” should be regarded as “the Trinity” as follows:

the mechanical world view
(philosophy)

the Frinity

measurement theory informatics-related engineering
(mathematical theory) (applications)

(2)

I propose the characterization of Bell’s inequality in the framework of PMT (i.e.,
Axioms 1 and 2), c¢f. §3.7. T conclude that:

e if we admit PMT (= “Axiom 1 + Axiom 2 (Markov relation)” ), we must admit

the fact that there is something faster than light. (3.49)

This assertion is, of course, one of the most profound scientific assertions in all
science. As mentioned in the footnote below §3.7.1, my understanding of Bell’s
inequality may be shallow. Thus, I think that the most of originality may not be
due to me but great pioneers (i.e., de Broglie, A. Einstein, J.S. Bell, etc.).

I assert that equilibrium statistical mechanics should be due to “STI” (= “staying
time interpretation of statistical mechanics in (4.28)”) and not “PI” (= “proba-
bilistic interpretation of statistical mechanics in (4.30)”] ) in Chapter 4. That is,
under the “STI” (which is nearly regarded as common sense), equilibrium statistical

mechanics can be understood in classical PMT as follows:

“equilibrium statistical mechanics” = “probabilistic rule” +  “Newton equation” (4.28)
((A1)(= Axiom 1)) ((T*) and (T?)) under (EH)) (=(4.4))

(STI (=~ “common sense”))

Also, see the other proposals (4.29) and (4.31).
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(4)
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I stress the following correspondence:
Axiom 1 (measurement) in PMT « Fisher’s likelihood method in statistics

That is, Fisher’s likelihood method is one of aspects of Axiom 1 (measurement). Cf.
Theorem 5.3.

Regression analysis II (6.48) (and not Regression analysis I (6.7)) in Chapter 6.
This and the above (4) imply that Fisher’s statistics is “theoretically true”, (cf.
Declaration 1.11).

In §7.1, T assert that “measurement”, “inference” and “control” are the different
aspects of the same thing. Also, since “(practical) logic” is a qualitative aspect of
“Inference”, there is a reason to consider that “(practical) logic” [resp. “inference”]

is used in rough [resp. precise| arguments.

Theorem 7.19 (practical logic in classical measurements). This theorem justifies the

following famous saying;

e Since Socrates is a man and all men are mortal, it follows that Socrates is

mortal.

Also, the following strange logic is proposed:

“SWEET” = “RIPE” and “RIPE” = “RED” implies “RED” = “SWEET” (in some sense)

(8)

(7.38)
If Zadeh’s assertion is that system theory has a logical aspect, I agree with him. In
fact, practical logic is discussed in the framework of GDST (= MT) in Chapter 7.
However, I think that Zadeh’s fuzzy sets theory overstates many things. Thus, in
§7.5, T assert “Zadeh’s fuzzy sets theory can not be completely formulated in MT”
That is, his theory is not completely “theoretically true” (cf. Declaration (1.11) in
Chapter 1). And thus we do not add Zadeh’s fuzzy sets theory to (Cs) in (1.7).
His “theory” sholud be regarded as one of empirical methods in MT. However, the
fashion of his theory gave me the original motivation of our theory (cf. the footnote
below Problem 1.2 in Chapter 1).

The measurement theoretical formulation of Kalman filter in §8.4 <though it is
merely a simple corollary of the generalized Bayes theorem (= Theorem 6.6 or
Theorem 8.13)).
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(10)

(11)

(12)

(15)

(16)

(17)

The entropy of a measurement (particularly, Examples 8.17 and 8.18).

Theorem 8.20 (Bayes theorem for belief measurements). It should be noted that
belief measurements have no samples spaces. Thus, the proof is different from the

proof of Bayes theorem for statistical measurements.

Bertrand’s paradox is clear in MT (c¢f. §8.7). It is obvious that we encounter
Bertrand’s paradox if “invariant state” is unreasonably regarded as “statistical
state”. It should be noted that “invariant state” and “statistical state” are not

directly related in MT.

The generalized moment method in §9.4. I want to compare Fisher’s likelihood
method (Theorem 5.3), Bayes’ method (Theorem 8.13, Remark 8.14) and the mo-
ment method in the framework of measurement theory. In order to do so, we have

to propose the generalized moment method (in §9.4).

The definition of “particle’s trajectories” due to Theorems 10.1 [W*-algebraic gener-
alization of Kolmogorov’s extension theorem|. Particularly, the definition of Brown-
ian motion B(t) in §10.4. Since Brownian motion is not a “motion” but “measured

wdB(t

®) does not exist”

values”, we can understand the fact: the velocity “=

The definition of “measurement error” in §11.1. This is superior to the “conventional
definition” such as | “true value” — “measured value” |. Also, this is essential to

the characterization of Heisenberg’s uncertainty relation (cf. Chapter 12).

Theorem 11.12 (The principle of equal probability, SMTpgp-method), which makes
Bayes theorem quite applicable. That is, I consider that this theorem (=Theorem
11.12) and the generalized Bayes theorem (= Theorem 8.13) are the most important
in SMT.

Four answers to the Monty Hall problem (i.e., Problem 5.12, Remark 5.13, Problem
8.8, Problem 11.13) are presented in this book. Although these are all reasonable,

the answer in Problem 11.13 may be the most natural.

I assert the mathematical representation of Heisenberg’s uncertainty relation in
§12.7. This solves the paradox between Heisenberg’s uncertainty relation and EPR-

experiment in §12.7.
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Note that “the mechanical world view” (due to I. Newton, “Principia”;1687, [66]) is one

323

of the most successful epistemologies in the history of science as well as mechanics. This

is the histrical fact. And therefore, I am convinced that our proposal (i.e., “measurement

theory” (=the mathematical representation of “the mechanical world m’ew”)) has a gerat

power to understand and analyze every phenomenon.

I hope that “MT tree” will grow more and more.

The “MT (measurement theory) tree”

control theory
(J.C.Maxwell, N.Wiener,...

)

nformation theory :
(C.E.Shannon, H.Akaike,...) dynamical system thésgy

(I.Newton, A.Kolmogorov, R.E.Kalman,®

uantum system theor

y
(W.Heisenberg,E.Schrédinger, Statlst]cs
M.Born,von Neumann,...) J (R.A.Fisher,. multlvarlate ana IS
(K.Pearson,...)
(" circuit theory
automata theory D(Lord Rayleigh, O.Heaviside,...)
[chaotic system theory)

(A.M.Turing, A.N.Chomsky,m)j
(E.Lorentz,...)

practical logic }

Aristotles, A.N.Whitehead,L.A.Zadeh,..

MT

(mgaggment)

S. Ishikawa¥

9For the further information (development, errata, etc.) of our theory,
see “http://www.keio-up.co.jp/kup/mfomt/”
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[Monty Hall problem]. Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“nuamber 17, “number 2", “number 3"). Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what’s behind the doors, opens another door, say “number
3", which has a goat. He says to you, “Do you want to pick door number 27" Is it to your advantage to
switch your choice of doors?

Door Door Door \j

Number 1 Number 2 Number 3 @\ @\

Four answers (Problem 5.12, Remark 5.13, Problem 8.8, Problem 11.13) are presented in this book.

The following old statement
[z] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal,

is, of course, famous. However, we have the question: “Is the syllogism [¢] true or not?”
Or, can you prove it? (See Theorem 7.19)

A coin is, at random, put under my right hand or my left hand. Suppose that you do not know which
hand the coin is under, and you choose one of my hands which you guess that the coin is under. Then,
the probability that the ball is under the hand you choose is, of course, equal to 1/2. Next, consider the
case that the condition: “at random” is not assumed in this problem. How do you think about this case?

my right hand my left hand
Coin

Table

(See Problem 11.10)

[The problem concerning EPR-experiment]. Let A and B be particles with the same masses m. Consider
the situation described in the following figure:

~— @ o —
A B where “the velocity of A" = —*the velocity of B

The position g4 (at time #y) of the particle A can be exactly measured, and moreover, the velocity of
vp (at time tg) of the particle B can be exactly measured. Thus, we can conclude that the position and
momentum (at time fy) of the particle A are respectively equal to g4 and —muvpg. Is this fact contradictory
to Heisenberg's uncertainty relation?

(See §12.7)
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