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PREFACE

It is well known that the dynamical system theory (DST) starts from the following

equations:

DST =


dx(t)

dt
= f(x(t), u1(t), t), x(0) = x0 · · · (state equation),

y(t) = g(x(t), u2(t), t) (measurement equation)
(D)

where u1 and u2 are external forces (or noises). Also recall that quantum mechanics is

formulated as the following form:

quantum mechanics = [the rule of time evolution]

(Schrödinger equation)

+ [measurement]

(Born’s quantum measurements)

(Q)

The above two theories (D) and (Q) are, of course, fundamental and famous. Thus, a

quarter of a century ago, I already knew them. However, about fifteen years ago, I was

suddenly surprised by the similarity between (D) and (Q), particularly, the fact that:

(F) the term “measurement” is common to both dynamical system theory (D) and

quantum system theory (Q).

This surprise urged me to propose “measurement theory”. I want to share my surprise

with all people 1. This is the reason for this book.

Shiro ISHIKAWA2

21st, October, 2006

1Some sections of this book were lectured in the master-course program: “Advanced study of mathe-
matics A” at Keio university (three-hour lecture every week from April to July in 2006).

2For the further information of our theory, see “http://www.keio-up.co.jp/kup/mfomt/”
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It is recommended to read this book as follows:

Chap. 1y
Chap. 2y

Chap. 4 ←−−− Chap. 3 −−−→ Chap. 7y
Chap. 5y
Chap. 6y
Chap. 8y
Chap. 9y
Chap. 10y
Chap. 11y
Chap. 12
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Chapter 1

The philosophy of measurement
theory

The purpose of this book is to propose “mathematical foundations of measurement theory”. The
statement:

“There is no science without measurements” (1.1)

is an old famous saying, which of course emphasizes the importance of “measurement”. We believe
in the saying, i.e., the concept of “measurements” should be the most fundamental in science.
However, it is certain that we do not have an authorized “measurement theory” in science yet.
Thus, we think that it is worthwhile proposing the mathematical foundations of “measurement
theory” 1:

Chapters 2, 3, 8 · · ·Mathematical foundations of measurement theory

Chapter 4 · · ·An application (of measurement theory) to statistical mechanics

Chapters 5∼12 · · · Several theories (e.g., statistics, classical and quantum system theories,
etc.) in measurement theory

It should be noted that “measurement theory” and “theoretical physics” are different. In par-
ticular, their philosophies are completely different. Although it is a matter of course that it is
impossible to understand the philosophy of measurement theory without the complete knowledge
of measurements (i.e., the contents of Chapters 2 ∼ 12), the philosophy of measurement theory is
also indispensable for the understanding of measurement theory. Therefore, in this first chapter,
we devote ourselves to the philosophy of measurement theory.

1.1 How to construct “measurement theory”

It is well known that the dynamical system theory (DST, classical system theory)

1The measurement theory is proposed in the references [41]∼[48],[55] in this book. We devote ourselves
to the mathematical aspect of “measurement theory”. For the other aspects (e.g., practical and general
aspects), see [30], which is educational and enlightening.

1
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2 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

starts from the following equations:

DST =


dx(t)

dt = f(x(t), u1(t), t), x(0) = x0 · · · ((stochastic) state equation) ,2

y(t) = g(x(t), u2(t), t) (measurement equation)
(1.2a)

where u1 and u2 are external forces (or noises),

or more precisely,

= “Apply (1.2a) to every phenomenon by an analogy of Newtonian mechanics and
the coin-tossing problem” .3 (1.2b)

That is, DST is usually believed to be a kind of epistemology called “the mechanical

world view”, namely, an epistemology to understand and analyze (moreover, control)

every phenomenon — economics, psychology, engineering and so on — by an analogy of

Newtonian mechanics (and coin-tossing).

Also recall that quantum mechanics is formulated as the following form (cf. von

Neumann [84]):

quantum mechanics = [measurement]

(Born’s quantum measurement)

+ [the rule of time evolution]

(Schrödinger equation)

(1.3)

which was discovered by W. Heisenberg, E. Schrödinger, M. Born in between 1924 and

1926.

Here, it should be noted that the term “measurement” appears in both (1.2) and (1.3).

Thus, our proposal, i.e., “measurement theory (=MT)”, is constructed as follows:

(I1) Quantum mechanics (1.3) is formulated in B(H), the algebra composed of all

bounded linear operators on a Hilbert space H (cf. von Neumann (1932: [84])).

Thus it is easy to generalize quantum mechanics in C∗-algebra A (⊆ B(H), cf.

Definition 2.1 in §2.1) such that it includes DST (1.2) as a special case. Namely,

(1.2)+(1.3)⊂“MT”.

That is, as a kind of generalization of quantum mechanics (1.3), we can propose as follows:

2A stochastic differential equation (or stochastic difference equation) in dynamical system theory is
usually called a stochastic state equation.

3That is, DST is, from the mathematical point of view, based on “the theory of differential
equations” and “probability theory”. Thus, I think that I.Newton (cf. [66]) and A.Kolmogorov (cf.
[56]) are greatest in DST.
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1.1. HOW TO CONSTRUCT “MEASUREMENT THEORY” 3

“measurement theory (or in short, MT)”

=[measurement]
“Axiom 1 (2.37)”

+ [“the rule of the relation among systems”]
“Axiom 2 (3.26)”

in C∗-algebra A

(1.4a)

or more precisely,

=“Apply (1.4a) to every phenomenon by an analogy of quantum mechanics” (1.4b)

(For the details, see Chapter 2 [Axiom 1 (2.37)], and Chapter 3 [Axiom 2 (3.26)]). Here

it should be noted that MT (= Axiom 1 + Axiom 2) is composed of a few key-words i.e.,

(I2) system, state, observable, measurement, measured-value, probability, Markov rela-

tion, sequential observable, Heisenberg picture, etc.

and Axioms 1 and 2 explain how to use these words. Roughly speaking, Axioms 1 and 2

say “Use these words by analogy of quantum mechanics”.4

We have the classification of MT as follows:5

“MT” =


“classical MT” in a commutative C∗-algebra C0(Ω)

“quantum MT” in a non-commutative C∗-algebra B(H)

(1.5)

where a C∗-algebra is either commutative or non-commutative. Also, as mentioned in

(I1), we consider the following correspondence:

“MT” =


“classical MT” in (1.5) ↔ DST in (1.2)

“quantum MT” in (1.5) ↔ quantum theory in (1.3)

(1.6)

4Thus, our approach is, from the philosophical point of view, characterized as so called foundational-
ism.

5As seen later (i.e., Chapter 8), we also have the classification of MT, i.e., “(pure) measurement theory
(= PMT)” and “statistical measurement theory ( =SMT)”. That is,

MT (=“measurement theory”)

 PMT (=“(pure) measurement theory”) in Chapters 2 ∼ 7

SMT (=“statistical measurement theory”) in Chapters 8 ∼)

PMT is essential. That is, we can say that there is no SMT without PMT. (Cf. Chapter 8.)
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4 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

1.2 What is measurement theory?

We think that the question “What is measurement theory?” is much more difficult

than the question “How is measurement theory constructed?”.

As mentioned in (I1) in §1.1, MT is the mathematical generalization of quantum me-

chanics (1.3). That is, MT is not quantum mechanics but “something beyond mechanics”.

Thus, we can assert that

(I3) MT is the mathematical representation of the epistemology called “the mechanical

world view” (just like DST(1.2) is).

Also, it should be noted that MT is quite a wide theory, that is, we assert:

(I4) MT is the most fundamental theory of so-called “theoretical informatics”, including

dynamical system theory, quantum system theory, practical logic, statistics, circuit

theory, control theory, chaotic system theory, multivariate analysis, information

theory, automata theory, OR, game theory, etc.

This will be discussed in Chapters 5 ∼ 12. Also, note that the above (I4) should be

regarded as the same as the following assertion:

(I5) The term: “theoretical informatics” is defined as the academic discipline that is

composed of all theories understood in MT. That is, “theoretical informatics” =

“MT”.

We assert that
the most fundamental theory of theoretical physics =⇒ ‘TOE (string theory(?))’6

the most fundamental theory of theoretical informatics =⇒ MT

And therefore, we can present the following table, which indicates where MT is in science.

6The string theory (cf. [28]) is not necessarily authorized yet. Thus, in this book, the term ‘TOE
(Theory of Everything)’ is used as the symbol of the most fundamental theory of theoretical physics.
As emphasized in this section, the philosophy of theoretical physics is different from that of theoretical
informatics. And thus, the meanings of “the most fundamental theory” are respectively different in
theoretical physics and in theoretical informatics.
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1.2. WHAT IS MEASUREMENT THEORY? 5

Table (1.7)

Sci.
Theor.



Mathematics
“Cantor’s sets theory” mathematical logic, algebra, geometry, analysis, etc. (C1)

Math. Sci.
Theor.



Theor. Physics
‘TOE’



Newtonian mechanics
quantum mechanics
Maxwell’s electromagnetic theory
Einstein’s relativity theory
Weinberg-Salam theory
quantum chromodynamics
etc.

(C2)

[My proposal in this book]

Theor. Informatics
MT (=measurement theory)



dynamical system theory
quantum system theory
practical logic
statistics, circuit theory
control theory
multivariate analysis
information theory
chaotic system theory
automata theory
OR, game theory, etc.

The third mathematical scientific theory
(undiscovered)

(C4)

(C3)

Usual Sci. Theor.

8

>

>

<

>

>

:

economics, chemistry, biology, medicine, psychology,
statistical mechanics, fluid mechanics,
engineering (also, see (I7) and (I8) later), etc. (C5)

That is, the mathematical structures of all theories in (C3) are common, and thus, they

are discussed in the framework of MT.

We add the following remark.

Remark 1.1. (About Table (1.7)).

(a). Note that the class (C3) (= (I4)) is usually called “applied mathematics”. In this

sense, we think that MT is the main part of so-called applied mathematics.

(b). For example, if electromagnetic theory and relativity theory can not be unified, we

must consider two categories (e.g., “Theoretical physics (I)” and “Theoretical physics

(II)”) in theoretical physics. However, most physicists believe that physics consists of only

one category, that is, the theories in (C2) must be unified in the most fundamental theory

(= ‘TOE’). The purpose of this book is, of course, to show that the theories in (C3) are
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6 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

mathematically understood in MT. Also, in this book, “Newtonian mechanics” [resp.

“quantum mechanics” ] in MT is called “classical system theory (= dynamical sys-

tem theory)” [resp. “quantum system theory”]
(
though the addition of “measurement

equation” to DTS(1.2a) should be regarded as the act of genius (since there is no concept

of “measurement” in Newtonian mechanics)
)
. That is, the two (i.e., Newtonian mechan-

ics and quantum mechanics) are common in both “theoretical physics” and “theoretical

informatics” (cf. §10.5).

(c). The purpose of theoretical physics is to represent “natural forces” in terms of mathe-

matics. On the other hand, as mentioned in (I3), MT is a kind of epistemology called “the

mechanical world view”, namely, an epistemology to understand and analyze (moreover,

control) every phenomenon — economics, psychology, engineering and so on — by an

analogy of mechanics. That is, MT is the mathematical representation of “the mechani-

cal world view”. Or, precisely speaking, the definition of “the mechanical world view” is

given by MT.

(d). From the mathematical point of view, the difference between “theoretical physics” and

“theoretical informatics” is that of “differential geometry” and “the theory of Hilbert

spaces (or operator algebras)”. Cf. Remark 8.26.

(e). It is a matter of course that the theories in theoretical physics (= (C2) in (1.7))

should be tested by experiments. For example, the question: “Is electromagnetic theory

experimentally true or not?” is meaningful. In fact, serious experiments have been often

conducted as big projects (such as SERN, Kamioka Observatory (Japan), etc.) in theo-

retical physics. On the other hand, the experimental tests of the theories in theoretical

informatics (= (C3)) are nonsense. For example, the experimental test of statistics is

meaningless just like that of mathematics (e.g., linear algebra) is obviously meaningless.7

Thus, we think that the question: “Is statistics experimentally true or not?” is mean-

ingless. However, it should be noted that the question: “Is statistics convenient (=

useful)?” is meaningful.

(f). We hope that some will find and propose “The third mathematical scientific theory

in (C4)”.

¥

7There may be some truth in the assertion that statistics is a kind of mathematics. However, as
mentioned in Table (1.7), we think that “statistics” = “mathematics + something”.
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1.2. WHAT IS MEASUREMENT THEORY? 7

Summing up, we assert the following table:

Table (1.8a)

Theoretical Physics Theoretical Informatics
(1). the theories classical and quantum mechanics, dynamical system theory, statistics,
in this field electromagnetic theory, logic, quantum system theory,
(cf. Remark 1.1 (b)) Weinberg-Salam theory, etc. (cf. (C2)) information theory, etc. (cf. (C3))
(2). the most fundamental theory ‘TOE (Theory of Everything)’ MT (measurement theory)
(cf. Remark 1.1 (b)) (will be proposed in the future) (proposed in this book cf. [41]∼[48],[55])
(3). the purpose the mathematical representation the mathematical representation
(cf. Remark 1.1 (c)) of “force” of “the mechanical world view”
(4). mathematical language differential geometry (gauge theory) operator algebra
(cf. Remark 1.1 (d)) (functional analysis, real analysis)
(5). experimentally meaningful meaningless
true or false
(cf. Remark 1.1 (e))

Next let us consider the following problem.
Problem 1.2. (“experimentally true or false” and “theoretically true or false”). Consider
the following problems (i) and (ii).

(i) Assume that someone proposes “psychokinetic theory” as a theory of theoretical

physics. Determine whether his/her theory is true or false.

(ii) In [93], Zadeh proposed “the fuzzy sets theory” as a theory of theoretical informatics.

Determine whether his theory is true or false.8

[Answer (i)]. The problem (i) is solved by two methods. One is the experimental test.

If it is OK (i.e., if it is experimentally true), “psychokinetic theory” should be accepted

as a physical theory. Also, if we have the most fundamental theory (= ‘TOE’), we can

determine whether “psychokinetic theory” is theoretically true in ‘TOE’. If it is OK (i.e.,

if it can be understood in ‘TOE’), the “psychokinetic theory” should be accepted as a

physical theory. Of course, it always holds that “experimentally true” = “theoretically

true”.

8One of our motivations for this research may be inspired by the fashion of Zadeh’s fuzzy sets theory
(cf. [93], which is the most cited paper in all fields of 20th century science) in 1980s ∼ 1990s. We had a lot
of arguments about “Is Zadeh’s fuzzy sets theory true or false?” or “Can it be justified?” However, these
arguments may be fruitless. That is because all controversies were engaged without the understanding
of the meaning of “true” (or “justification”). It should be noted that we do not only have the answer
to the question: “Is Zadeh’s fuzzy sets theory (theoretical) true or false?” but also “Is Fisher’s statistics
(theoretically) true or false?”.

(
These will be respectively answered in Chapter 5∼7.

)
In this sense,

we can say that the purpose of this book is to introduce the criterion:“theoretically true or false” into
theoretical informatics. (Cf. Declaration (1.11) later). Here, two criterions of “theoretically true or
false (in theoretical informatics)” and “useful or not (in informatics-related engineering)” should not be
confused. Throughout this book we are not concerned with “useful or not” but “theoretically true or
false”, though we, of course, know that the criterion “useful or not” is also quite important.
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8 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

[Answer (ii)]. On the other hand, the problem (ii) is solved by one method. If we have the

most fundamental theory (=‘measurement theory’), we can determine whether “Zadeh’s

fuzzy sets theory” is theoretically true or false in the most fundamental theory. If it can

be understood in the most fundamental theory, “Zadeh’s fuzzy sets theory” should be

accepted as a theory of theoretical informatics. Our answer will be presented in Chapter

7. However, as mentioned in Remark 1.1 (e), it should be noted that the question: “Is

Zadeh’s fuzzy sets theory experimentally true or not?” is nonsense.

¥

Remark 1.3. (What should measurement theory be applied to?). Recall that MT is

a kind of epistemology called “the mechanical world view”, namely, an epistemology to

understand and analyze (moreover, control) every phenomenon by an analogy of mechan-

ics. In this sense, MT may be applied to everything. However, it is certain that some

problems (or phenomena) are fit for “the mechanical world view”, but others are not.

Thus, we have the following question.

(I6) What phenomenon should measurement theory be applied to?

The following fields are generally believed to be fit for “the mechanical world view” to

some degree.

(I7) the fields in informatics-related engineering, e.g., information engineering, admin-

istration engineering, mathematical psychology, statistical medicine, mathematical

economics, financial engineering, cognitive engineering, quality control engineering,

chaotic engineering, electrical circuit engineering 9, etc.

And further, we add

(I8) statistical mechanics, fluid mechanics, etc.10

though the two are usually believed to belong to theoretical physics. As mentioned later

(i.e., the footnote under (I13)), the theories in (C5) in Table (1.7) should be studied by

several methods (and not only by “the mechanical world view” (= MT)). Also, we say

9For example, the distinction between “electrical circuit engineering” in (I7) and “circuit theory” in
(I4) may be ambiguous. However, we want to say “MT itself is not engineering but the mathematical
representation of “the mechanical world view”.

10Boltzmann’s statistical mechanics will be discussed as one of applications (of MT) in Chapter 4.
Therefore, there is a reason to call “theoretical physics” [resp. “theoretical informatics” ] “the first
physics” [resp.“the second physics”] .
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1.2. WHAT IS MEASUREMENT THEORY? 9

(I9) It is too optimistic to consider that the completely precise theory exists in (I7) and

(I8). However, the theories in (I7) and (I8) may be “almost experimentally true” to

such a degree that they are assured to be “useful”. That is, every theory in (I7) and

(I8) is, more or less, ambiguous. Although the challenge to make a precise theory

should be worthy of praise, what is most important is not “precise” but “useful” in

engineering.

¥

Remark 1.4. (Aristotles and Plato). As mentioned before, theoretical physics must be

always checked by experimental tests. That is, it is based on realism (i.e., the Aristotles

spirit). On the other hand, recall that the experimental test for MT is nonsense. There-

fore, we can not deny MT by any experimental tests.11 Thus, we may agree to the

opinion that

“MT is self-righteous”.

In this sense, we cay say that MT is based on idealism (i.e., the Plato spirit).12 However,

it does not imply “unfair”. That is because, if some want to deny MT, it suffices to

propose another fundamental theory better than MT. Here,

(I10) the question:“Which is better?” is decided by majority (or popularity).

Here it should be noted that to win popularity is as difficult as to find the truth.Also, as

mentioned in (I9), we can expect that every theory in (I7) and (I8) is “almost experimen-

tally true”. That is because, if it is not “almost experimentally true”, it can never win

popularity.

¥

11Thus, I assume that MT itself is a kind of metaphysics (and not science in the sense of Popper [70],
“falsifiability” ).

12If I were familiar with the history of philosophy, I could stress the correspondences: “theoretical
physics (realism) ↔ Aristotles” and “theoretical informatics (idealism)↔Plato”.
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10 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

Summing up, we assert the following table:

Table (1.8b)

Theoretical Physics Theoretical Informatics
(6). important criterion experimentally true or false useful or not, likes or dislikes
(cf. Remark 1.1 (e), Remark 1.4) objective popularity, economical, subjective
(7). theoretically meaningful in ‘TOE’ meaningful in MT
true or false
(cf. Problem 1.2 (i),(ii))
(8). what to be applied to physical phenomena all phenomena (particularly,
(cf. Remark 1.3) appearing in (I7) and (I8))
(9). fundamental spirit realism (due to Aristotles) idealism (due to Plato)
(cf. Remark 1.4) Theory is dominated by experiment. Theory is free from experiment.

1.3 Measurement theory in engineering

As mentioned in (I7) in §1.2, MT plays an important role in engineering. The theo-

retical physics (= ‘TOE’) itself may be worthy even if it has no applications. However,

MT is not so. Thus, in this section, we consider the relation between engineering and

MT. Here, engineering is usually considered to be composed of physics-related engineering

(e.g., laser engineering, etc.), chemistry-related engineering (e.g., chemistry engineering,

etc.), informatics-related engineering (e.g., financial engineering, etc.), etc.

The area of physics-related engineering is clear. That is because the physics-related

engineering is generally believed to be supported by “physics” as the theoretical backbone.

We studied physics as one of the important subjects in high-school, and therefore, we

believe that theoretical physics is only one discipline, i.e., classical mechanics, relativity

theory, electromagnetic theory and so on that should be unified. That is, physics-related

engineering has the authorized root (= physics). Also, note that the circumstance of

chemistry-related engineering is similar to that of physics-related engineering.

On the other hand, the area of informatics-related engineering may be vague. This

is due to the fact that we do not know the most fundamental root in informatics-related

engineering. Note that there is a possibility that informatics-related engineering has

two (or more than two) fundamental roots. If it is so, we must consider “informatics-

related engineering (I)” and “informatics-related engineering (II)” (cf. Remark 1.1 (b)).

Therefore, we must answer the following question:

(I11) What subject is the most fundamental in informatics-related engineering?
(
Or, is

theoretical informatics the only one?
)
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1.3. MEASUREMENT THEORY IN ENGINEERING 11

Of course, our answer is

(I12) MT is the most fundamental theoretical backbone in informatics-related engineering.

MT (or, theoretical informatics) is not studied in high-school. However, statistics and

differential equations (which are closely related to MT (i.e., Axioms 1 and 2 in (1.4a)))

are studied as mathematics in high-school. In this sense, theoretical informatics is not

underestimated in high-school education.

Thus we have the following table.

Table (1.9)

fundamental subject area (applications)

physics-related physics (mathematical) semiconductor engineering,

engineering experimental test is possible laser engineering, etc.

chemistry-related chemistry (non-mathematical) chemical engineering

engineering experimental test is possible

informatics-related MT (mathematical) Cf. (I7) and (I8)
engineering experimental test is meaningless

Thus we conclude that

(I13) The area of informatics-related engineering is roughly13determined by MT (= “the-

oretical informatics”), just like the area of physics-related engineering is roughly

determined by physics. Also, recall (I5).

That is, we say:

8

>

>

>

>

<

>

>

>

>

:

physical phenomena
M.R.
=⇒
ET

theoretical physics (=‘TOE’)
Appl
=⇒
AET

physics-related engineering

mechanical world view
M.R.
=⇒
PP

theoretical informatics (= MT)
Appl
=⇒
AET

informatics-related engineering

(1.10)

where “M.R.” = “mathematical representation”, “ET” = “experimental test” (cf. Prob-

lem 1.2 (i)), “Appl” = “Applications” (cf. Table (1.9)), “PP” = “popularity” (cf. (I10)),

“AET” = “almost experimentally true” (cf. (I9) in §1.3).

13For example, mechanical engineering is closely related to physics. However, control theory (in (C3)
of Table (1.7)) plays an important role in robot engineering (which is a kind of mechanical engineering).
Also, electrical circuit engineering may be close to electromagnetic theory as well as dynamical system
theory. Thus, such a classification of engineering (presented in Table (1.9)) is somewhat forcible. That
is because “Use everything available” is the engineer’s spirit. Thus we must say that physics (as well as
measurement theory) is more or less influential to every field in (I7) and (I8). However we can, at least,
assert that physics, chemistry and MT are the most fundamental subjects in the faculty of engineering.
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12 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

Here again note that

(I14) Theoretical physics has to be precise. On the other hand, engineering has to be

useful rather than precise. Since ambiguous statements can not be tested “exactly”,

we use the term : “AET (= almost experimentally true)” in the above (1.10).

Thus we see

(I15) There is a possibility that a phenomenon has two (or, more than two) explana-

tions in MT. And moreover, in this case, we may not choose one from the two by

experimental tests but a sense of beauty (≈ like or dislike).

1.4 The spirit of “the mechanical world view”

We think that “measurement”, “its philosophy” and “its applications (≈ informatics-

related engineering)” should be regarded as “the Trinity”. And we assert the following

declaration, which was essentially proposed in [Ishikawa, 2002, [48]].

Declaration (1.11)

We assert the following (i) ∼(iii), which should be understood as the different represen-
tations of the same thing:

(i) MT is the most fundamental theory of theoretical informatics, which is regarded as
the theoretical backbone of informatics-related engineering.

(ii) MT is the ultimately generalized form of the dynamical system theory (1.2). Thus,
MT is regarded as the mathematical representation of the epistemology called “the
mechanical world view”. And thus, MT is sometimes called the general dynamical
system theory (or in short, GDST).

(iii) MT is entitled to check all theories in theoretical informatics. In other words, we can,
by using MT, introduce the criterion:“(theoretically) true or false” into theoretical
informatics.

Here, note that:

• in this book, “the mechanical world view” means “the quantum mechanical world

view” and not “the Newtonian mechanical world view”.
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1.4. THE SPIRIT OF “THE MECHANICAL WORLD VIEW” 13

We might say too much in this chapter. It may suffice to say

The spirit of “the mechanical world view” (1.12)

• Mind Declaration (1.11) and Tables (1.7) and (1.8). And further, at
any rate (= setting aside the reason), study every (physical or non-
physical) problem in the framework of MT.14

Summing up, we have “the Trinity” as follows:

measurement theory
(mathematical theory)

informatics-related engineering
(applications)

the mechanical world view
(philosophy)

the Trinity
·························

]

^

�

�

-�

Here, again note that the philosophy of “theoretical informatics” is completely different

from that of “theoretical physics”, Although it is a matter of course that it is impossible

to understand the philosophy of measurement theory without the complete knowledge of

measurements (i.e., the contents of Chapters 2 ∼ 12), the philosophy of measurement

theory is also indispensable for the understanding of measurement theory.

Remark 1.5 (Another important problem) The problem:

(I16) “Propose The third mathematical scientific theory in (C4) of Table (1.7)”

14As mentioned in Remark 1.4, we do not necessarily need a perfect reason in theoretical informatics.
In this sense, the term: “extensive interpretation” is one of the most important terms in theoretical
informatics.
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14 CHAPTER 1. THE PHILOSOPHY OF MEASUREMENT THEORY

may be the most important. I think that the above problem (I16) is so difficult. Thus I

may prefer waiting the appearance of a genius to doing it ourselves.15

15As mentioned in this chapter, our purpose may be, briefly speaking, to study all fields which can be
understood in terms of “measurement (i.e., Axioms 1 and 2)”. In this sense, Frieden’s challenge [24] is
also interesting. His purpose seems to study all fields (of physics) which can be understood in terms of
“Fisher information”. Although we do not completely understand his theory, we expect that his theory
may be one of the candidates of The third mathematical scientific theory . We never hope that MT is
the only one mathematical theory that belongs to the category of “idealism”.
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Chapter 2

Measurements (Axiom 1)

Measurement theory (MT) is classified two subjects, i.e., “(pure) measurement theory (PMT)” and
“statistical measurement theory (SMT)”. That is,

MT (=“measurement theory”)

 PMT (=“(pure) measurement theory”) in Chapters 2 ∼ 7

SMT (=“statistical measurement theory” in Chapters 8 ∼)
(2.1)

PMT is essential, and it should be noted that there is no SMT without PMT (cf. Chapter 8). In
Chapters 2 ∼ 7, we devote ourselves to PMT, which is formulated as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (2.2)

(=(1.4))

In this chapter we intend to explain “measurement (= Axiom 1)”. (In Chapter 3 we will devote
ourselves to Axiom 2 (i.e., “the relation among systems”).)

2.1 Mathematical preparations

The theory of operator algebras (i.e, C∗-algebra and W ∗-algebra) is a convenient

mathematical tool to describe both classical and quantum mechanics (cf. [76]). Thus

our theory is described in terms of C∗-algebras. Since our concern in this book is mainly

concentrated on classical systems and not quantum systems, it may suffice to deal with

only commutative C∗-algebras. In fact, most of our main results are related to classical

systems. However, recall (1.4), that is:

PMT =“Apply Axioms 1 and 2 to every phenomenon by an analogy of

quantum mechanics” (2.3)
(=(1.4))

15
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16 CHAPTER 2. MEASUREMENTS (AXIOM 1)

Thus we think that the essence of measurements can not be appreciated deeply without

the knowledge of quantum measurements. In fact, the concept of measurements was first

discovered and formulated by M. Born [13]1 as the most fundamental concept in quantum

mechanics. Thus, we begin with general C∗-algebras, in which both classical and quantum

systems are formulated.2

Let A be a linear associative algebra over the complex field C. The algebra A is called

a Banach algebra if it is associated to each element T a real number ∥T∥, called the norm

of T , with the properties:

(i) ∥T∥ ≥ 0, (ii) ∥T∥ = 0 if and only if T = 0, (i.e., the 0-element in A),

(iii) ∥T + S∥ ≤ ∥T∥ + ∥S∥, (iv) ∥λT∥ = |λ| · ∥T∥, λ ∈ C,

(v) ∥TS∥ ≤ ∥T∥ · ∥S∥, (vi) A is complete with respect to the norm ∥ · ∥.

A mapping T 7→ T ∗ of A into itself is called an involution (and T ∗ is called the adjoint

element of T ) if it satisfies the following conditions:

(i) (T ∗)∗ = T , (ii) (T + S)∗ = T ∗ + S∗, (iii) (TS)∗ = S∗T ∗,

(iv) (λT )∗ = λ̄T ∗, λ ∈ C.

A Banach algebra with an involution ∗ is called a Banach ∗-algebra.

Definition 2.1. [C∗-algebra, identity, commutative C∗-algebra]. A Banach ∗-algebra A

(with the norm ∥ · ∥A) is called a C∗-algebra if it satisfies the C∗-condition, i.e., ∥T ∗T∥ =

∥T∥2 for any T ∈ A. A C∗-algebra A does not always have the identity element IA (i.e.,

IAT = TIA = T for all T ∈ A), though in this book we usually suppose that a C∗-algebra

A has the identity element IA. A C∗-algebra A is called unital, if it has the identity

element IA. Also, a C∗-algebra A is called commutative, if it holds that T1T2 = T2T1

(∀T1, T2 ∈ A).

¥
An element F in A is called self-adjoint if it holds that F = F ∗. A self-adjoint element

F in A is called positive (and denoted by F ≥ 0) if there exists an element F0 in A such

1He proposed his theory in 1926, and he won the Nobel prize of physics in 1954.
2I am afraid that the mathematical preparation (in this section) discourages readers to want to read

this book. Thus, it may be recommended to skip to Example 2.16 firstly. In order to read this book, it
suffices to understand Example 2.16.
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2.1. MATHEMATICAL PREPARATIONS 17

that F = F ∗
0 F0 where F ∗

0 is the adjoint element of F0. Also, a positive element F is called

a projection if F = F 2 holds. Let A∗ be the dual Banach space of A. That is,

A∗ = {ρ | ρ : A → C is continuous linear }

with the norm ∥ρ∥A∗ ( ≡ sup{|ρ(F )| : ∥F∥A ≤ 1}).
(
The linear functional ρ(F ) is

sometimes denoted by
A∗

〈
ρ, F

〉
A
.
)

Define the mixed state space Sm(A∗) such that:

Sm(A∗) = {ρ ∈ A∗ | ∥ρ∥A∗ = 1 and ρ(F ) ≥ 0 for all F ≥ 0}. (2.4)

A mixed state ρ ( ∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1− θ)ρ2

for some ρ1, ρ2 ∈ Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Define

Sp(A∗) ≡ {ρp ∈ Sm(A∗) | ρp is a pure state}, (2.5)

which is called a state space (or pure state space, phase space). Note that Sm(A∗) is

convex and compact in the weak∗ topology σ(A∗; A). Also, Sp(A∗) is characterized as

the set of the extreme points of Sm(A∗). (Cf. [92, 76]). Since Sp(A∗) is the closed set of

Sm(A∗), the Sp(A∗) is also compact in the weak∗ topology.

The following Examples 2.2 and 2.3 will promote the understanding of Definition 2.1.

Example 2.2. [Commutative C∗-algebras; C(Ω), or generally, C0(Ω)]. When A is a

commutative C∗-algebra, that is, T1 · T2 = T2 · T1 holds for all T1, T2 ∈ A, by Gelfand

theorem (cf. [74, 76]), we can put A = C(Ω), the algebra composed of all continuous

complex-valued functions on a compact Hausdorff space Ω.
(
If the commutative C∗-

algebra A is not necessarily assumed to be unital, we can put A = C0(Ω), the algebra

composed of all continuous complex-valued functions vanishing at infinity on a locally

compact Hausdorff space Ω.
)

The norm ∥f∥C(Ω) is, of course, defined by ∥f∥C(Ω) =

max{|f(ω)| : ω ∈ Ω} (∀f ∈ C(Ω)). Also, we can easily see that it satisfies the C∗-

condition, i.e., ∥f · f ∗∥C(Ω) = ∥f∥2
C(Ω) where f ∗(ω) ( ≡ f(ω)) is defined by the conjugate

“Re[f(ω)] − Im[f(ω)]i” (∀ω ∈ Ω) (where Re is “real part”, Im is “imaginary part”). It

is well known (i.e., Riese Theorem) that C(Ω)∗ = M(Ω), i.e., the Banach space composed

of all regular complex-valued measures on Ω. And therefore,

Sm(M(Ω)) = {ρ ∈ M(Ω) | ρ ≥ 0, ∥ρ∥M(Ω) = 1}, (2.6)
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18 CHAPTER 2. MEASUREMENTS (AXIOM 1)

which is denoted by Mm
+1(Ω). Also, it is clear that

Sp(M(Ω)) =
{

δω ∈ M(Ω) | δω is a point measure at ω ∈ Ω
}

(2.7)(
i.e.,

M(Ω)

〈
δω, f

〉
C(Ω)

= f(ω) (∀f ∈ C(Ω), ∀ω ∈ Ω)
)
, which is denoted by M

p
+1(Ω), and

called a state space. And therefore, we have the identification: Ω ≈ M
p
+1(Ω) in the sense

of

Ω ∋ ω ←→ δω ∈ M
p
+1(Ω). (2.8)

Thus the compact Hausdorff space Ω may be also called a state space.

¥
Example 2.3. [Non-commutative C∗-algebras; B(V ) and C(V )]. Let V be a (separable)

Hilbert space with the inner product ⟨·, ·⟩V . Here we always assume that ⟨v1, αv2⟩V =

α⟨v1, v2⟩V (∀v1, v2 ∈ V, α ∈ C). (Cf. [4, 71].) Put

B(V ) = {T : T is a bounded linear operator from a Hilbert space V into itself }.3

Define ∥T∥B(V ) = sup{∥Tv∥V : ∥v∥V = 1}, and (T1T2)(v) = T1(T2v) (∀v ∈ V ). And

T ∗ is defined by the adjoint operator of T . Note that it holds that ∥T ∗T∥B(V ) = ∥T∥2

(∀T ∈ B(V )). Thus, we can easily see that the B(V ) is a non-commutative C∗-algebra.

Also note that

C(V ) ≡ {T ∈ B(V ) : T is a compact operator } (2.9)

is a C∗-subalgebra of B(V ). If the dimension of V is infinite, this C∗-algebra C(V ) has

no identity I. We see that

C(V )∗ = Tr(V )
(
≡ {T ∈ B(V ) : ∥T∥tr < ∞}

)
. (2.10)

Here Tr(V ) is the class of trace operators with the trace norm ∥ · ∥tr such that:

∥ρ∥tr =
∞∑

n=1

⟨en,
√

ρ∗ρ en⟩V

where {en}∞n=1 is the complete orthonormal system in V . It is well known that the value

∥ρ∥tr is independent of the choice of a complete orthonormal basis {eλ|λ ∈ Λ} in V . And

we see

Sm(C(V )∗) = Trm
+1(V ) ≡ {ρ ∈ Tr(V ) : ρ ≥ 0, ∥ρ∥Tr(V ) = 1}. (2.11)

3“bounded linear operator” = “continuous linear operator” (cf. [92])
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2.1. MATHEMATICAL PREPARATIONS 19

And further,

(Tr(V ))∗ = B(V ).

Also, it is well known that

“ρ ∈ Sp(C(V )∗)” ⇔ “there exists ψ ∈ V (∥ψ∥
V

= 1) such that ρ = |ψ⟩⟨ψ|”, (2.12)

where the Dirac notation “|ψ1⟩⟨ψ2|”
(
∈ B(V )

)
, ψ1, ψ2 ∈ V , is defined by

(|ψ1⟩⟨ψ2|)ϕ = ⟨ψ2, ϕ⟩V
ψ1 for all ϕ ∈ V .

The state space Sp(C(V )∗) is denoted by Trp
+1(V ), that is,

Sp(C(V )∗) ≡ Trp
+1(V ).

Also, it is well-known that “ρ ∈ Sm(C(V )∗)” ⇔ “there exists an orthonormal system

{ψn}∞n=1 in V and non-negative real numbers {λn}∞n=1 (where
∑∞

n=1 λn = 1) such that

ρ =
∑∞

n=1 λn|ψn⟩⟨ψn|”.
¥

The following theorem is one of the most important theorems in the theory of operator

algebras.

Theorem 2.4. [GNS-construction, Gelfand, Naimark, Siegel, cf. [50, 76]]. Let A be a

C∗-algebra. Then there exists a B(V ) such that:

A ⊆ B(V ). (2.13)

That is, A can be identified with the norm-closed C∗-subalgebra of a certain B(V ).

¥
Example 2.5. [Commutative C∗-algebra MatD(n;C) as the subalgebra of B(Cn)]. Let

Cn be an n-dimensional Hilbert space with the inner product ⟨·, ·⟩Cn (that is, ∥z∥Cn =√∑n
k=1 |zk|2 (∀z = (z1, z2, ..., zn) ∈ Cn)). Consider the non-commutative C∗-algebra

B(Cn) ≡ {T : T is a (bounded) linear operator from a Hilbert space Cn into itself },

which is clearly equal to

Mat(n;C) ≡ {T : T is a complex (n × n)-matrix }. (2.14)
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20 CHAPTER 2. MEASUREMENTS (AXIOM 1)

That is,

B(Cn) = Mat(n;C).

Put

MatD(n;C) = {T : T is a complex (n × n)-diagonal matrix }, (2.15)

which is clearly a commutative C∗-subalgebra of B(Cn). Also, it is obvious that the

MatD(n;C) is equivalent to C(Ω), where Ω is the finite state space ({1, 2, ..., n}) with the

discrete topology.4 That is, we see the following identifications:

MatD(n;C) ≈ C({ω1, ω2, ..., ωn}) ≈ Cn

where Cn is assumed to have the max-norm ∥z∥max
Cn

(
= maxk=1,2,...,n |zk| (∀z = (z1, z2, ..., zn)

∈ Cn)
)
. Also, the multiplication (z1

1 , z
1
2 , ..., z

1
n) · (z2

1 , z
2
2 , ..., z

2
n) is defined by (z1

1z
2
1 , z

1
2z

2
2 , ...,

z1
nz2

n).

¥
Remark 2.6. [(i): The identity]. Let A0 be a non-unital C∗-algebra. Theorem 2.4 (The

GNS-construction) says that there exists a B(V ) such that A0 ⊆ B(V ). That is, A0 can

be identified with the norm-closed subalgebra of B(V ). Thus we can define the C∗-algebra

AI such that it is the smallest algebra that includes {I} ∪ A0 ( ⊆ B(V )). Therefore, we

can always add the identity I to A0, and construct the new unital C∗-algebra AI . This

argument implies that the “unital condition” is not so strict. Thus, throughout this book,

we usually deal with a unital C∗-algebra, though the C0(Ω) is sometimes used.

[(ii): Minimal tensor C∗-algebras]. Here consider the minimal tensor C∗-algebra as follows:

Let Â
(

=
⊗n

k=1 Ak

)
be the tensor product C∗-algebra of {Ak : k = 1, 2, ..., n}. This can

be easily constructed as follows: Since we can see, by Theorem 2.4 (GNS-construction),

that

Ak ⊆ B(Vk) (k = 1, 2, ..., n), (2.16)

we can define
⊗n

k=1 Ak such that the smallest norm-closed sub-algebra (of B(
⊗n

k=1 Vk))

that contains { n⊗
k=1

Fk

(
∈ B(

n⊗
k=1

Vk)
) ∣∣∣ Fk ∈ Ak, k = 1, 2, ..., n

}
(2.17)

4Throughout this book, we assume that a finite state space Ω (≡ {ω1, ω2, ..., ωn}) has the discrete
metric dD (i.e., dD(ω1, ω2) = 1 (ω1 ̸= ω2), = 0 (ω1 = ω2)).
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2.2. OBSERVABLES 21

where
⊗n

k=1 Vk is the tensor Hilbert space of {Vk | k = 1, 2, ..., n}. Though the general

theory of tensor product C∗-algebras
⊗n

k=1 Ak is not easy, we only use the following

properties (i)∼(iii) of the tensor C∗-algebras:

(i) T1 ⊗ T2 ⊗ · · · ⊗ Tn ∈ Â for any Tk ∈ Ak, k = 1, 2, ..., n,

(ii) ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn ∈ Sp(Â∗) for any ρk ∈ Sp(A∗
k), k = 1, 2, ..., n,

(iii) (ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn) (T1 ⊗ T2 ⊗ · · · ⊗ Tn) =
∏n

k=1 ρk(Tk) for any ρk ∈ A∗
k and any

Tk ∈ Ak, k = 1, 2, ..., n.

If we focus on only commutative cases, it is sufficient to know the fact that

n⊗
k=1

C(Ωk) = C(
n

×
k=1

Ωk) and
n⊗

k=1

M(Ωk) = M(
n

×
k=1

Ωk), (2.18)

where ×n
k=1 Ωk is the product topological space of Ω1,...,Ωn. Therefore, for example, the

above (iii) implies the elementary property of product measure (Fubini’s theorem), i.e.,∫
Ω1×Ω2

f1(ω1) · f2(ω2)(ρ1 ⊗ ρ2)(dω1dω2) =

∫
Ω1

f1(ω1)ρ1(dω1) ·
∫

Ω2

f2(ω2)ρ2(dω2)

(∀f1 ∈ C(Ω1), ∀f2 ∈ C(Ω2)). (2.19)

For the deep studies of “tensor C∗-algebra”, see [50].

¥

2.2 Observables

Let X be a set. Let 2X (or, P(X)) be the power set of X. i.e., 2X = {Ξ | Ξ ⊆ X}.
A set F( ⊆ 2X) is called a field if the F is closed under the intersection (i.e., ∩) and the

compliment (i.e., [ · ]c), that is, if “Ξ1, Ξ2 ∈ F” implies “Ξ1 ∩ Ξ2 ∈ F” and “Ξc
1 ∈ F”,

where Ξc
1 = X \ Ξ1 = {x | x ∈ X ∧ x /∈ Ξ1}. Note that Ξ1 ∪ Ξ2 = (Ξc

1 ∩ Ξc
2)

c, Ξ1 \ Ξ2 =

Ξ1 ∩ Ξc
2 and Ξ1 △ Ξ2 = (Ξ1 ∪ Ξ2) \ (Ξ1 ∩ Ξ2). Thus the field F is also closed under the

operations ∪, \ and △.

Also, a set R( ⊆ 2X) is called a ring if the R is closed under the intersection (i.e., ∩)

and the symmetric difference (i.e., △), that is, if “Ξ1, Ξ2 ∈ R” implies “Ξ1 ∩Ξ2 ∈ R” and
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22 CHAPTER 2. MEASUREMENTS (AXIOM 1)

“Ξ1 △ Ξ2 ∈ R”. Note that Ξ1 ∪ Ξ2 = (Ξ1 △ Ξ2) △ (Ξ1 ∩ Ξ2), Ξ1 \ Ξ2 = Ξ1 △ (Ξ1 ∩ Ξ2).

Thus the ring R is also closed under the operations ∪ and \ (cf. [29]).

Motivated by the Davies’ idea (in quantum mechanics, cf. [17]), we propose the

following definition.

Definition 2.7. [ C∗-observables in a unital A]. A C∗-observable ( or in short, observable,

fuzzy observable) O ≡ (X, F, F ) in a unital C∗-algebra A is defined such that it satisfies

that

(i) [field]. X is a set (called a “measured value set” or “label set” ), and F is the subfield

of the power set P(X) ( ≡ {Ξ : Ξ ⊆ X}),

(ii) for every Ξ ∈ F, F (Ξ) is a positive element in A such that F (∅) = 0 and F (X) = IA

(where 0 is the 0-element in A),

(iii) for any countable decomposition {Ξ1, Ξ2, ..., Ξn, ...} of Ξ,
(
i.e., Ξ, Ξn ∈ F,∪∞

n=1Ξn =

Ξ, Ξn ∩ Ξm = ∅(if n ̸= m)
)
, it holds that ρ

(
F (Ξ)

)
= limN→∞ ρ

( ∑N
n=1 F (Ξn)

)
(∀ρ ∈ Sm(A∗)).

Also, if F (Ξ) is a projection for every Ξ ( ∈ F), a C∗-observable (X, F, F ) is called a crisp

C∗-observable (or, a crisp observable, an idea).

¥
Remark 2.8. [(1): The case that X is finite]. In chapters 2∼8, we will usually deal

with the case that X is finite. When we want to stress that X is finite, the (X, F, F ) is

often denoted by (X, 2X , F ) or (X, P(X), F ). Thus, in this case, the (iii) in Definition 2.7

means

F (Ξ1 ∪ Ξ2) = F (Ξ1) + F (Ξ2) (∀Ξ1, ∀Ξ2(∈ 2X) such that Ξ1 ∩ Ξ2 = ∅)).

[(2): C∗-observables in general C∗-algebras]. Although we are usually concerned with

unital C∗-algebras, we add the generalization of Definition 2.7 as follows: Let A be a

C∗-algebra, which does not necessarily have the identity I. A C∗-observable ( or in short,

observable, fuzzy observable ) O ≡ (X, R, F ) in a C∗-algebra A is defined such that it

satisfies that

(i) X is a set, and R is the subring of the power set P(X) ( ≡ {Ξ : Ξ ⊆ X}), that is,

“ Ξ1, Ξ2 ∈ R” implies “ Ξ1 ∩ Ξ2 ∈ R” and “ Ξ1 △ Ξ2 ∈ R”,
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2.2. OBSERVABLES 23

(ii) for every Ξ ∈ R, F (Ξ) is a positive element in A such that F (∅) = 0 (where 0 is the

0-element in A),

(iii) for any countable decomposition {Ξ1, Ξ2, ..., Ξn, ...} of Ξ, (Ξ, Ξn ∈ R), it holds that

ρ
(
F (Ξ)

)
= limN→∞ ρ

( ∑N
n=1 F (Ξn)

)
(∀ρ ∈ Sm(A∗)),

(iv) there exists a sequence {Ξ0
n}∞n=1 in R such that Ξ0

1 ⊆ Ξ0
2 ⊆ · · · and X = ∪∞

n=1Ξ
0
n

and limn→∞ ρ
(
F (Ξ0

n)
)

= 1 (∀ρ ∈ Sm(A∗)).

Also, if F (Ξ) is a projection for every Ξ ( ∈ R), a C∗-observable (X, R, F ) is called a crisp

C∗-observable.

¥

Definition 2.9. [Image observable]. Let O ≡ (X, F, F ) be an observable in a C∗-algebra

A. Let G be a subfield of 2Y . Let h : X → Y be a measurable map, i.e., h−1(Γ) ∈ F

(∀Γ ∈ G). Then, we can define the observable O[h] (≡ (Y, G, F ◦ h−1)) in A such that:

(F ◦ h−1)(Γ) = F (h−1(Γ)) (Γ ∈ G). (2.20)

The O[h] ≡ (X, F, G◦h−1) is called the image observable of O ≡ (Y, G, G) (in a C∗-algebra

A) concerning the map h : X → Y . The image observable O[h] is also denoted by h(O).

¥
Definition 2.10. [Quasi-product observable]. For each k = 1, 2, ..., n, consider an ob-

servable Ok ≡ (Xk, Fk, Fk) in a C∗-algebra A. Define the field
⊗n

k=1 Fk ( ⊆ 2×
n

k=1 Xk)

such as the smallest field (on ×n
k=1 Xk) that contains ×n

k=1 Ξk, Ξk ∈ Fk. The prod-

uct field
⊗n

k=1 Fk is usually denoted by ×n
k=1 Fk.

(
Throughout this book, the nota-

tion ×n
k=1 Fk does not mean the set { ×n

k=1 Ξk : Ξk ∈ Fk }.
)

An observable Ô ≡
(×n

k=1 Xk,×n
k=1 Fk, F̂ ) in A is called the quasi-product observable of {Ok : k = 1, 2, ..., n}(

or, quasi-product observable with marginal observables {Ok : k = 1, 2, ..., n}
)

if it holds

that

F̂ (X1 × · · · × Xk−1 × Ξk × Xk+1 × · · · × Xn) = Fk(Ξk) (∀Ξk ∈ Fk, ∀k = 1, ..., n).
(2.21)

The quasi-product observable Ô (of {Ok}n
k=1) is denoted by

qp

×××××××××
k=1,2,...,n

Ok, or,
( n

×
k=1

Xk,
n

×
k=1

Fk,
qp

×××××××××
k=1,2,...,n

Fk

)
, or

( n

×
k=1

Xk,

n⊗
k=1

Fk,
qp

×××××××××
k=1,2,...,n

Fk

)
, (2.22)
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24 CHAPTER 2. MEASUREMENTS (AXIOM 1)

i.e., Ô =
qp

×××××××××k=1,2,...,nOk, F̂ =
qp

×××××××××k=1,2,...,nFk. Also,
qp

×××××××××k=1,2,...,nFk is sometimes written by

×××××××××
bO

k=1,2,...,nFk.

¥
Note that the existence and the uniqueness of the quasi-product observable of {Ok :

k = 1, 2, ..., n} are not guaranteed in general. However, when Ok, k = 1, 2, ..., n, commute,

i.e.,

Fk(Ξk)Fk′(Ξk′) = Fk′(Ξk′)Fk(Ξk) for all Ξk ∈ Fk, Ξk′ ∈ Fk′ such that k ̸= k′ , (2.23)

we can construct the quasi-product observable (×n
k=1 Xk,×n

k=1 Fk, F̃ ) in A such that:

F̃ (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1)F2(Ξ2) · · ·Fn(Ξn). (2.24)

This kind of quasi-product observable is called a product observable and denoted by

n

×
k=1

Ok

(
= ×××××××××

k=1,2,...,n
Ok, or, (

n

×
k=1

Xk,
n

×
k=1

Fk,
n

×
k=1

Fk), or, (
n

×
k=1

Xk,
n⊗

k=1

Fk,
n

×
k=1

Fk),
)
.

(2.25)

×n
k=1 is sometimes written by

∏n
k=1, and thus, we write: ×n

k=1 Ok =
∏n

k=1 Ok, ×n
k=1 Xk

=
∏n

k=1 Xk, etc. Also, note that the product observable ×n
k=1 Ok always exists for any

Ok in a commutative C∗-algebra C(Ω).

Summing up the above arguments, we can state the following theorem.

Theorem 2.11. For each k ∈ K ≡ {1, 2, ..., |K|}, consider an observable Ok ≡ (Xk, Fk, Fk)

in a C∗-algebra A. If the commutativity condition:

Fk1(Ξk1)Fk2(Ξk2) = Fk2(Ξk2)Fk1(Ξk1) (∀Ξk1 ∈ Fk1 , ∀Ξk2 ∈ Fk2 , k1 ̸= k2) (2.26)

holds, then we can construct a product observable Ô ≡ (×k∈K Xk,×k∈K Fk, F̃ ≡
×k∈K Fk) such that:

F̃ (Ξ1×Ξ2× · · ·×Ξ|K|) = F1(Ξ1)F2(Ξ2) · · ·F|K|(Ξ|K|). (2.27)

Note that the uniqueness (of quasi-product observables) is not guaranteed even under the

above commutativity condition. Also, note that the product observable ×n
k=1 Ok always

exists for any Ok in a commutative C∗-algebra C(Ω).

¥
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2.2. OBSERVABLES 25

Theorem 2.12. Let O ≡ (X, R, F ) be a C∗-observable in a general C∗-algebra A (i.e.,

it does not necessarily have the identity). Let A1 be a C∗-algebra with the identity I

(generated by the A such as in Remark 2.6(i)). Then, there uniquely exists the observable

(X, F, F̃ ) be a C∗-observable in A1 such that:

(i) F = R ∪ {X \ Γ | Γ ∈ R}

(ii) F̃ (Ξ) =

{
F (Ξ) (Ξ ∈ R)
I − F (Ξc) (Ξc = (X \ Ξ) ∈ R).

Proof. It suffices to show that F is the field. Let Ξ1 ∈ R and Ξ2 ∈ {X \ Γ | Γ ∈ R}.
Thus Ξ2 = X \Γ ( for some Γ ∈ R). Then, we see Ξ1 ∩Ξ2 = Ξ1 ∩ (X \Γ) = Ξ1 ∩ (Ξ1 \Γ)

∈ F. Also, Ξ1 ∪ Ξ2 = (Ξc
1 ∩ Ξc

2)
c = (Ξc

1 ∩ Γ)c = (Γ \ Ξ1)
c ∈ F. Also, it is clear that

“Ξ ∈ F” =⇒ “Ξc ∈ F”. Thus, we see that F is the field.

The following theorem (and Theorem 9.8) will be often used throughout this book.

Theorem 2.13. [cf. [42]]. Let A be a C∗-algebra. Let O1 ≡ (X1, F1, F1) and O2 ≡
(X2,F2, F2) be C∗-observables in A such that at least one of them is crisp.

(
So, without

loss of generality, we assume that O2 is crisp
)
. Then, the following statements are

equivalent:

(i) There exists a quasi-product observable O12 ≡ (X1 × X2,F1×F2, F1

qp

××××××××× F2) with

marginal observables O1 and O2.

(ii) O1 and O2 commute, that is, F1(Ξ1)F2(Ξ2) = F2(Ξ2)F1(Ξ1) (∀Ξ1 ∈ F1, ∀Ξ2 ∈ F2).

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product

observable O12 of O1 and O2 is guaranteed.

Proof. It suffices to prove it in the case that A has the identity. When O1 ≡ (X1, F1, F1)

and O2 ≡ (X2, F2, F2) are both crisp observables, it is proved in [17]. By the same way, we

can prove this theorem. It is clear that (ii) =⇒ (i) since we can construct a C∗-observable

(X1 × X2,F1×F2, H) such that:

H(Ξ1 × Ξ2) = F1(Ξ1)F2(Ξ2) (∀Ξ1 ∈ F1, ∀Ξ2 ∈ F2).

Thus, it suffices to prove that (i) =⇒ (ii). Assume that (i) holds. Let Ξ1 and Ξ2 be any

element in F1 and F2 respectively. Put Ξ1
1 = Ξ1, Ξ2

1 = X1\Ξ1, Ξ1
2 = Ξ2 and Ξ2

2 = X2\Ξ2.

Put H = F1

qp

××××××××× F2. Note that:

0 ≤ H(Ξi
1 × Ξj

2) ≤ H(X1 × Ξj
2) ≡ F2(Ξ

j
2) ( = “projection”). (2.28)
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26 CHAPTER 2. MEASUREMENTS (AXIOM 1)

This implies that H(Ξi
1 × Ξj

2) and F2(Ξ
j
2) commute, and so, H(Ξi

1 × Ξj
2) and I − F2(Ξ

j
2)

commute. Hence, F1(Ξ1) ( = H(Ξ1
1×Ξ1

2) + H(Ξ1
1×Ξ2

2)) and F2(Ξ2) ( = F2(Ξ
1
2)) commute.

Therefore, we get that (i) =⇒ (ii).

Next we prove the uniqueness of H under the assumption (i) (and so (ii)). Note that

0 ≤ H(Ξi
1 × Ξj

2) ≤ H(Ξi
1 × X2) ≡ F1(Ξ

i
1). This implies, by the commutativity condition

(ii) and (2.28), that

0 ≤ H(Ξi
1 × Ξj

2) ≤ F2(Ξ
j
2)F1(Ξ

i
1)F2(Ξ

j
2) = F1(Ξ

i
1)F2(Ξ

j
2). (2.29)

Therefore we see that I =
∑

i,j=1,2 H(Ξi
1 × Ξj

2) ≤
∑

i,j=1,2 F1(Ξ
i
1)F2(Ξ

j
2) = I. Then, we

obtain that H(Ξ1 × Ξ2) = F1(Ξ1)F2(Ξ2), that is, H is unique. Therefore, we finish the

proof.

2.3 The meanings of observables and crisp observ-

ables

In the conventional classical [resp. quantum] mechanics, the term “observable” usually

means a real valued continuous function on a state space Ω [resp. a self-adjoint opera-

tor in B(V )]. Thus, the “observable” (defined in Definition 2.7) should be a kind of

generalization of the above conventional “observable”. In what follows we will see it.

Now we shall consider the several aspects (and properties) of the observable O ≡
(X, F, F ) in a C∗-algebra A. Examining Definition 2.7, we can easily see

(A1) An observable O
(
≡ (X, F, F )

)
in A can be regarded as the A-valued probability

space5, i.e., the additive set-function:

F ∋ Ξ 7→ F (Ξ) ∈ A.

Also, we may find the similarity between an observable O and the resolution of the identity

I in what follows. Assume, for simplicity, that X is countable (i.e., X ≡ {x1, x2, ...}).
Then, it is clear that

5In this book, the term “probability space” is used as “a positive measure space whose total measure
is equal to 1”. That is, the term “probability space” is used as the pure mathematical concept, and thus,
it is not always assured to be related to the concept of “probability”.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



2.3. THE MEANINGS OF OBSERVABLES AND CRISP OBSERVABLES 27

(i) F ({xk}) ≥ 0 for all k = 1, 2, ...

(ii)
∑∞

k=1 F ({xk}) = IA in the sense of weak topology of A,

which imply that the [F ({xk}) : k = 1, 2, ..., n] can be regarded as the resolution of the

identity element IA. Thus we say that

(A2) An observable O
(
≡ (X, F, F )

)
in A can be regarded as

“the fuzzy decomposition” (2.30)

that is, the resolution of the identity IA, i.e., [F ({xk}) : k = 1, 2, ..., n].

0

1

“The figure of O ≡ ({x1, x2, x3}, 2{x1,x2,x3}, F ) in C(Ω)”

[F ({x1})](ω)
[F ({x2})](ω) [F ({x3})](ω)

Ω

Also, we note that

(A3) An observable O
(
≡ (X, F, F )

)
in A can be characterized as a kind of generalization

of a self-adjoint element in A.

This is shown as follows: For simplicity, assume that A = B(CN). And put

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , eN =


0
0
...
1

 (2.31)

Thus we see that

|e1⟩⟨e1| =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , |e2⟩⟨e2| =


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 0

 , · · · , |eN⟩⟨eN | =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
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28 CHAPTER 2. MEASUREMENTS (AXIOM 1)

The spectral theorem says that a self-adjoint matrix F̂ ( ∈ B(CN)) can be represented

by

F̂ = U


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 U∗

= U
(
λ1|e1⟩⟨e1| + λ2|e2⟩⟨e2| + · · · + λN |eN⟩⟨eN |

)
U∗

=
N∑

n=1

λn|Uen⟩⟨Uen| (2.32)

where λn ∈ R (∀n = 1, 2, ..., N) and U is a unitary matrix in B(CN). For any Ξ

( ∈ BR = “Borel field” )6, put

F (Ξ) =
∑
λn∈Ξ

|Uen⟩⟨Uen|. (2.33)

Here it should be noted that F (Ξ) is a projection for all Ξ ( ∈ BR). This implies the the

following identification:

F̂

(self-adjoint operator)

←→ (R, BR, F )

(crisp observable)

in B(CN)
. (2.34)

That is because F̂ is represented by (2.32), i.e.,

F̂ =

∫
R

λF (dλ).

Next assume that A = C(Ω), where Ω is, for simplicity, assumed to be the finite set

{ω1, ω2, ω3, ..., ωN} with the discrete topology. Consider a real valued continuous function

F̂ : Ω → R. Define the observable (R,BR, F ) in C(Ω) such that:

[F (Ξ)](ω) =


1 if ω ∈ F̂−1(Ξ)

0 if ω /∈ F̂−1(Ξ)

(∀ω ∈ Ω, ∀Ξ ∈ BR). (2.35)

Note that

F̂ (ω) =
N∑

n=1

F̂ (ωn)
(
[F ({ωn})](ω)

)
=

∑
λ∈R

λ[F ({λ})](ω)
(

= [

∫
R

λF (dλ)](ω)
)

(∀ω ∈ Ω).

This implies the the following identification:

F̂

(real valued function on Ω)

←→ (R,BR, F )

(crisp observable)

in C(Ω)
. (2.36)

Therefore, we say, by (2.34) and (2.36), that

6“Borel field” = “the smallest σ-field that contains all open sets”
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2.4. MEASUREMENT (AXIOM 1) 29

(A4) “crisp observable (R,BR, F )” in A ←→
identification

“self-adjoint element” in A.(
where A = B(Cn) or A = C({ω1, ω2, ..., ωN})

)
. Here, the “self-adjoint element” in A(

i.e., “crisp observable (R,BR, F )” in A
)

is sometimes called a “quantity (or, system

theoretical quantity”) in A.

Remark 2.14. [OR (= operation research) and game theory]. In OR [resp. game

theory [85]], we are mainly concerned with the problem: “Study the maximal point [resp.

the saddle point] of F̂ !”

¥

2.4 Measurement (Axiom 1)

Under the mathematical preparations in the previous sections, now we can describe

the fundamental concepts of measurement theory (2.2) (=(1.4)).

With any system S, a C∗-algebra A can be associated in which measurement theory of

that system can be formulated. A state of the system S is represented by a pure state ρp

( ∈ Sp(A∗), i.e., a state space ). Also, an observable is represented by a C∗-observable O

≡ (X, F, F ) in the C∗-algebra A.7 The measurement of an observable O for the system

S with (or, in) the state ρp is represented by MA

(
O, S[ρp]

)
in the C∗-algebra A. Also, we

can obtain a measured value x ( ∈ X) by the measurement MA

(
O, S[ρp]

)
.

The axiom presented below is analogous to (or, a kind of generalizations of) Born’s

probabilistic interpretation of quantum mechanics [13]. We of course assert that the axiom

is a principle for all measurements, i.e., classical and quantum measurements. Cf. [41, 42].

AXIOM 1. [Measurement axiom]. Consider a measurement MA

(
O ≡

(X, F, F ), S[ρp]
)

formulated in a C∗-algebra A. Assume that the measured
value x ( ∈ X) is obtained by the measurement MA

(
O, S[ρp]

)
. Then, the

probability that the x ( ∈ X) belongs to a set Ξ ( ∈ F) is given by ρp(F (Ξ))(
≡

A∗

〈
ρp, F (Ξ)

〉
A

)
. (2.37)

7I like to image the following correspondence (measurement theory and philosophy):

“state” ↔ “matter” “observable” ↔ “idea” (= “form” )
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30 CHAPTER 2. MEASUREMENTS (AXIOM 1)

We introduce the following classification in measurement theory:

measurement theory


classical measurement theory (for classical systems)

quantum measurement theory (for quantum systems)

(2.38)

where a C∗-algebra A is commutative or non-commutative.

Recall the (1.3), that is, quantum mechanics (cf. [71]) is formulated by

“quantum mechanics” = measurement

(“Born’s quantum measurements”)

+ the rule of time evolution

(“Schrödinger equation”)

(1.3)

Of course, Axiom 1 corresponds to “Born’s quantum measurements”. Note that quantum

measurement theory is well authorized as a principle of quantum mechanics (cf. [17, 34,

84]). Our interest in this book is mainly concentrated on classical systems. Therefore, in

most cases, it suffices to assume that A = C(Ω).

2.5 Remarks

In this section we add some remarks concerning Axiom 1.

[(I): Probability]. It should be noted that the term “probability” appears in Axiom

1. Following the common knowledge of quantum mechanics (cf. [71, 84]), we believe

that any scientific statement including the term “probability” is meaningless without the

concept of “measurement”. That is, we say that

(♯) “There is no probability without measurements”.

Throughout this book, the above spirit (♯) is quite important.

[(II): It is prohibited to take measurements twice]. The quasi-product observable

(or, the product observable) is used to represent “the measurement of (more than one )

observables” as follows: For example, consider “the measurement of O1 and O2 for the

system with the state ρp (∈ Sp(A∗))”. If the quasi-product observable O1

qp

×××××××××O2 of O1 and

O2 exists, the measurement is represented by MA(O1

qp

×××××××××O2, S[ρp])
(
and not “MA(O1, S[ρp])

+ MA(O2, S[ρp])”
)
. If the quasi-product observable O1

qp

××××××××× O2 does not exist, the mea-

surement does not also exist. That is, the symbol “MA(O1, S[ρp]) + MA(O2, S[ρp])” is

nonsense. Thus we can say that
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2.5. REMARKS 31

(♯) only one measurement is permitted to be conducted even in the classical measurement

theory.

which is the well-known fact in quantum mechanics. The measurement MA

(
O1

qp

×××××××××O2, S[ρp]

)
is sometimes called a simultaneous measurement (or iterated measurement) of two ob-

servables O1 and O2. That is, it is prohibited to take measurements twice in measurement

theory. For example, the following statement:

• “Take two measurements MA

(
O1, S[ρp]

)
and MA

(
O2, S[ρp]

)
.”

is prohibited.

[(III): Sample space]. Let ρm be a mixed state, i.e., ρm ∈ Sm(A∗). Applying Hopf

extension theorem (cf. [92]), we can get the measure space (X, F, ρm(F ( · )) ) such that

ρm(F (Ξ)) = ρm(F (Ξ)) for all Ξ ∈ F where F is the smallest σ-field that contains F. For

simplicity, the ρm(F ( · )) is also denoted by ρm(F ( · )) or
A∗

〈
ρm, F ( · )

〉
A
. Axiom 1 makes

us call the measure space (X, F, ρp(F ( · )) )
(
or in short, (X, F, ρp(F ( · )) )

)
a sample

space concerning a measurement MA(O ≡ (X, F, F ), S[ρp] ).

[(IV): Conditional probability]. Let O ≡ (X, F, F ) and O′ ≡ (Y, G, G) be observables

in A. Let Ô be a quasi-product observable of O and O′, that is, Ô ≡ O
qp

××××××××× O′ =

(X×Y, F×G, F
qp

×××××××××G). Assume that we know that the measured value (x, y) (∈ X ×Y )

obtained by a measurement MA(Ô, S[ρp]) belongs to Ξ × Y (∈ F×G). Then, it is clear

that the unknown measured value y (∈ Y ) is distributed under the conditional probability

PΞ(·), where

PΞ(Γ) = A∗ ⟨ρp, F (Ξ)
qp

××××××××× G(Γ)⟩
A

A∗ ⟨ρp, F (Ξ)⟩
A

=
ρp(F (Ξ)

qp

××××××××× G(Γ))

ρp(F (Ξ))

 (∀Γ ∈ G).

[(V): Commutativity and simultaneous measurability]. Let ρp be a pure state,

i.e., ρp ∈ Sp(A∗). Let O ≡ (X, F, F ) and O′ ≡ (Y, G, G) be crisp observables in A. Now

we have the following problem:

• What is the simultaneous measurability condition of O and O′ for the fixed ρp?

This is answered in [39] as follows:

• ρp-commutativity, i.e., F (Ξ)G(Γ)ρp = G(Γ)F (Ξ)ρp for all Ξ ∈ F, Γ ∈ G.
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32 CHAPTER 2. MEASUREMENTS (AXIOM 1)

However, in this book we are not concerned with such arguments.

[(VI): Schrödinger’s cat paradox]. Note that Schrödinger’s cat does not appear in

the world of MT. Let us explain it as follows: In 1935 (cf. [77]) Schrödinger published

an essay describing the conceptual problems in quantum mechanics. A brief paragraph

in this essay described the cat paradox.

• Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a

poison gas bottle; further suppose that the atom in the cage has a half-life of one

hour, a fifty-fifty chance of decaying within the hour. If the atom decays, the Geiger

counter will tick; the triggering of the counter will get the lid off the poison gas

bottle, which will kill the cat. If the atom does not decay, none of the above things

happen, and the cat will be alive. Now the question:

(Q) We then ask: What is the state of the cat after the hour?

The answer according to quantum mechanics is that

(A) the cat is in a state which can be thought of as half-alive and half-dead, that

is, the state such as
“Fig.(a)” +“Fig.(b)”

2

Fig.(a)

· · ·

6

tick !

Fig.(b)

cat cat

poison gas

Of course, this answer (A) is curious. This is the so-called Schrödinger’s cat paradox.

This paradox is due to the fact that micro mechanics and macro mechanics are mixed in

the above situation. On the other hand, as seen in (2.38), micro mechanics (= quantum

measurement theory) and macro mechanics (= classical measurement theory) are always

separated in MT. Therefore, Schrödinger’s cat does not appear in the world of MT, though

this may be a surface solution of Schrödinger’s cat paradox.
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2.6. EXAMPLES 33

2.6 Examples

Again recall the (1.4), i.e.,

“measurement theory (or in short, PMT)”

=[measurements]
“Axiom 1 (2.37)”

+ [the relation among systems]
[Axiom 2 (3.26)]

in C∗-algebra A (2.39a)
(=(1.4a))

or more precisely,

= “Apply (2.39a) to every phenomenon by an analogy of quantum mechanics”
(2.39b)
(=(1.4b))

Thus, in order to understand PMT, we need a little knowledge of quantum mechanics.

The following example is enough tested 8, and thus, it is the most firm in PMT

Example 2.15. [(i): The spin observable concerning the z-axis, Stern and Gerlach’s

experiment]. Assume that we examine the beam (of silver particles) after passing through

the magnetic field. Then, as seen in the following figure, we see that all particles are

deflected either equally upwards or equally downwards in a 50:50 ratio.

“Stern and Gerlach’s experiment (1922)”

S

N

silver particle

ρp =

˛

˛

˛

˛

»

1/
√

2

1/
√

2

–

ED

»

1/
√

2

1/
√

2

–

˛

˛

˛

˛

,

↑z

↓z

screen

Consider the two dimensional Hilbert space V = C2, And therefore, we get the non-

commutative C∗-algebra A = B(V ), that is, the algebra composed of all 2 × 2 matrices.

8A lot of tests of quantum mechanics have been conducted. Especially Aspect’s experiment [8] is
well authorized. (Cf. §2.9 Bell’s inequality) Recall that “quantum system theory” ⊂ “PMT”. Thus,
quantum mechanics must be enough tested though the experimental test of PMT is generally meaningless.
(Cf. Remark 1.1(e).)
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34 CHAPTER 2. MEASUREMENTS (AXIOM 1)

Note that A = B(V ) = C(V ) = CI(V ) (cf. Example 2.3 and Remark 2.6 (i)) since the

dimension of V is finite. Define Oz ≡ (Z, 2Z , F z), the spin observable concerning the

z-axis, such that, Z = {↑z, ↓z} and

F z({↑z}) =

[
1 0
0 0

]
, F z({↓z}) =

[
0 0
0 1

]
. (2.40)

F z(∅) =

[
0 0
0 0

]
, F z({↑z, ↓z}) =

[
1 0
0 1

]
.

For example, consider the measurement MB(C2)

(
Oz ≡ (Z = {↑z, ↓z}, 2Z , F z), S[ρp]

)
, where

ρp =

∣∣∣∣[α
β

]〉〈[
α
β

]∣∣∣∣, |α|2 + |β|2 = 1. That is, consider

the measurement MB(C2)

(
Oz ≡ (Z = {↑z, ↓z}, 2Z , F z), S[ρp]

)(
= “the measurement of the observable Oz for a particle with the state ρp”

)
.

Then, the probability that the measured value “↑z” [resp. “↓z”] is obtained by the mea-

surement MB(C2)

(
Oz, S[ρp]

)
is given by ρp(F z({↑z})) = |α|2 [resp. ρp(F z({↓z})) = |β|2].

Thus, if ρp =

∣∣∣∣[ 1/
√

2

1/
√

2

]〉〈[
1/
√

2

1/
√

2

]∣∣∣∣, we see that ρp(F z({↑z})) = 1/2 [resp. ρp(F z({↓z}))

= 1/2]. For the further argument, see §2.9 (Bell’s thought experiment).

[(ii): The other spin observables]. Also, we can define Ox ≡ (X, 2X , F x), the spin observ-

able concerning the x-axis, such that, X = {↑x, ↓x} and

F x({↑x}) =

[
1/2 1/2
1/2 1/2

]
, F x({↓x}) =

[
1/2 −1/2
−1/2 1/2

]
. (2.41)

And furthermore, we can define Oy ≡ (Y, 2Y , F y), the spin observable concerning the

y-axis, such that, Y = {↑y, ↓y} and

F y({↑y}) =

[
1/2 i/2
−i/2 1/2

]
, F y({↓y}) =

[
1/2 −i/2
i/2 1/2

]
, (2.42)

where i =
√
−1.

¥
The following example (= “urn problem”) is the most important in the classical PMT,

though it is somewhat artificial. That is, we believe that it is not too much to say that

• the probability in Axiom 1 for classical systems is essentially the same

as the probability in the following urn problem. (2.43)
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2.6. EXAMPLES 35

However, it should be noted that no serious test for the urn problem has been conducted.9

It is generally considered to be self-evident without serious experiments. Recall that

theoretical informatics does not require serious experiments (cf. §1.4).

Example 2.16. [The urn problem (i)]. There are three urns U1, U2 and U3. The urn U1

[resp. U2, U3] contains 8 white and 2 black balls [resp. 4 white and 6 black balls, 1 white

and 9 black balls]. That is,

white balls black balls

urn U1 8 2
urn U2 4 6
urn U3 1 9

(2.44)

Here, consider the following measurement M c
2 :

M c
2 := “Pick out one ball from the urn U2, and recognize the color of the ball”

In measurement theory, the “measurement” M c
2 is formulated as follows: Define the state

space Ω by Ω = {ω1, ω2, ω3}. Here,

ω1 = [8 : 2], ω2 = [4 : 6], ω3 = [1 : 9].

Thus, we see that

U1 · · · “the urn with the state ω1”

U2 · · · “the urn with the state ω2”

U3 · · · “the urn with the state ω3”

In this sense, we have the identification;

U1 ≈ ω1, U2 ≈ ω2, U3 ≈ ω3.

That is,

9[Fuzzy statement and precise statement]. Such a test (i.e., the experimental test of an urn problem)
is usually considered to be no more than the good theme of a child’s homework. However, the question
“Why is a serious test (concerning the urn problem) not required?” may be profound. The reason can be
understood if we think that the urn problem is a model within theoretical informatics. Cf. §1.4. That is,
any model, represented by a precise statement, must be tested in theoretical physics. On the other hand,
a model in theoretical informatics is not required to be tested, that is, it suffices to be useful. Cf. (I14) in
§1.3. We can say that the urn problem is as true as the statement “A cat is stronger than a mouse”. It
should be noted that the statement “A cat is stronger than a mouse” is “almost experimentally true” (cf.
(I9)) in §1.2, though it is ambiguous, fuzzy, vague, etc.
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36 CHAPTER 2. MEASUREMENTS (AXIOM 1)

U1 ≈ ω1 U2 ≈ ω2 U3 ≈ ω3

And further, define the observable O = ({w, b}, 2{w,b}, F ) in C(Ω) such that

F ({w})(ω1) = 0.8, F ({b})(ω1) = 0.2,

F ({w})(ω2) = 0.4, F ({b})(ω2) = 0.6,

F ({w})(ω3) = 0.1, F ({b})(ω3) = 0.9, (2.45)

where ‘w’ and ‘b’ mean white and black respectively. Then, we see that

M c
2 = MC(Ω)(O, S[δω2 ]). (2.46)

Of course, the probability that a measured value w [resp. b] is obtained is, by Axiom 1,

given by

F ({w})(ω2) = 0.4 [ resp. F ({b})(ω2) = 0.6] (2.47)

[The urn problem (ii)] Further, assume that the (white or black) balls in the urns U1,

U2 and U3 are also made of “stone” or “metal”. For example, assume that the urn U1

[resp. U2, U2] contains 4 stone and 6 metal balls [resp. 5 stone and 5 metal balls, 1 stone

and 9 metal balls]. That is,

stone balls metal balls

urn U1 4 6
urn U2 5 5
urn U3 7 3

(2.48)

Here, consider the following measurement Mm
2 :

Mm
2 := “Pick out one ball from the urn U2, and recognize the materials of the ball”

The measurement Mm
2 is formulated as follows: Define the state space Ω by Ω = {ω1, ω2, ω3}.

Here,

ω1 = [4 : 6], ω2 = [5 : 5], ω3 = [7 : 3].
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2.6. EXAMPLES 37

Thus, we see that

U1 · · · “the urn with the state ω1”

U2 · · · “the urn with the state ω2”

U3 · · · “the urn with the state ω3”

In this sense, we have the identification;

U1 ≈ ω1, U2 ≈ ω2, U3 ≈ ω3.

And further, define the observable O′ = ({s,m}, 2{s,m}, G) in C(Ω) such that

G({s})(ω1) = 0.4, G({m})(ω1) = 0.6,

G({s})(ω2) = 0.5, G({m})(ω2) = 0.5,

G({s})(ω3) = 0.7, G({m})(ω3) = 0.3. (2.49)

Thus, we see:

M2 = MC(Ω)(O
′, S[δω2 ]). (2.50)

For example, the probability that a measured value s [resp. m] is obtained is, by Axiom

1, given by

G({s})(ω2) = 0.5 [ resp. G({m})(ω2) = 0.5]. (2.51)

[The urn problem (iii)] However, it should noted that some information is not rep-

resented in the tables (2.44) and (2.48). That is, the situation is, for example, stated

precisely as follows:

(1) the urn U1 contains 10 balls such as

stone balls metal balls

white balls 4 4
black balls 0 2

(2.52)

(2) the urn U2 contains 10 balls such as

stone balls metal balls

white balls 4 0
black balls 1 5

(2.53)
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38 CHAPTER 2. MEASUREMENTS (AXIOM 1)

(3) the urn U3 contains 10 balls such as

stone balls metal balls

white balls 1 0
black balls 6 3

(2.54)

Here, consider the following measurement M cm
2 :

M cm
2 := “Pick out one ball from the urn U2, and recognize the color and

materials of the ball”.

The measurement M12 is formulated as follows: Put Ω = {ω1, ω2, ω2}. Define the state

space Ω by Ω = {ω1, ω2, ω3}. Here,

ω1 =

[
4 4
0 2

]
, ω2 =

[
4 0
1 5

]
, ω3 =

[
1 0
6 3

]
.

Thus, we see that

U1 · · · “the urn with the state ω1”

U2 · · · “the urn with the state ω2”

U3 · · · “the urn with the state ω3”

In this sense, we have the identification;

U1 ≈ ω1, U2 ≈ ω2, U3 ≈ ω3.

That is,

stone metal stone metal stone metal

U1 ≈ ω1 U2 ≈ ω1 U3 ≈ ω1

And further, define the observable Ô = ({w, b} × {s,m}, 2{w,b}×{s,m}, H( ≡ F
qp

××××××××× G)) in
C(Ω) such that

H({(w, s)})(ω1) = 0.4, H({(w,m)})(ω1) = 0.4, H({(b, s)})(ω1) = 0.0, H({(b,m)})(ω1) = 0.2,

H({(w, s)})(ω2) = 0.4, H({(w,m)})(ω2) = 0.0, H({(b, s)})(ω2) = 0.1, H({(b,m)})(ω2) = 0.5,

H({(w, s)})(ω3) = 0.1, H({(w,m)})(ω3) = 0.0, H({(b, s)})(ω3) = 0.6, H({(b,m)})(ω3) = 0.3,
(2.55)
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2.6. EXAMPLES 39

which is, of course, constructed by (2.52) + (2.53) + (2.54) . Then, we see that

M12 = MC(Ω)(Ô, S[δω2 ]). (2.56)

Of course, the probability that a measured value (w, s) [resp. (w,m), (b, s), (b,m)] is

obtained is, by Axiom 1, given by

F ({(w, s)})(ω2) = 0.4

[ resp. F ({(w,m)})(ω2) = 0.0, F ({(b, s)})(ω2) = 0.1, F ({(b,m)})(ω2) = 0.5]. (2.57)

¥

Example 2.17. [Gaussian observable10]. [(i): Gaussian observable in C(Ω)]. Put Ω =

[a, b] (⊆ R, the real line), i.e., the closed interval And let σ be a fixed positive real. Define

the normal observable (or Gaussian observable) OGσ ≡ (R, BR, Gσ) in C(Ω) such that:

[Gσ(Ξ)](ω) =
1√

2πσ2

∫
Ξ

e−
(x−ω)2

2σ2 dx (∀Ξ ∈ BR, ∀ω ∈ Ω ≡ [a, b]),

which will be often used in this book.

-
x

y

6

y = 1√
2πσ2

e−
x2

2σ2

σ−σ 2σ−2σ
68.3%

95.4%

Here, 1√
2πσ2

∫ σ

−σ
e−

x2

2σ2 dx = 0.683... and 1√
2πσ2

∫ 2σ

−2σ
e−

x2

2σ2 dx = 0.954... Also, note that

1√
2πσ2

∫ 1.96σ

−1.96σ

e−
x2

2σ2 dx ≈ 0.95,
1√

2πσ2

∫ 1.65σ

−∞
e−

x2

2σ2 dx ≈ 0.95 (2.58)

10Why is the Gaussian observable fundamental? We should not be too serious with the question.
That is because we do not necessarily need a complete reason in theoretical informatics (cf. Chapter 1),
though the differential geometrical reason must be indispensable for theoretical physics. In informatics,
what is important is “useful or not”. And we know that the Gaussian observable is quite useful. Also
recall that every equation (e.g., Boltzmann’s kinetic equation, Navier-Stokes equation, etc.) in theoretical
informatics is somewhat empirical. As mentioned in (I9) in §1.2, we think that “useful” =⇒ “almost
experimentally true”.
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40 CHAPTER 2. MEASUREMENTS (AXIOM 1)

[(ii).Gaussian observable in C0(R
d)]. Consider a commutative C∗-algebra C0(R

d) and the

Borel ring (Rd,Bbd
Rd), where Bbd

Rd = {Ξ ∈ BRd : Ξ is a bounded Borel set in Rd }. And

define the d-dimensional Gaussian observable OΣ ≡ (Rd, Bbd
Rd , F

Σ) in C0(R
d) such that:

[FΣ(Ξ)](ω⃗) =
1

√
2π

d|Σ|1/2

∫
Ξ

exp[ − 1

2
(x⃗ − ω⃗)tΣ−1(x⃗ − ω⃗)]dx⃗ (∀Ξ ∈ Bbd

Rd , ∀ω⃗ ∈ Rd),

(2.59)

where the Σ is a covariance (d×d)-matrix, i.e., a positive definite (d×d)-matrix. Of course,

the probability that a measured value obtained by the measurement MC0(Rd)(OΣ, S[δω⃗0
])

belongs to Ξ (∈ Bbd
Rd) is given by [FΣ(Ξ)](ω⃗0).

¥

Example 2.18. [Discrete Gaussian observable]. Put Ω ≡ [a, b] ( ⊆ R, the real line),

the closed interval. Let σ > 0. And let N be a sufficiently large fixed integer. Put

XN ≡ { k
N

| k = 0,±1,±2, ...,±N2}. And define the discrete Gaussian observable Oσ2,N

≡ (XN , 2XN , Fσ,N) in the commutative C∗-algebra C([a, b]) such that:

[Fσ,N({k/N})](ω)

=


1√

2πσ2

∫ ∞
N− 1

2N
exp[ − (x−ω)2

2σ2 ]dx (k = N2,∀ω ∈ [a, b]),

1√
2πσ2

∫ k
N

+ 1
2N

k
N
− 1

2N

exp[ − (x−ω)2

2σ2 ]dx (∀k = 0,±1,±2, ...,±(N2 − 1), ∀ω ∈ [a, b]),

1√
2πσ2

∫ −N+ 1
2N

−∞ exp[ − (x−ω)2

2σ2 ]dx (k = −N2,∀ω ∈ [a, b]).

(2.60)

And thus, for any Ξ ( ⊆ XN), we define [Fσ,N(Ξ)](ω) =
∑

k
N
∈Ξ[Fσ,N({k/N})] (ω). This

Oσ2,N , as well as the d-dimensional Gaussian observable OΣ (in Example 2.17), is the

most important observable in classical measurements. ¥

Example 2.19. [Fuzzy numbers observable (= triangle observable = round error observ-

able)]. Let ∆ be any positive number. Define the membership function (i.e., triangle

fuzzy number) Z
∆

(
∈ C0(R), where R is the real line with the usual topology

)
such

that:

Z
∆
(ω) =


1 − ω

∆
0 ≤ ω ≤ ∆

ω
∆

+ 1 −∆ ≤ ω ≤ 0
0 otherwise .
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-

6

0-1 1

1

ω

z1(ω)

Put Z
∆

≡
{
∆k : k ∈ Z ≡ {0,±1,±2, ...}

}
. Define the C∗-observable OZ∆

≡
(Z

∆
, P0(Z∆

), ζ
∆

(·)) in the commutative C∗-algebra C0(R) such that ζ
∆

Ξ (ω) =
∑

x∈Ξ Z
∆
(ω

−x) (∀Ξ ∈ P0(Z∆
), ∀ω ∈ R). This C∗-observable is called a fuzzy numbers observ-

able in C0(R). Putting ∆ = 1, we frequently use the fuzzy numbers observable OZ ≡
(Z,P0(Z), ζ(·)) in this book.

¥

Example 2.20. [(i): Exact observable]. Let Z be the set of all integers, i.e., Z =

{0,±1,±2, ...}. And put P0(Z) = {A( ⊆ Z) | A is finite }. Consider a commutative

C∗-algebra C0(Z). And define the exact observable OEXA ≡ (Z,P0(Z), E(·)) in C0(Z) such

that:

EΞ(n) =


1 n ∈ Ξ( ∈ P0(Z))

0 n /∈ Ξ( ∈ P0(Z))
(2.61)

which is called the exact observable (or, fundamental observable) in C0(Z). Of course we

want to define the exact observable in C0(R) (or, C([a, b])). However, it is impossible

in the C∗-algebraic formulation. For this, we must prepare the W ∗-algebraic formulation

(cf. Chapter 9).

[(ii): Approximate exact observable]. Though the exact observable in C([0, 1]) can not be

defined, we have the approximate exact observable OA
EXA in C([0, 1]) as follows: Let N be

a sufficiently large integer. Put XN = { 1
N

, 2
N

, 3
N

, ..., N
N

( ≡ 1)}. Define the approximate

exact observable OA
EXA ≡ (XN , P(XN), F ) in C([0, 1]) such that:

[F ({ 1

N
})](ω) =


1 (0 ≤ ω ≤ 1

N
− 1

N2 )

−N2

2
(ω − 1

N
) + 1

2
( 1

N
− 1

N2 ≤ ω ≤ 1
N

+ 1
N2 )

0 ( 1
N

+ 1
N2 ≤ ω ≤ 1)

[F ({N

N
})](ω) =


0 (0 ≤ ω ≤ N−1

N
− 1

N2 )
N2

2
(ω − N−1

N
) + 1

2
(N−1

N
− 1

N2 ≤ ω ≤ N−1
N

+ 1
N2 )

1 (N−1
N

+ 1
N2 ≤ ω ≤ N

N
− 1

N2 )
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For n = 2, 3, ..., N − 1,

[F ({ n

N
})](ω) =


0 (0 ≤ ω ≤ n−1

N
− 1

N2 )
N2

2
(ω − n−1

N
) + 1

2
(n−1

N
− 1

N2 ≤ ω ≤ n−1
N

+ 1
N2 )

1 (n−1
N

+ 1
N2 ≤ ω ≤ n

N
− 1

N2 )

−N2

2
(ω − n

N
) + 1

2
( n

N
− 1

N2 ≤ ω ≤ n
N

+ 1
N2 )

0 ( n
N

+ 1
N2 ≤ ω ≤ 1)

Note that the observable (i.e., fuzzy numbers observable) in Example 2.19 is also regarded

as “approximate exact observable”, if ∆ is sufficiently small.

¥
Example 2.21. [Null observable]. Define the observable O(nl) ≡ ({0, 1}, 2{0,1}, F (nl)) in

A such that:

F (nl)(∅) ≡ 0, F (nl)({0}) ≡ 0, F (nl)({1}) ≡ 1A, F (nl)({0, 1}) ≡ 1A in A, (2.62)

which may be called the null observable (or, existence observable). Then, we have the

measurement MA(O(nl) ≡ ({0, 1}, 2{0,1}, F (nl)), S[ρp]). Note that:

(♯) the probability that measured value (by MA(O(nl), S[ρp])) is equal to 1 ( ∈ {0, 1}) is

given by 1. That is, the measured value is always equal to 1 ( ∈ {0, 1}).

Thus, we think that “to take the measurement MA(O(nl), S[ρp])” is the same as “to assure

the existence of the system”.

¥

2.7 Operations of observables

Recall the identification (2.36), that is, we have the following identification:

F̂k

(real valued function on Ω)

←→Ok = (R,BR, Fk)

(crisp observable)

in C(Ω)
(k = 1, 2, ..., n). (2.63)

Note that F̂1 + F̂2, F̂1 · F̂2, etc. are meaningful in the ordinary sense since F̂1 and F̂2 are

real-valued functions. This makes us ask the following question.

• For each k = 1, 2, ..., n, consider an observable Ok ≡ (Xk,Fk, Fk) in a C∗-algebra

A. Are O1 + O2, O1 ·O2, etc. meaningful in general? Or, how the operations of

observables are defined?
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2.7. OPERATIONS OF OBSERVABLES 43

This will be answered in what follows.

For each k = 1, 2, ..., n, consider an observable Ok ≡ (Xk,Fk, Fk) in a C∗-algebra A.

Put O =
qp

×××××××××k=1,2,...,nOk. Let g : ×n
k=1 → Y be a measurable map, where Y has the subfield

G of 2Y . Then we can define the observable (Y, G, G), which is symbolically represented

by g(O1,O2, ...,On), as follows:

• the (Y, G, G) is the image observable of the quasi-product observable O ≡ (×n
k=1 Xk,

×n
k=1 Fk, F̂ ) concerning g (if it exists). That is,

(Y, G, G) = g(O) (2.64)

i.e.,

G(Γ) = F̂ (g−1(Γ)) (∀Γ ∈ G). (2.65)

Example 2.22. [The addition of triangle observables]. Let OZ ≡ (Z,P0(Z), ζ(·)) be

the fuzzy numbers observable in C0(R) (cf. Example 2.19). Now let us calculate OZ +

OZ as follows: Note that the product observable OZ×OZ ≡ (Z2,P0(Z2), ζ(·) × ζ(·)) is

represented by

(i) |m − n| ≥ 2

[ζ{m} × ζ{n}](ω) = 0 (2.66)

(ii) |m − n| = 1

[ζ{m} × ζ{n}](ω) =


0 ω ≤ min{m,n}
(x−m)(x−n)

2
min{m, n} ≤ ω ≤ max{m,n}

0 ω ≤ min{m,n}

(iii) m = n

[ζ{m} × ζ{m}](ω) =


0 ω ≤ m − 1
(x − (m − 1))2 m − 1 ≤ ω ≤ m
(x − (m + 1))2 m ≤ ω ≤ m + 1
0 m + 1 ≤ ω

(2.67)
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44 CHAPTER 2. MEASUREMENTS (AXIOM 1)

Thus we see

(ζ + ζ){n}(ω)

=



(ζ + ζ){2m}(ω)
(when n = 2m)

=


0 ω ≤ m − 1
(ω − (m − 1))2 m − 1 ≤ ω ≤ m
(ω − (m + 1))2 m ≤ ω ≤ m + 1
0 m + 1 ≤ ω

(ζ + ζ){2m+1}(ω)
(when n = 2m + 1)

=


0 ω ≤ m
−(ω − (2m + 1)/2)2 + 1/2 m ≤ ω ≤ m + 1
0 m + 1 ≤ ω

(2.68)

-
m m + 1m − 1

n = 2m

ω

-
m m + 1 ω

n = 2m + 1

Therefore we get the OZ + OZ ≡ (Z,P0(Z), (ζ + ζ)(·)) in C0(R), where

(ζ + ζ)Ξ(ω) =
∑
n∈Ξ

(ζ + ζ){n}(ω) (Ξ ∈ P0(Z), ω ∈ Ω).

¥
Example 2.23. (χ2-observable). Consider the (1-dimensional) Gaussian observable

Oσ2 ≡ (R,Bbd
R , Gσ) in A ≡ C0(R) such that:

[Gσ(Ξ)](µ) =
1√

2πσ2

∫
Ξ

e−
(x−µ)2

2σ2 dx (∀µ ∈ R ∀Ξ ∈ Bbd
R ),

(where σ2 is a variance). And further, for each ϕ (= 0, 1, 2, ...), define the product observ-

able (Oσ2)ϕ+1 such that

(Oσ2)ϕ+1 = (Rϕ+1,Bbd
Rϕ+1 , (G

σ)ϕ+1) ( in A ≡ C0(R)

where

(Gσ)ϕ+1(Ξ1 × Ξ2 × · · · × Ξϕ+1) = Gσ(Ξ1) × Gσ(Ξ2) × · · · × Gσ(Ξϕ+1).
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2.8. FREQUENCY PROBABILITIES 45

Define the map g : Rϕ+1 → R such that

Rϕ+1 ∋ (x1, x2, x3, ..., xϕ+1) 7→
ϕ+1∑
k=1

(xk −
Pϕ+1

j=1 xj

ϕ+1
)2

σ2
∈ R.

The image observable g((Oσ2)ϕ+1) is called the χ2-observable with ϕ, the degree of freedom.

¥

2.8 Frequency probabilities

The meaning of “probability” in Axiom 1 seems to be a matter of common knowledge

in quantum mechanics. However, we, in this section, study the relation between “the

probability in Axiom 1” and “frequency probability”.

For each k = 1, 2, ..., n, consider a measurement MAk

(
Ok ≡ (X, P(X), Fk), S[ρp

k]

)
in a

C∗-algebra Ak, where we assume, for simplicity, that X is finite. Put Â =
⊗n

k=1 Ak, i.e.,

the tensor product C∗-algebra of {Ak : k = 1, 2, ..., n}. Here, consider the tensor-product

C∗-observable
⊗n

k=1 Ok ≡ (Xn, P(Xn), F̂ ≡
⊗n

k=1 Fk ) in Â (≡
⊗n

k=1 Ak ) such that:

F̂ (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1) ⊗ F2(Ξ2) ⊗ · · · ⊗ Fn(Ξn) (∀Ξk ∈ P(X), k = 1, 2, ..., n).
(2.69)

Therefore, we get the measurement M⊗Ak
(
⊗n

k=1 Ok, S[
Nn

k=1 ρp
k]) in

⊗n
k=1 Ak, which is

also denoted by
⊗n

k=1 MAk
(Ok, S[ρp

k]) and called the repeated measurement (or, “parallel

measurement”) of MAk
(Ok, S[ρp

k])’s. Put Mm
+1(X) = {ν : ν is a positive measure on X

such that ν(X) = 1 } and define the map g : Xn → Mm
+1(X) such that:

[g(x1, x2, ..., xn)](Ξ) =
♯[{k : xk ∈ Ξ}]

n
(∀Ξ ∈ P(X)), (2.70)

where ♯[B] = “the number of the elements of a set B”.

Then we have the following proposition.

Proposition 2.24. [The weak law of large numbers, cf [56]]. Suppose the above nota-

tions. For any ϵ > 0 and any Ξ ( ∈ P(X)), define D̂Ξ,ϵ ( ∈ P(Xn) ) by

D̂Ξ,ϵ =
{

x̂ = (x1, x2, ..., xn) ∈ Xn :
∣∣∣[g(x̂)](Ξ) − 1

n

n∑
k=1

ρp
k(Fk(Ξ))

∣∣∣< ϵ
}

. (2.71)
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46 CHAPTER 2. MEASUREMENTS (AXIOM 1)

Then we see that

1 − 1

4ϵ2n
≤ ( ⊗n

k=1 ρp
k)

(
F̂ (D̂Ξ,ϵ)

)
≤ 1, (∀Ξ ∈ P(X),∀ϵ > 0,∀n). (2.72)

Proof. We easily see that [g(x̂)](Ξ) = 1
n

∑n
k=1 χ

Ξ
(πk(x̂)) (∀x̂ = (x1, x2, ..., xn) ∈ Xn),

where πk : Xn → X is defined by πk(x̂) ≡ πk(x1, x2, ..., xk, ..., xn) = xk and χ
Ξ

: X → R

is the characteristic function of Ξ (i.e., χ
Ξ
(x) = 1 (x ∈ Ξ), = 0 (x /∈ Ξ) ). Using the

terms in Kolmogorov’s probability theory, we can say that χ
Ξ
(πk( · )), k = 1, 2, ..., n, are

independent variables on a probability space
(
Xn, P(Xn), P̂ ( ·) ≡ (⊗n

k=1ρp
k)(F̂ ( ·))

)
. Also

it is clear that
∫

Xn χ
Ξ
(πk(x̂))P̂ (dx̂) =

∫
Xn [χ

Ξ
(πk(x̂))]2P̂ (dx̂) = ρp

k(Fk(Ξ)) (k = 1, 2, ..., n).

Therefore, by Čebyšev inequality, we see

P̂
(
Xn \ D̂Ξ,ϵ

)
= P̂

({
x̂ ∈ Xn :

∣∣∣∑n
k=1 χ

Ξ
(πk(x̂)))

n
−

∑n
k=1 ρp

k(Fk(Ξ))

n

∣∣∣≥ ϵ
})

≤ 1

ϵ2n2

∫
Xn

|
n∑

k=1

(
χ

Ξ
(πk(x̂)) − ρp

k(Fk(Ξ))
)
|2P̂ (dx̂)

=
1

ϵ2n2

n∑
k=1

∫
Xn

|χ
Ξ
(πk(x̂)) − ρp

k(Fk(Ξ))|2P̂ (dx̂)

≤ 1

ϵ2n
max
1≤k≤n

[
ρp

k(Fk(Ξ))(1 − ρp
k(Fk(Ξ)))

]
≤ 1

4ϵ2n
, (2.73)

which implies (2.72). This completes the proof.

Now we can show the following theorem as an immediate consequence of Proposition

2.24. It clarifies the “probability” in Axiom 1 from the statistical point of view.

Theorem 2.25. [Frequency probability, cf. [42] ]. Put Ak = A, ρp
k = ρp and Ok = O

≡ (X, P(X), F ), k = 1, 2, ..., n, in Proposition 2.24. Consider the repeated measurement

M⊗A(
⊗n

k=1 O, S[⊗n
k=1ρp]) in

⊗n
k=1 A. Then, we see that

1 − 1

4ϵ2n
≤ ( ⊗n

k=1 ρp)
(
(

n⊗
k=1

F )
(
{x̂ ∈ Xn :

∣∣ρp(F (Ξ)) − ♯[{k : xk ∈ Ξ}]
n

∣∣ < ϵ}
))

≤ 1,

(∀Ξ ∈ P(X),∀ϵ > 0,∀n).

Here note, by Axiom 1, that (⊗n
k=1 ρp)

(
(
⊗n

k=1 F )
(
Ξ̂
))

is the probability that a measured

value by M⊗A(
⊗n

k=1 O, S[⊗n
k=1ρp ]) belongs to Ξ̂. Therefore, if n is sufficiently large, for a

measured value x̂ (= (x1, x2, ..., xn) ∈ Xn) by M⊗A(
⊗n

k=1 O, S[⊗n
k=1ρp]), we can consider
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2.8. FREQUENCY PROBABILITIES 47

(in the sense of (2.72)) that

ρp(F (Ξ)) ≈ ♯[{k : xk ∈ Ξ}]
n

. (2.74)

¥

The (2.74) says that

• “probability in Axiom 1” = “frequency probability”.

Thus, there is a reason that the probability space (X, F, ρp(F ( · )) ) is called a sample

space obtained by a measurement MA

(
O, S[ρp]

)
.

Remark 2.26. [“repeated measurement = iterated measurement” for S[δω0 ]]. As seen in
this section, we think that

“take a measurement Mω0 N times” ⇔ “take a measurement M⊗N
n=1C(Ω)( ⊗N

n=1 O, S[⊗N
n=1δω0 ]) ”

Thus, in classical measurements, we have the following identification:

“take a measurement M⊗N
n=1C(Ω)( ⊗N

n=1 O, S[⊗N
n=1δω0 ]) ” ⇔ “take a measurement MC(Ω)(ON , S[δω0 ]) ”

That is because it holds that

⊗N
n=1M(Ω)

〈
⊗N

n=1δω0 ,⊗N
n=1F (Ξn)

〉
⊗N

n=1C(Ω)
=

M(Ω)

〈
δω0 ,×N

n=1F (Ξn)
〉

C(Ω)
.

However, it should be noted that it does not always hold that “repeated measurement =

iterated measurement” in statistical measurement theory (mentioned in Chapter 8) and

quantum measurement theory.

¥
Definition 2.27. [Semi-distance, moment method (inference for a pure state in repeated

measurement)].

[(i): Semi-distance]. Let Y be a set. If the map ∆ : Y × Y → R satisfies the following

(a)∼(d):

(a): ∆(x, y) ≥ 0 (∀x, y ∈ Y ), (b): “x = y” ⇒ ∆(x, y) = 0,

(c): ∆(x, y) = ∆(y, x) (∀x, y ∈ Y ), (d): ∆(x, y) ≤ ∆(x.z) + ∆(z, y) (∀x, y, z ∈ Y ),

then, the ∆ is called a semi-distance on Y . In addition, if “(b’): x = y ⇔ ∆(x, y) = 0” is

assumed, then the ∆ is called a distance ( or metric ) on Y .
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48 CHAPTER 2. MEASUREMENTS (AXIOM 1)

[(ii): Moment method]. Assume the ρp
0 (in MA

(
O ≡ (X, F, F ), S[ρp

0]

)
) is unknown. And

further, we get the sample space (X, F, ν0) from the measured value x̂ (= (x1, x2, ...,

xn) ∈ Xn) obtained by M⊗A(
⊗n

k=1 O, S[⊗n
k=1ρp

0]). That is, ν0(Ξ) ≈ ♯[{k:xk∈Ξ}]
n

. Note, by

(2.74), that ρp(F (Ξ)) ≈ ν0(Ξ) (∀Ξ ∈ F). Let ∆ be a semi-distance on Mm
+1(X).11 Then,

there is a very reason to infer the unknown ρp
0 ( ∈ Sp(A∗)) such that

∆(ν0, ρ
p
0(F ( · )) ) = min

ρp∈Sp(A∗)
∆(ν0, ρ

p(F ( · )) ).

This method is called “generalized moment method” or “moment method”. Cf. §9.4.

Note that the “semi-distance ∆ on Mm
+1(X)” is not always unique. In this sense, the

moment method is somewhat artificial.

¥
Example 2.28. [The urn problem by the moment method]. There are two urns ω1 and

ω2. The urn ω1 [resp. ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black

balls]. Assume that they can not be distinguished in appearance. Choose one urn from the

two. Assume that you do not know whether the chosen urn is ω1 or ω2. Now you sample,

randomly, with replacement after each ball. In 7 samples, you get (w, b, b, w, b, w, b) in

sequence where “w” = “white”, “b” = “black”.

(Q) Which is the chosen urn, ω1 or ω2?

ω1 ω2

[Answer]. We regard Ω
(
≡ {ω1, ω2}

)
as the state space. And consider the observable

O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Note that we have the real sample space (X ≡ {w, b}, 2{w,b}, ν0) such that:

ν0(∅) = 0, ν0({w}) = 3/7, ν0({b}) = 4/7, ν0({w, b}) = 1.

11The definition of the semi-distance ∆ may be too strong for the generalized moment method. How-
ever, in this book we focus on the above definition.
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2.9. APPENDIX (BELL’S THOUGHT EXPERIMENT) 49

Also, note that the measurement

MC(Ω)(O, S[δω1 ]) [resp. MC(Ω)(O, S[δω2 ])]

has the sample space

(X ≡ {w, b}, 2{w,b}, [F ( · )](ω1)) [resp. (X ≡ {w, b}, 2{w,b}, [F ( · )](ω2))].

Thus, it suffices to compare

∆(ν0, [F ( · )](ω1)) and ∆(ν0, [F ( · )](ω2)),

where ∆ is a certain distance on Mm
+1({w, b}). For example define the distance ∆ such

that:

∆(ν1, ν2) = |ν1({w}) − ν2({w})| + |ν1({b}) − ν2({b})| (∀ν1, ν2 ∈ Mm
+1({w, b})).

Then, we see

∆(ν0, [F ( · )](ω1)) = |3/7 − 8/10| + |4/7 − 2/10| = 52/70

and

∆(ν0, [F ( · )](ω2)) = |3/7 − 4/10| + |4/7 − 6/10| = 10/70.

Thus, we can, by the moment method, infer that the unknown urn is ω2.

¥

2.9 Appendix (Bell’s thought experiment)

(Continued from Example 2.15. Also see the footnote below12)

2.9.1 EPR thought experiment

Although the original “EPR experiment (cf. [22])” was proposed in the framework of

classical mechanics (cf. Chapter 12), the following argument is the quantum form of the

“EPR experiment”.13

12All appendixes in this book can be skipped.
13The argument in §2.9.1 is essentially the same as EPR-experiment (i.e., EPR-paradox,cf. [22]), which

will be again discussed in §12.7.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



50 CHAPTER 2. MEASUREMENTS (AXIOM 1)

Now consider the quantum system composed of two particles with the singlet state ρs

(concerning z-axis) formulated in B(C2
⊗

C2), where C2
⊗

C2 is the tensor Hilbert space

of C2 and C2. The singlet state ρs is represented by ρs = |ψs⟩⟨ψs|
(
∈ Sp(B(C2

⊗
C2)∗)

)
,

where

ψs =
1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
( ∈ C2 ⊗ C2). e⃗1 =

[
1
0

]
∈ C2, e⃗2 =

[
0
1

]
∈ C2. (2.75)

And consider the measurement MB(C2)⊗B(C2)

(
Oz ⊗ Oz ≡ (Z2 = {↑z, ↓z}2, 2Z2

, F z ⊗ F z),

S[ρs]

)
, where

F z({↑z}) =

[
1 0
0 0

]
, F z({↓z}) =

[
0 0
0 1

]
,

F z(∅) =

[
0 0
0 0

]
, F z({↑z, ↓z}) =

[
1 0
0 1

]
.

Taking the measurement MB(C2)⊗B(C2)

(
Oz ⊗ Oz ≡ (Z2 = {↑z, ↓z}2, 2Z2

, F z ⊗ F z), S[ρs]

)
,

we see that

(a) the probability that a measured value (↑z, ↑z) is obtained is equal to

=ρs

(
F z({↑z}) ⊗ F z({↑z})

)
=C2⊗C2

〈 1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
, [F z({↑z}) ⊗ F z({↑z})]

1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)〉
C2⊗C2

=0

(b) the probability that a measured value (↑z, ↓z) is obtained is equal to

=ρs

(
F z({↑z}) ⊗ F z({↓z})

)
=C2⊗C2

〈 1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
, [F z({↑z}) ⊗ F z({↓z})]

1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)〉
C2⊗C2

=1/2

(c) the probability that a measured value (↓z, ↑z) is obtained is equal to

=ρs

(
F z({↓z}) ⊗ F z({↑z})

)
=C2⊗C2

〈 1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
, [F z({↓z}) ⊗ F z({↑z})]

1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)〉
C2⊗C2

=1/2
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2.9. APPENDIX (BELL’S THOUGHT EXPERIMENT) 51

(d) the probability that a measured value (↓z, ↓z) is obtained is equal to

=ρs

(
F z({↓z}) ⊗ F z({↓z})

)
=C2⊗C2

〈 1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
, [F z({↓z}) ⊗ F z({↓z})]

1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)〉
C2⊗C2

=0.

Here, it should be noted that we can assume that the x1 and the x2 (in (x1, x2) ∈ {
(↑z, ↑z), (↑z, ↓z), (↓z, ↑z), (↓z, ↓z)}) are respectively obtained in Tokyo and in New York

(or, in the earth and in the polar star).

(b)

(probability1
2 )

↑z

Tokyo

↓z

New York

or

(c)

(probability1
2 )

↓z

Tokyo

↑z

New York

This fact is, figuratively speaking, explained as follows:

• Immediately after the particle in Tokyo is measured and the measured value ↑z

[resp. ↓z] is observed, the particle in Tokyo informs the particle in New York “Your

measured value has to be ↓z [resp. ↑z]”.

Therefore, the above fact implies that quantum mechanics says that there is something

faster than light. This is essentially the same as the de Broglie paradox (cf. [20]. Also see

§9.3.3). That is,

• if we admit quantum mechanics, we must also admit the fact that there is

something faster than light. (cf. [18, 78]). (2.76)

Of course we admit PMT, and therefore, we believe that there is something faster than

light.

2.9.2 Bell’s thought experiment

In this section, we review Bell’s thought experiment in (quantum) measurement theory.

(Cf. [9, 18, 78].) All the idea is, of course, owed to J.S. Bell [9]. Thus, we do not intend to

assert our originality in this section. The argument is divided into two steps (i.e., [Step:

I] and [Step: II]). [Step: I] is essentially the same as the previous section (i.e., §2.9.1).
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52 CHAPTER 2. MEASUREMENTS (AXIOM 1)

[Step: I]. Let a = (α1, α2) be any element in R2 such that ∥a∥R2 ≡ (|α1|2 + |α2|2)1/2 = 1.

Put

σa =

[
0 α1 − α2

√
−1

α1 + α2

√
−1 0

]
∈ B(C2), e⃗1 =

[
1
0

]
∈ C2, e⃗2 =

[
0
1

]
∈ C2.

It is easy to see that the self-adjoint matrix σa : C2 → C2 has a unique spectral represen-

tation : σa = F
(1)
a − F

(−1)
a , where F

(1)
a and F

(−1)
a are orthogonal projections on C2 such

that

F (1)
a =

1

2

[
1 α1 − α2

√
−1

α1 + α2

√
−1 1

]
, F (−1)

a =
1

2

[
1 −α1 + α2

√
−1

−α1 − α2

√
−1 1

]
.

Define the observable Oa ≡
(
X ≡ {1,−1}, P(X), Fa

)
in B(C2) such that Fa({1}) = F

(1)
a

and Fa({−1}) = F
(−1)
a

Now consider the quantum system composed of two particles with the singlet state ρs

(concerning z-axis) formulated in B(C2
⊗

C2), where C2
⊗

C2 is the tensor Hilbert space

of C2 and C2. The singlet state ρs is represented by ρs = |ψs⟩⟨ψs|
(
∈ Sp(B(C2

⊗
C2)∗)

)
,

where

ψs =
1√
2

(
e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1

)
( ∈ C2 ⊗ C2).

Put a = (α1, α2), b = (β1, β2) ∈ R2 where ∥a∥R2 = ∥b∥R2 = 1. And define the tensor

product observable Oab ( ≡ Oa ⊗ Ob) = (X2,P(X2), Fa

⊗
Fb) in B(C2 ⊗ C2) such that

(Fa

⊗
Fb)({(x1, x2)}) = Fa({x1})

⊗
Fb({x2}) (∀(x1, x2) ∈ X2 ≡ {−1, 1}2).

Thus we get a measurement MB(C2⊗C2)(Oab, S[ρs]) in B(C2 ⊗ C2). Axiom 1 says that

the probability that a measured value x ( = (x1, x2)) ∈ X2 (≡ {1,−1}2) obtained by

the measurement MB(C2⊗C2)(Oab, S[ρs]) belongs to a set B ( ⊆ X2) is given by ν
EPR

(B),

where ν
EPR

(B) =
∑

x≡(x1,x2)∈B ρs

(
(Fa ⊗ Fb)({(x1, x2)})

)
. Therefore, we see, for example,

that

(♯) if we know that x1 = 1, quantum mechanics says that the probability that x2 = 1

[resp. x2 = −1] is given by

ν
EPR

({1} × {1})
ν

EPR
({1} × {1,−1})

[
resp.

ν
EPR

({1} × {−1})
ν

EPR
({1} × {1,−1})

]
and further, if we know that x1 = −1, the probability that x2 = 1 [resp. x2 = −1]

is given by

ν
EPR

({−1} × {1})
ν

EPR
({−1} × {1,−1})

[
resp.

ν
EPR

({−1} × {−1})
ν

EPR
({−1} × {1,−1})

]
.
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2.9. APPENDIX (BELL’S THOUGHT EXPERIMENT) 53

[Step: II]. Let a1(= (α1
1, α

1
2)), a2(= (α2

1, α
2
2)), b1(= (β1

1 , β
1
2)) and b2(= (β2

1 , β
2
2)) be elements

in R2 such that ∥a1∥R2 = ∥a2∥R2 = ∥b1∥R2 = ∥b2∥R2 = 1. Further, consider the parallel

measurement
⊗

i,j=1,2 MB(C2⊗C2)(Oaibj , S[ρs]) in ⊗
i,j=1,2

B(C2 ⊗ C2) ( ≡ B( ⊗
i,j=1,2

(C2 ⊗
C2))), that is,⊗

i,j=1,2

MB(C2⊗C2)(Oaibj , S[ρs])

= MB(⊗i,j=1,2 (C2⊗C2))

(( ×
i,j=1,2

X2, P( ×
i,j=1,2

X2),
⊗

i,j=1,2

(Fai ⊗ Fbj)
)
, S[⊗i,j=1,2ρs]

)
.

Here note that ⊗
i,j=1,2

ρs = ρs ⊗ ρs ⊗ ρs ⊗ ρs = |ψs ⊗ψs ⊗ψs ⊗ψs⟩⟨ψs ⊗ψs ⊗ψs ⊗ψs| and

×
i,j=1,2

X2 ∋
(
(x11

1 , x11
2 ), (x12

1 , x12
2 ), (x21

1 , x21
2 ), (x22

1 , x22
2 )

)
= x ∈ X8 ≡ {−1, 1}8.

Axiom 1 (2.37) says that the probability that a measured value x ∈ X8 (≡ {1,−1}8)

obtained by the parallel measurement
⊗

i,j=1,2 MB(C2⊗C2)(Oaibj , S[ρs]) belongs to a set B

( ⊆ X8) is given by ν
BTE

(B), where ν
BTE

(B) =
∑

x∈B

∏
i,j=1,2 ρs

(
(Fai ⊗Fbj)({(xij

1 , xij
2 )})

)
.

That is, we have the sample space (X8, P(X8), ν
BTE

), which is induced by the parallel

measurement
⊗

i,j=1,2 MB(C2⊗C2) (Oaibj , S[ρs]).

Define the {−1, 1}-valued functions gij
k on X8, (i, j, k = 1, 2), such that

gij
k ((x11

1 , x11
2 ), (x12

1 , x12
2 ), (x21

1 , x21
2 ), (x22

1 , x22
2 )) = xij

k (∀i,∀j,∀k ∈ {1, 2}). (2.77)

Note that it holds that

ν
BTE

(
(g11

1 )−1({1})
)
= ν

BTE

(
(g12

1 )−1({1})
)
, ν

BTE

(
(g21

1 )−1({1})
)
= ν

BTE

(
(g22

1 )−1({1})
)
,

ν
BTE

(
(g11

2 )−1({1})
)
= ν

BTE

(
(g12

2 )−1({1})
)
, ν

BTE

(
(g21

2 )−1({1})
)
= ν

BTE

(
(g22

2 )−1({1})
)
.

Here note that (cf. (3.42) in §3.7 later)

g11
1 ̸= g12

1 , g21
1 ̸= g22

1 , g11
2 ̸= g21

2 , g12
2 ̸= g22

2 . (2.78)

Moreover, define the correlation functions P (gij
1 , gij

2 ) (i, j = 1, 2) by

P (gij
1 , gij

2 ) ≡
∫

X8

gij
1 (x) · gij

2 (x)ν
BTE

(dx), (2.79)

which may be also denoted by P (ai, bj). A simple calculation shows that P (ai, bj) =

−(αi
1β

j
1 + αi

2β
j
2). Thus, putting

a1 = (0, 1), b1 = (
1√
2
,

1√
2
), a2 = (1, 0) and b2 = (

1√
2
,− 1√

2
),
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54 CHAPTER 2. MEASUREMENTS (AXIOM 1)

we see that

|P (a1, b1) − P (a1, b2)| + |P (a2, b1) + P (a2, b2)| = 2
√

2. (2.80)

This is precisely Bell’s calculation concerning Bell’s thought experiment.

The (2.80) can be tested by the repeated measurement
⊗K

k=1

( ⊗
i,j=1,2 MB(C2⊗C2)

(Oaibj , S[ρs])
)
. Let x̂ = {

(
(x11

1,k, x
11
2,k), (x

12
1,k, x

12
2,k), (x21

1,k, x
21
2,k), (x

22
1,k, x

22
2,k)

)
}K

k=1 be a measured

value of the repeated measurement. Then, we see that

P (ai, bj) ≈ 1

K

K∑
k=1

xij
1,kx

ij
2,k

for sufficiently large K. Thus, the experimental test: “2
√

2 or not?” is possible. In fact,

Aspect’s experiment [8] is generally believed to guarantee the (2.80). It is, of course,

important since quantum mechanics must be always tested.

(Continued in §3.7 (Appendix(Bell’s inequality)))
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Chapter 3

The relation among systems (Axiom
2)

As mentioned in Chapter 1, (pure) measurement theory (PMT) is formulated as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (3.1)

(=(1.4))

In Chapter 2 we studied “measurement (= Axiom 1)”. In this chapter we intend to explain “the

relation among systems (= Axiom 2)”.

3.1 Newton Equation and Schrödinger equation

In this section, we review the Newton equation and Schrödinger equation.

[I: Newtonian Mechanics]

Put A = C0(R
s
q×Rs

p) and A∗ = M(Rs
q×Rs

p), where Rs
q×Rs

p ≡ {(q, p) = (q1, q2, · · · , qs,

p1, p2, · · · , ps) | qj, pj ∈ R, j = 1, 2, · · · , s} and (Rs
q×Rs

p) is the 2s-dimensional space (cf.

Example 2.2). It is well known that the Newton equation is mathematically equivalent

to the following Hamilton equation:

d

dt
qj(t) =

∂H

∂pj

(q(t), p(t), t),
d

dt
pj(t) = −∂H

∂qj

(q(t), p(t), t), j = 1, 2, · · · , s (3.2)

(q(0), p(0)) ∈ Rs
q × Rs

p. (3.3)

where H : Rs
q × Rs

p×R → R is a Hamiltonian. Using the solution of Newton equation

(i.e., Hamilton equation (3.2)), we define the continuous map ψt1,t2 : Rs
q ×Rs

p → Rs
q ×Rs

p,

55
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56 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

∀t1 ≤ ∀t2, such that:

ψt1,t2(q(t1), p(t1)) = (q(t2), p(t2)) (∀(q(t1), p(t1)) ∈ Rs
q × Rs

p), (3.4)

which is equivalent to (3.2).

Put Ω = Rs
q × Rs

p. Also, put Ωt = Ω (∀t ∈ R), and ω0
0 = (q(0), p(0)) ( ∈ Ω0). Thus,

the pair [ω0
0, {ψt1,t2 : Ωt1 → Ωt2}t1≤t2 ] can be considered to be equivalent to “(3.3)+(3.2)”.

Using the continuous map ψt1,t2 : Ωt1 → Ωt2 (∀t1 ≤ ∀t2), we define the continuous

linear operator Φt1,t2 : C0(Ωt2) → C0(Ωt1) such that:

[Φt1,t2(ft2)](ωt1) = ft2(ϕt1,t2(ωt1)) (∀ft2 ∈ C0(Ωt2),∀ωt1 ∈ Ωt1).

And therefore, we can consider the following identifications:

“(3.3)+(3.2)” ⇔ [ω0
0, {ψt1,t2 : Ωt1 → Ωt2}t1≤t2 ] ⇔ [δω0

0
, {Φt1,t2 : C0(Ωt2) → C0(Ωt1)}t1≤t2 ]

where δω0
0

is the point measure at ω0
0. The pair [δω0

0
, {Φt1,t2 : C0(Ωt2) → C0(Ωt1)}t1≤t2 ] will

be called “general system” (cf. Definition 3.1), and will play an important role in our

theory, that is, it is a special case of “the relation among systems” in (3.1).

[II:Quantum Mechanics in C(L2(Rq, dq))]

We begin with the classical mechanics. For simplicity, consider the one dimensional

case, i.e., Rq = {q | q ∈ R}. Thus q(t), −∞ < t < ∞, means the particle’s position at

time t, and thus, p(t) ( ≡ mdq(t)
dt

) means the particle’s momentum at time t. Let R2
q,p

( ≡ {(q, p) | q, p ∈ R} be a phase space. Define a Hamiltonian H : R2
q,p → R such that:

H(q, p) =
p2

2m

(
=kinetic energy= 1

2
m(dq(t)

dt
)2

)
+ V (q)

(
=potential energy

)
. (3.5)

Thus we see

E
(total energy)

= H(q, p) =
p2

2m
(kinetic energy)

+ V (q)
(potential energy)

. (3.6)

Put H = L2(Rq, dq), that is, the Hilbert space composed of all complex valued L2-

functions f on Rq, i.e., ∥f∥L2(Rq ,dq) ≡ [
∫ ∞
−∞ |f(q)|2dq]1/2 < ∞. And put A = C(H) =

C(L2(Rq, dq)), (i.e., the algebra composed of all compact operators on H, cf. Example

2.3). Applying the quantumization:

E 7→ i~
∂

∂t
, p 7→ −i~

∂

∂q
, q 7→ q (where i =

√
−1, ~ = “Plank constant” /2π) (3.7)
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3.1. NEWTON EQUATION AND SCHRÖDINGER EQUATION 57

to the (3.6), we obtain the Schrödinger equation:

i~
∂

∂t
= H(q,−i~

∂

∂q
) = − ~2∂2

2m∂q2
+ V (q) (3.8)

or precisely

i~
∂

∂t
ψ(q, t) = − ~2∂2

2m∂q2
ψ(q, t) + V (q)ψ(q, t). (3.9)

This solution is, formally, written by

ψ(q, t) = e−
i
~ H(q,−i~ ∂

∂q
)tψ(q, 0).

Put U(t) = e−
i
~ H(q,−i~ ∂

∂q
)t, and ψ(·, t) = ψt. Then, we see,

ψt = U(t)ψ0 (∥ψ0∥H = 1).

Thus, the time-evolution of the state |ψt⟩⟨ψt|
(
≡ (Ψ0

t )
∗(|ψ0⟩⟨ψ0|)

)
is represented by

|ψt⟩⟨ψt| = (Ψ0
t )

∗
(
|ψ0⟩⟨ψ0|

)
= |U(t)ψ0⟩⟨U(t)ψ0|

(
∈ Trp

+1(H)
)
.

Let Ψ0
t : C(H) → C(H) be the pre-adjoint operator of (Ψ0

t )
∗. Let O0 = (X, F, F0) be

a C∗-observable in C(H). Then, the time-evolution of the observable Ot = (X, F, Ft) is

represented by

(X, F, Ft) = (X, F, U(t)F0U(t)∗) = (X, F, Ψ0
t F0).

Putting Φt1,t2 = Ψ0
t2−t1

, we get the pair [|ψ0⟩⟨ψ0|, {Φt1,t2 : C(H) → C(H)}t1≤t2 ]. Also,

it should be note that the above Ft is the solution of the following Heisenberg kinetic

equation:

i~
dFt

dt
= FtH − HFt in C(H) , (3.10)

which is equivalent to the Schrödinger equation (3.9). (Cf. [84].) The pair
[
|ψ0⟩⟨ψ0|,

{Φt1,t2 : C(L2(Rq, dq)) → C(L2(Rq, dq))}t1≤t2

]
will be called “general system” (cf. Defini-

tion 3.1), and will play an important role in our theory, that is, it is also a special case of

“the relation among systems” in (3.1).
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58 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

3.2 The relation among systems (Definition)

By the hint of the arguments in the previous section, we shall devote ourselves to “the

relation among systems (i.e., Axiom 2)” in PMT (3.1) (=(1.4)).

Let A1 and A2 be C∗-algebras. A continuous linear operator Ψ1,2 : A2 → A1 is called

a Markov operator, if it satisfies that

(i) Ψ1,2(F2) ≥ 0 for any positive element F2 in A2,

(ii) Ψ1,2(I2) = I1, where Ik is the identity in Ak (k = 1, 2).

Here note that, for any observable (X, F, F2) in A2, the (X, F, Ψ1,2F2) is an observable in

A1, which is denoted by Ψ12O2. For example, it is easy to see that

[Ψ1,2F2](Ξ ∪ Ξ′) = Ψ1,2(F2(Ξ ∪ Ξ′)) = Ψ1,2(F2(Ξ) + F2(Ξ
′))

=[Ψ1,2(F2)](Ξ) + [Ψ1,2(F2)](Ξ
′) (for all Ξ, Ξ′(∈ F) such that Ξ ∩ Ξ′ = ∅). (3.11)

Also, a Markov operator Ψ1,2 : A2 → A1 is called a homomorphism (or precisely, C∗-

homomorphism), if it satisfies that

(i) Ψ1,2(F2)Ψ1,2(G2) = Ψ1,2(F2G2) for any F2 and G2 in A2,

(ii) (Ψ1,2(F2))
∗ = Ψ1,2(F

∗
2 ) for any F2 in A2.

Let Ψ∗
1,2 : A∗

1 → A∗
2 be the dual operator1 of a Markov operator Ψ1,2 : A2 → A1, that is,

it holds that

A∗
1

〈
ρ1, Ψ1.2F2

〉
A1

=
A∗

2

〈
Ψ∗

1.2ρ1, F2

〉
A2

(∀ρ1 ∈ A∗
1, ∀F2 ∈ A2). (3.12)

Then the following mathematical results are well known (cf. [50, 76, 82]).

(a) Ψ∗
1,2(S

m(A∗
1)) ⊆ Sm(A∗

2), (3.13)

(b) Ψ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2) if Ψ1,2 : A2 → A1 is homomorphic.

Suppose that A1 and A2 are commutative unital C∗-algebras, i.e., A1 = C(Ω1) and A2

= C(Ω2). Then, under the identification that Sp(A∗
1) = M

p
+1(Ω1) = Ω1 and Sm(A∗

2) =

Mm
+1(Ω2) (cf. §2.1), the above (a) implies that the dual operator Ψ∗

1,2 of a Markov operator

1The symbol ∗ is used in the three following ways (i) ∼ (iii) in this book. (i) involution operator (e.g.,
F ∗), (ii) dual operator (e.g., Ψ∗), (iii) dual space (e.g., A∗).
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3.2. THE RELATION AMONG SYSTEMS (DEFINITION) 59

Ψ12 can be identified with a transition probability rule M(ω1, B2), (ω1 ∈ Ω1, B2 ∈ BΩ2),

such that M(ω1, B2) = (Ψ∗
1,2(δω1))(B2). Also, under the identification that M

p
+1(Ω1) = Ω1

and M
p
+1(Ω2) = Ω2, the above (b) implies that the dual operator Ψ∗

1,2 of a homomorphism

Ψ1,2 can be identified with a continuous map ψ1,2 from Ω1 into Ω2 such that:

(Ψ1,2f2)(ω1) = f2(ψ1,2(ω1)) (∀ω1 ∈ Ω1,∀f2 ∈ C(Ω2)). (3.14)

ω1 ψ1,2(ω1)
Ω2Ω1

f2Ψ1,2f2

Let (T,≤) be a tree-like partial ordered set, i.e., a partial ordered set such that “t1 ≤ t3

and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. Put T 2
≤ = {(t1, t2) ∈ T 2 : t1 ≤ t2}. An element

t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T ) holds. Since we usually consider the subtree

Tt0 ( ⊆ T ) with the root t0, we assume that the tree-like ordered set has a root. In

this chapter, assume, for simplicity, that T is finite (though it is sometimes infinite in

applications).

Definition 3.1. [Markov relation among systems, General systems, Sequential observ-

able]. The pair S[ρp
t0

] ≡ [S[ρp
t0

], {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
] is called a general system

with an initial state ρp
t0 if it satisfies the following conditions (i)∼(iii).

(i) With each t (∈ T ), a C∗-algebra At is associated.

(ii) Let t0 (∈ T ) be the root of T . And, assume that a system S has the state ρp
t0 (∈

Sp(A∗
t0
)) at t0, that is, the initial state is equal to ρp

t0 .

(iii) For every (t1, t2) ∈ T 2
≤, a Markov operator Φt1,t2 : At2 → At1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 holds for all (t1, t2), (t2, t3) ∈ T 2
≤.

The family {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

is also called a “Markov relation among systems”.

Let an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra At be given for each t ∈ T . The pair

[{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

] is called a “sequential observable”, which is
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60 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

denoted by [OT ], i.e., [OT ] = [{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

].

¥

3.3 Examples (Several tree structures)

Before we propose Axiom 2 (3.26), we prepare some notations and examples. For

simplicity, assume that T is finite, or a finite subtree of a whole tree. Let T ( =

{0, 1, ..., N}) be a tree with the root 0. Define the parent map π : T \ {0} → T such

that π(t) = max{s ∈ T : s < t}. It is clear that the tree (T ≡ {0, 1, ..., N},≤ )

can be identified with the pair (T ≡ {0, 1, ..., N}, π : T \ {0} → T ). Also, note that,

for any t ∈ T \ {0}, there uniquely exists a natural number h(t) (called the height of

t ) such that πh(t)(t) = 0. Here, π2(t) = π(π(t)), π3(t) = π(π2(t)), etc. Also, put

{0, 1, ..., N}2
≤

= {(m,n) | 0 ≤ m ≤ n ≤ N}. Thus, the general system S[ρp
0] ≡ [S0

[ρp
0]
,

{Φt1,t2 : At2 → At1}(t1,t2)∈{0,1,...,N}2

≤
] is sometimes represented by [S0

[ρp
0]
, At

Φπ(t),t

→ Aπ(t) (

t ∈ {0, 1, ..., N}\{0})]. Let Ot ≡ (Xt,Ft, Ft) be an observable in At (∀t ∈ T ). The “mea-

surement” of {Ot : t ∈ T} for the S[ρp
t0

] is symbolically described by M({Ot}t∈T , S[ρp
t0

]).

The Markov relation {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

is also denoted by {At

Φπ(t),t→ Aπ(t)}t∈T\{0}

The following Examples 3.2, 3.3 and 3.4 will promote the understanding of Axiom 2

later.

Example 3.2. [Series structures2 ]. Suppose that a tree (T ≡ {0, 1, ..., N}, π) has a

“series” structure, i.e., π(t) = t − 1 (∀t ∈ T \ {0}). Consider a general system S[ρp
0] ≡

[S0
[ρp

0]
, At

Φπ(t),t

→ Aπ(t) ( t ∈ T \ {0})] with the initial system S0
[ρp

0]
, that is,

A0
Φ0,1←−A1

Φ1,2←−A2
Φ2,3←−· · · · · · · · ·

ΦN−2,N−1←− AN−1

ΦN−1,N←− AN . (3.15)

For each t ∈ T , consider an observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra At. Thus,

we have a sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]. Put ÕN ( ≡
(XN ,FN , F̃N)) = ON ( ≡ (XN , FN , FN)). According to the Heisenberg picture (cf. §3.5),

the observable ON in AN can be identified with the observable ΦN−1,NÕN in AN−1. Thus,

we can consider the quasi-product observable ÕN−1 ≡ ON−1

qp

×××××××××ΦN−1,NON ≡ (XN−1 ×

2Most problems in dynamical system theory are formulated as the general systems with series trees
(i.e., T=“time”) Cf. Kalman filter in §8.4.
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3.3. EXAMPLES (SEVERAL TREE STRUCTURES) 61

XN ,FN−1 × Fn, F̃N−1) in AN−1, that is,

F̃N−1(ΞN−1 × ΞN) =
(
FN−1

qp

×××××××××
(
ΦN−1,NFN)

)
(ΞN−1 × ΞN), (3.16)

(though the existence and the uniqueness are not guaranteed in general). By a similar way,

we can define the quasi-product observable ÕN−2 ≡ ON−2

qp

×××××××××ΦN−2,N−1ÕN−1 ≡ (XN−2 ×
XN−1 × XN , FN−2 × FN−1 × Fn, F̃N−2) in AN−2, that is,

F̃N−2(ΞN−2 × ΞN−1 × ΞN) =
(
FN−2

qp

×××××××××(ΦN−2,N−1F̃N−1)
)
(ΞN−2 × ΞN−1 × ΞN). (3.17)

Iteratively we get as follows:

[A0]
Φ←−−−−− [A1]

Φ←−−−−− · · · Φ←−−−−− [AN−2]
Φ←−−−−− [AN−1]

Φ←−−−−− [AN ]

F0 F1 · · · FN−2 FN−1 FN
?

?

y

?

?

y

?

?

y

?

?

y

?

?

y

(F0
qp
×××××××××Φ eF1)

= eF0

Φ←−−−−− (F1
qp
×××××××××Φ eF2)

= eF1

Φ←−−−−− · · · Φ←−−−−− (FN−2
qp
×××××××××Φ eFN−1)

= eFN−2

Φ←−−−−− (FN−1
qp
×××××××××Φ eFN )

= eFN−1

Φ←−−−−− (FN )

= eFN

And finally, we get the quasi-product observable Õ0 ≡ O0

qp

×××××××××Φ0,1Õ1 ≡ (×N
t=0 Xt, ×N

t=0 Ft,

F̃0) in A0, that is,

F̃0(Ξ0 × Ξ1 × Ξ2 × · · · × ΞN) =
(
F0

qp

×××××××××(Φ0,1F̃1)
)
(Ξ0 × Ξ1 × Ξ2 × · · · × ΞN). (3.18)

Here Õ0 is a realization of the sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0}

]. Then, we have the “measurement” M({Ot}t∈T , S[ρp
0]) such as

M({Ot}t∈T ,S[ρp
0]) = MA0(Õ0 ≡ (×

t∈T
Xt,×

t∈T
Ft, F̃0), S

0
[ρp

0]). (3.19)

Also, note that the above arguments can be executed under the hypothesis that quasi-

product observables (i.e., Õn, n = 0, 1., , , .N) exist. In other words, the existence of the

“measurement” M({O}t∈T , S[ρp
0]) is equivalent to that of the observable Õ0.

¥
Example 3.3. [Parallel structures3]. Suppose that a tree (T ≡ {0, 1, ..., N}, π) has a

“parallel” structure, i.e., π(t) = 0 (∀t ∈ T \ {0}). Consider a general system S[ρp
0] ≡ [S0

[ρp
0]
,

At
Φπ(t),t

→ Aπ(t) ( t ∈ T \ {0})] with the initial system S0
[ρp

0]
, that is,

3Most problems in statistics are formulated as the general systems with parallel trees. Cf. Figure
(6.12) in regression analysis.
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62 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

A2

A1

A0

AN

)

+

k

Φ0,2

· · · · · ·
· · · · · ·

Φ0,1

Φ0,N (3.20)

For each t ∈ T , consider an observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra At. Thus, we

have a sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]. Then, we get the

quasi-product observable Õ0 ≡ (×N
t=0 Xt, ×N

t=0 Ft, F̃0) in A0 such that:

F̃0(Ξ0 × Ξ1 × Ξ2 × · · · × ΞN) =
( qp

×××××××××
t∈T

Φ0,tFt)
)
(Ξ0 × Ξ1 × Ξ2 × · · · × ΞN). (3.21)

Here Õ0 is a realization of the sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0}

]. Then, we have the “measurement” M({Ot}t∈T , S[ρp
0]) such as

M({Ot}t∈T ,S[ρp
0]) = MA0(Õ0 ≡ (×

t∈T
Xt,×

t∈T
Ft, F̃0), S

0
[ρp

0]). (3.22)

Also, note that the above arguments can be executed under the hypothesis that quasi-

product observables exist. In other words, the existence of the “measurement” M({O}t∈T ,

S[ρp
0]) is equivalent to that of the observable Õ0.

¥
Example 3.4. [A simple general system, Heisenberg picture]. Suppose that a tree

(T ≡ {0, 1, ..., 6, 7}, π) has an ordered structure such that π(1) = π(6) = π(7) = 0,

π(2) = π(5) = 1, π(3) = π(4) = 2.
(
See the figure (3.23).

)
Consider a general system

S[ρp
0] ≡ [S[ρp

0], {At

Φπ(t),t→ Aπ(t)}t∈T\{0}] with the initial system S[ρp
0].

A0

A1

A2

A3

A4

A5A6

A7

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

(3.23)
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3.3. EXAMPLES (SEVERAL TREE STRUCTURES) 63

Also, for each t ∈ {0, 1, ..., 6, 7}, consider an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra

At. Thus, we have a sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]. Now

we want to consider the following “measurement”,

(♯) for a system S[ρp
0], take a measurement of “a sequential observable [{Ot}t∈T , {At

Φπ(t),t→
Aπ(t)}t∈T\{0}]”, i.e., take a measurement of an observable O0 at 0( ∈ T ), and next,

take a measurement of an observable O1 at 1( ∈ T ), · · · · · · , and finally take a

measurement of an observable O7 at 7( ∈ T ),

which is symbolized by M({Ot}t∈T , S[ρp
0]). Note that the M({Ot}t∈T , S[ρp

0]) is merely a

symbol since only one measurement is permitted (cf. §2.5 Remark(II)). In what follows

let us describe the above (♯) (= M({Ot}t∈T , S[ρp
0])) precisely. Put

Õt = Ot and thus F̃t = Ft (t = 3, 4, 5, 6, 7).

First we construct the quasi-product observable Õ2 in A2 such as

Õ2 = (X2 × X3 × X4, 2
X2×X3×X4 , F̃2) where F̃2 = F2

qp

××××××××× (
qp

×××××××××t=3,4 Φ2,tF̃t),

if it exists. Iteratively, we construct the following:

A0
Φ0,1←−−− A1

Φ1,2←−−− A2

F0

qp

××××××××× Φ0,6F̃6

qp

××××××××× Φ0,7F̃7 F1

qp

××××××××× Φ1,5F̃5y y
F̃0

(F0

qp
×××××××××Φ0,6

eF6

qp
×××××××××Φ0,7

eF7

qp
×××××××××Φ0,1

eF1)

Φ0,1←−−− F̃1

(F1

qp
×××××××××Φ1,5

eF5

qp
×××××××××Φ1,2

eF2)

Φ1,2←−−− F̃2

(F2

qp
×××××××××Φ2,3

eF3

qp
×××××××××Φ2,4

eF4)

.

(3.24)

That is, we get the quasi-product observable Õ1 ≡ (
∏5

t=1 Xt, 2
Q5

t=1 Xt , F̃1) of O1, Φ1,2Õ2

and Φ1,5Õ5, and finally, the quasi-product observable Õ0 ≡ (
∏7

t=0 Xt, 2
Q7

t=0 Xt , F̃0) of O0,

Φ0,1Õ1, Φ0,6Õ6 and Φ0,7Õ7, if it exists. Here, Õ0 is called the realization (or, the Heisenberg

picture representation) of a sequential observable [{Ot}t∈T , {At

Φπ(t),t→ Aπ(t)}t∈T\{0}]. Then,

we have the measurement

MA0(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S[ρp
0]),
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64 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

which is called the realization (or, the Heisenberg picture representation) of the symbol

M({Ot}t∈T ,S[ρp
t0

]).

¥
Remark 3.5. Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be any tree with the root 0.

Let τ be any element of T . Consider a series structure T̃τ such that T̃τ = {πk(τ) | k =

0, 1, 2, ..., h(τ)} ( ⊆ T ), where h(τ) is the height of τ , i.e., πh(τ)(τ) = 0. Note that Example

3.4 (i.e, diagram (3.24)) means that any general system (with a tree structure T ) can be

regarded as a general system with a series structure T̃τ .

¥

3.4 The relation among systems (Axiom 2)

Examining Example 3.4, we see as follows: Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be

a tree with root 0 and let S[ρp
0] ≡ [S[ρp

0], At

Φπ(t),t→ Aπ(t) (t ∈ T \ {0})] be a general system

with the initial system S[ρp
0]. And, let an observable Ot ≡ (Xt, Ft, Ft) in a C∗-algebra At

be given for each t ∈ T . Thus, we have a sequential observable [{Ot}t∈T , {Φt,π(t) : At →
Aπ(t)}t∈T\{0} ]. For each s ( ∈ T ), define the observable Õs ≡ (

∏
t∈Ts

Xt,
∏

t∈Ts
Ft, F̃s) in

As such that:

Õs =

{
Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s}) Φπ(t),tÕt) (if s ∈ π(T ))
(3.25)

if possible. Then, if an observable Õ0 (i.e., the Heisenberg picture representation of the

sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]) in A0 exists (such as in

Example 3.4), we have the measurement

MA0(Õ0 ≡ (
∏
t∈T

Xt,
∏
t∈T

Ft, F̃0), S[ρp
0]),

which is called the Heisenberg picture representation of the symbol M({Ot}t∈T ,S[ρp
t0

]).

Summing up the essential part of the above argument, we can propose the following

axiom, which corresponds to “the rule of the relation among systems” in PMT (1.4). Cf.

[43, 44, 46].
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3.4. THE RELATION AMONG SYSTEMS (AXIOM 2) 65

AXIOM 2. [The Markov relation among systems, the Heisenberg picture]
The relation among systems is represented by a Markov relation {Φt1,t2 :
At2 → At1}(t1,t2)∈T 2

≤
. Let Ot ( ≡ (Xt, Ft, Ft)) be an observable in At for each

t ( ∈ T ). If the procedure (3.25) is possible, a sequential observable [OT ]
≡ [{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2

≤
] can be realized as the observable

Õ0 ≡ (
∏

t∈T Xt,
∏

t∈T Ft, F̃0) in A0. (3.26)

It is quite important to note that Axiom 2 is stated in terms of A (and not in terms of

A∗).4 Also, we must add the following statement:

• Let S[ρp
t0

] ≡ [S[ρp
t0

], {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
] be a general system with an

initial state ρp
t0 (∈ Sp(A∗

t0
)). Then, a measurement represented by the symbol

M({Ot}t∈T ,S[ρp
t0

]) can be realized by MA0(Õ0 ≡ (
∏

t∈T Xt,
∏

t∈T Ft, F̃0), S[ρp
0]), if

Õ0 exists.

which explains the relation between Axiom 1 and Axiom 2.

Now we get the PMT (1.4). We have the following classification in PMT:
deterministic PMT = “measurement”

[Axiom 1 (2.37)]
+ “the deterministic relation among systems”.

[ each Φt1,t2 is homomorphic in Axiom 2 (3.26)]

stochastic PMT = “measurement”
[Axiom 1 (2.37)]

+ “the Markov relation among systems”.
[Axiom 2 (3.26)]

(3.27)

Remark 3.6. (i). Roughly speaking, Axiom 2 asserts Φ0,1O1 is more fundamental than

O1 in the following identification

Φ0,1O1 (in A0) ←→ O1 (in A1)

where O1 is an observable in A1 and Φ0,1 : A1 → A0 is a Markov operator.

(ii). Also, it should be noted that Axiom 2 says that the time evolution of a system

satisfies the Markov property. Thus, automata theory and circuit theory are characterized

as special cases of measurement theory (especially, Axiom 2).

(iii). Axiom 2 has a great descriptive power. Note that “hysteresis” and “multiple Markov

properties” can be described in the framework of Axiom 2.

¥

4This fact makes us apply Axiom 2 to “statistical measurement theory” (in Chapter 8) as well as
“PMT” (in this chapter).
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66 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

3.5 Heisenberg picture and Schrödinger picture

Now let us mention something about the relation between Heisenberg picture and

Schrödinger picture.

Suppose that a simplest tree (T ≡ {0, 1}, π) has a “series” structure, i.e., π(1) = 0.

Consider a general system S[ρp
0] ≡ [S[ρp

0], A1
Φ0,1

→ A0] with the initial system S[ρp
0], that is,

A0
Φ0,1←−A1 (3.28)

Let O1 = (X1, F1, F1) be an observable in A1. Now we consider

(M) the measurement of the observable O1 = (X1, F1, F1) for the general system S[ρp
0] ≡

[S[ρp
0], A1

Φ0,1

→ A0]

Under the following identification:

Φ0,1O1 in A0 ←→ O1 in A1 (3.29)

we think that

(M) = MA0(Φ0,1O1, S[ρp
0]). (3.30)

This viewpoint is standard, and it is called the Heisenberg picture representation of (M).

Axiom 1 says that

• the probability that the measured value of the measurement (M) (i.e.,MA0(Φ0,1O1, S
0
[ρp

0]
))

belongs to Ξ1 ( ∈ F1) is given by

ρp
0(Φ0,1F (Ξ1))

(
≡

A∗
0

〈
ρp

0, Φ0,1F (Ξ1)
〉

A0

)
. (3.31)

On the other hand, under the following identification:

ρp
0 in S(A∗

0) ←→ Φ∗
0,1ρ

p
0 in S(A∗

1) ,

we also consider that

(M) = MA1(O1, S[Φ∗
0,1ρp

0]) (3.32)(
though Φ∗

0,1ρ
p
0 is not in Sp(A∗) but in Sm(A∗) if Φ0,1 is not homomorphic. Cf. Chapter

8 (statistical measurement theory),
)

This viewpoint is called the Schrödinger picture

representation of (M). We of course think that
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3.6. MEASURABILITY THEOREM 67

• the probability that the measured value of the measurement (M) (i.e.,MA1(O1, S[Φ∗
0,1ρp

0]))

belongs to Ξ1 is given by

ρp
0(Φ0,1F (Ξ1))

(
≡

A∗
1

〈
Φ∗

0,1ρ
p
0, F (Ξ1)

〉
A1

)
. (3.33)

It should be noted that (3.31) = (3.33) holds. Thus it is usually and roughly said that

• Heisenberg picture (i.e., observable moves) and Schrödinger picture (i.e., state moves)

are equivalent,

though the Heisenberg picture is fundamental (and the Schrödinger picture representation

should be regarded as a kind of prescription). For the further arguments, see §6.2.

3.6 Measurability theorem

The following theorem is the most fundamental in classical PMT.

Theorem 3.7. [The measurability theorem of a general system, cf. [43]]. Let (T ≡
{0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S[ρp

0] ≡ [S[ρp
0], At

Φπ(t),t→
Aπ(t) (t ∈ T \{0})] be a general system with the initial system S[ρp

0]. And, let an observable

Ot ≡ (Xt,Ft, Ft) in a C∗-algebra At be given for each t ∈ T . For each s ( ∈ T ), define

the observable Õs ≡ (
∏

t∈Ts
Xt,

∏
t∈Ts

Ft, F̃s) in As such that:

Õs =

{
Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s}) Φπ(t),tÕt) (if s ∈ π(T ))

if possible. Then, if an observable Õ0 (i.e., the Heisenberg picture representation of the

sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]) in A0 exists, we have the

measurement

MA0(Õ0 ≡ (
∏
t∈T

Xt,
∏
t∈T

Ft, F̃0), S[ρp
0]), (3.34)

( ⊗
t∈T Ft is sometimes denoted by

∏
t∈T Ft, cf. Definition 2.10

)
, which is called the

Heisenberg picture representation of the symbol M({Ot}t∈T ,S[ρp
t0

]). If the system is classi-

cal, i.e., At ≡ C(Ωt) (∀t ∈ T ), then the measurement always exists, while the uniqueness

is not always guaranteed. Also, it should be noted that, for each s( ∈ T ), it holds that

Φπ(s),sF̃s(
∏

t∈Ts
Ξt) = F̃π(s)((Πt∈Tπ(s)\TsXt) × (

∏
t∈Ts

Ξt)) (∀Ξt ∈ Ft (∀t ∈ T )).
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68 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

Proof. It suffices to prove it in classical measurements. However it is clear since, in

classical measurements, the product observable of any observables always exists. There-

fore the construction mentioned in Example 3.4 is always possible in classical systems.

Example 3.8. [Random walk]. Suppose that a tree (T ≡ {0, 1, ..., N}, π) has a “series”

structure, i.e., π(t) = t − 1 (∀t ∈ T \ {0}). Consider a general system S[δ0] ≡ [S[δ0],

At
Φπ(t),t

→ Aπ(t) ( t ∈ T \ {0})] with the initial system S[δ0], that is,

A0
Φ0,1←−A1

Φ1,2←−A2
Φ2,3←−· · · · · · · · ·

ΦN−2,N−1←− AN−1

ΦN−1,N←− AN . (3.35)

Let Z be the set of all integers, i.e., Z = {0,±1,±2, ...}. Consider a commutative C∗-

algebra C0(Z). Here, put

At = C0(Z) (∀t ∈ {0, 1, ..., N})

and define a Markov operator Φt−1,t( ≡ Φ) : At( ≡ C0(Z)) → At−1( ≡ C0(Z)) such that:

(Φf)(n) = (Φt−1,tf)(n) =
f(n + 1) + f(n − 1)

2
(∀f ∈ At( ≡ C0(Z)),∀n ∈ Z).

Also, for each t = 0, 1, 2, ..., N , consider the exact observable Ot ≡ (Xt, Rt, E) ≡ (Z,P0(Z), E)

in At( = C0(Z)) such that, (cf. Example 2.20),

[E(Ξ)](n) =


1 n ∈ Ξ( ∈ P0(Z))

0 n /∈ Ξ( ∈ P0(Z)).
(3.36)

Thus, we get the product observable Õ0 ≡ (×N
t=0 Xt, ×N

t=0 Ft, F̃0) ≡ (ZN+1,P0(ZN+1),

F̃0) in A0 ( ≡ C0(Z)), that is,

F̃0(Ξ0 × Ξ1 × Ξ2 × · · · × ΞN) = E(Ξ0) × Φ(E(Ξ1) × Φ(· · · · · ·Φ(E(ΞN−1) × ΦE(ΞN)) · · · )).

Then, we have the “measurement” M({Ot}t∈T , S[δ0]) such as

M({Ot}t∈T ,S[δ0]) = MC(Z)(Õ0 ≡ (ZN+1, P0(ZN+1), F̃0), S[δ0]).

where δ0 is the point measure at 0 ( ∈ Z). The sample space
(
ZN+1,P0(ZN+1), [F̃0(·)](0)

)
is usually called a random walk.

¥
For the further arguments, see §10.4 (Brown motion).
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3.7. APPENDIX (BELL’S INEQUALITY) 69

3.7 Appendix (Bell’s inequality)

(Continued from §2.9 (Bell’s Thought Experiment))5

3.7.1 Deterministic evolution or Stochastic evolution?

Recall the following classification (3.27) in PMT:


deterministic PMT = “measurement”

[Axiom 1 (2.37)]
+ “the deterministic relation among systems”.

[ each Φt1,t2 is homomorphic in Axiom 2 (3.26)]

stochastic PMT = “measurement”
[Axiom 1 (2.37)]

+ “the Markov relation among systems”.
[Axiom 2 (3.26)]

However, we know that in classical (or quantum) mechanics, the general system S[ρp]

≡ [S[ρp], At
Ψπ(t),t

→ Aπ(t) ( t ∈ T \ {0})] is always deterministic, that is, Ψπ(t),t is always

homomorphic. (cf. “Newtonian mechanics and quantum mechanics” in §3.1.)

Recall (2.76), i.e., the de Broglie paradox (cf. [20]. Also see §9.3.3). That is,

• if we admit quantum mechanics
(
= “Axiom 1 + Axiom 2 (homomorphic time

evolution)”
)
, we must admit the fact that there is something faster

than light. (cf. [18, 78]). (3.37)
(=(2.76))

Of course we admit quantum mechanics, and therefore, we believe that there is something

faster than light. However, most people may hope that quantum mechanics is not true

rather than admit the fact that there is something faster than light. That is,

(♯) Using the Schrödinger picture representation, they may assert that the singlet state

ρs is not fixed, but the Markov time evolution
(
i.e., “the Markov relation

among systems (Axiom 2)” and not “the homomorphic relation among systems

Axiom 2)”
)
:

ρs
Φ∗
;ρm

0 (3.38)

should be considered.

5Although Bell’s inequality is generally said to be one of the most profound discoveries in 20-th century
science, I could not understand the arguments (in [9, 18, 78, 8]), particularly, I had the question: “In
what framework is Bell’s inequality discussed (in [9, 18, 78])?”. I wonder if these arguments are confusing
physics with mathematics. Thus, I add this section, in which all arguments are discussed in the framework
of PMT (Axioms 1 and 2).
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70 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

The purpose of the following section (i.e., §3.7.2) is to show that we must admit that

there is something faster than light, even under the above assumption (♯). That is, if

we assert that PMT
(
= “Axiom 1 + Axiom 2 (Markov time evolution)”, i.e., quantum

mechanics with Markov (and not homomorphic) time evolution
)

is true, we must admit

the fact that there is something faster than light.

3.7.2 Generalized Bell’s inequality in mathematics

First we prepare some mathematical inequalities. Of course, what is most important

is how to interpret these theorems in physics. This will be discussed in the next section.

In order to avoid to confuse physical results and mathematical ones, in this §3.7.2, we

devote ourselves to mathematical arguments.

Theorem 3.9. [Bell’s inequality, cf. [9, 78]]. Let (Y, G,m) be a probability space. Let g1
1,

g2
1, g1

2, g2
2 be {−1, 1}-valued measurable functions on Y . Define the correlation function

P ′(gi
1, g

j
2) such that:

P ′(gi
1, g

j
2) =

∫
Y

gi
1(y)gj

2(y) m(dy). (3.39)

Then, it holds that

|P ′(g1
1, g

1
2) − P ′(g1

1, g
2
2)| + |P ′(g2

1, g
1
2) + P ′(g2

1, g
2
2)| ≤ 2. (3.40)

Proof. For completeness, we add the proof in what follows.

|P ′(g1
1, g

1
2) − P ′(g1

1, g
2
2)| + |P ′(g2

1, g
1
2) + P ′(g2

1, g
2
2)|

≤
∫

X4

|g1
1(y)| · |g1

2(y) − g2
2(y)|m(dy) +

∫
Y

|g2
1(y)| · |g1

2(y) + g2
2(y)|m(dy)

≤
∫

X4

|g1
2(y) − g2

2(y)| + |g1
2(y) + g2

2(y)|m(dy) = 2.

This completes the proof.

Corollary 3.10. [Bell’s inequality]. Let (Y, G, m) be a probability space. Let g11
1 , g12

1 ,

g21
1 , g22

1 , g11
2 , g12

2 , g21
2 and g22

2 be {−1, 1}-valued measurable functions on Y . Define the

correlation function P (gij
1 , gij

2 ) such that

P (gij
1 , gij

2 ) =

∫
Y

gij
1 (y)gij

2 (y) m(dy). (3.41)
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3.7. APPENDIX (BELL’S INEQUALITY) 71

Further, assume that

g11
1 = g12

1 , g21
1 = g22

1 , g11
2 = g21

2 , g12
2 = g22

2 (a.e. m) (3.42)

i.e., m
(
{y ∈ Y : g11

1 (y) = g12
1 (y)}

)
= 1, etc. Then, it holds that

|P (g11
1 , g11

2 ) − P (g12
1 , g12

2 )| + |P (g21
1 , g21

2 ) + P (g22
1 , g22

2 )| ≤ 2. (3.43)

Proof. It immediately follows from Theorem 3.9.

Next we present the following theorem, which can be regarded as a generalization of

the above corollary (cf. Remark 3.12 later).

Theorem 3.11. [Generalized Bell’s inequality]. Let (Y, G,m) be a probability space.

Let g11
1 , g12

1 , g21
1 , g22

1 , g11
2 , g12

2 , g21
2 and g22

2 be {−1, 1}-valued measurable functions on Y .

Assume that these satisfy

m[(gij
1 , gij

2 )−1(B1 × B2)] =
∑
ℓ∈L

αℓ µi
1,ℓ(B1) µj

2,ℓ(B2) (∀B1, B2 ⊆ {−1, 1}, ∀i, j = 1, 2)

(3.44)

for some probability measures µi
k,ℓ, (k, i = 1, 2, ℓ ∈ L), on {−1, 1} and some nonnegative

sequence {αℓ}ℓ∈L such that
∑

ℓ∈L αℓ = 1. Then, it holds that

|P (g11
1 , g11

2 ) − P (g12
1 , g12

2 )| + |P (g21
1 , g21

2 ) + P (g22
1 , g22

2 )| ≤ 2, (3.45)

where the correlation functions P (gij
1 , gij

2 ) are defined by (3.41).

Proof. A simple calculation shows that

P (gij
1 , gij

2 ) =
∑
ℓ∈L

αℓ [
∑

(x1,x2)∈{−1,1}2

x1x2 µi
1,ℓ({x1})µj

2,ℓ({x2})]

=
∑
ℓ∈L

αℓ(4µ
i
1,ℓµ

j
2,ℓ + 1 − 2µi

1,ℓ − 2µj
2,ℓ),
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72 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

where µi
k,ℓ = µi

k,ℓ({1}). Thus, we see that

|P (g11
1 , g11

2 ) − P (g12
1 , g12

2 )| + |P (g21
1 , g21

2 ) + P (g22
1 , g22

2 )|

=|
∑
ℓ∈L

αℓ(4µ
1
1,ℓµ

1
2,ℓ + 1 − 2µ1

1,ℓ − 2µ1
2,ℓ) −

∑
ℓ∈L

αℓ(4µ
1
1,ℓµ

2
2,ℓ + 1 − 2µ1

1,ℓ − 2µ2
2,ℓ)|

+ |
∑
ℓ∈L

αℓ(4µ
2
1,ℓµ

1
2,ℓ + 1 − 2µ2

1,ℓ − 2µ1
2,ℓ) +

∑
ℓ∈L

αℓ(4µ
2
1,ℓµ

2
2,ℓ + 1 − 2µ2

1,ℓ − 2µ2
2,ℓ)|

=|
∑
ℓ∈L

αℓ(4µ
1
1,ℓµ

1
2,ℓ − 2µ1

2,ℓ − 4µ1
1,ℓµ

2
2,ℓ + 2µ2

2,ℓ)|

+ |
∑
ℓ∈L

αℓ(4µ
2
1,ℓµ

1
2,ℓ + 2 − 4µ2

1,ℓ − 2µ1
2,ℓ + 4µ2

1,ℓµ
2
2,ℓ − 2µ2

2,ℓ)| ≡ |A| + |B|,

and consequently,

=

{
|
∑

ℓ∈L αℓ[2 − 4(µ2
1,ℓ + µ1

2,ℓ + µ1
1,ℓµ

2
2,ℓ − µ1

1,ℓµ
1
2,ℓ − µ2

1,ℓµ
1
2,ℓ − µ2

1,ℓµ
2
2,ℓ)]| (if A · B ≥ 0)

|
∑

ℓ∈L αℓ[2 − 4(µ2
1,ℓ + µ2

2,ℓ + µ1
1,ℓµ

1
2,ℓ − µ1

1,ℓµ
2
2,ℓ − µ2

1,ℓµ
2
2,ℓ − µ2

1,ℓµ
1
2,ℓ)]| (if A · B ≤ 0)

≤
{ ∑

ℓ∈L αℓ|2 − 4(µ2
1,ℓ + µ1

2,ℓ + µ1
1,ℓµ

2
2,ℓ − µ1

1,ℓµ
1
2,ℓ − µ2

1,ℓµ
1
2,ℓ − µ2

1,ℓµ
2
2,ℓ)| (if A · B ≥ 0)∑

ℓ∈L αℓ|2 − 4(µ2
1,ℓ + µ2

2,ℓ + µ1
1,ℓµ

1
2,ℓ − µ1

1,ℓµ
2
2,ℓ − µ2

1,ℓµ
2
2,ℓ − µ2

1,ℓµ
1
2,ℓ)| (if A · B ≤ 0).

Hence, it suffices to prove that 0 ≤ C(x, y, z, w) ≤ 1 (∀(x, y, z, w) ∈ [0, 1]4), where

C(x, y, z, w) = y + z + xw − xz − yz − yw. This is shown as follows:

[Case 1; w − z ≥ 0].

0 ≤ y(1 − w) + z(1 − y) + x(w − z) ≡ C ≤ C + (w − z)(1 − x)

= y(1 − w) + w − yz ≤ 1 − yz ≤ 1.

[Case 2; w − z ≤ 0].

0 ≤ y(1 − z) + w(1 − y) = y + z + (w − z) − yz − yw

≤ y + z + x(w − z) − yz − yw ≡ C ≤ y + z − yz − yw ≤ y(1 − z) + z ≤ 1.

This completes the proof.

Remark 3.12. It is interesting to see that Corollary 3.10 can be regarded as a particular

case of Theorem 3.11. This can be easily shown as follows: Let (Y, G,m) and gij
k be as in

Corollary 3.10. Thus, we assume that the condition (3.42) holds. Put L = {−1, 1}4.

For each ℓ ( ≡ (ℓ1
1, ℓ

2
1, ℓ

1
2, ℓ

2
2) ∈ L), define the αℓ ( ∈ [0, 1]) such that α(ℓ11,ℓ21,ℓ12,ℓ22) =

m
(
(g11

1 , g22
1 , g11

2 , g22
2 )−1 ({(ℓ1

1, ℓ
2
1, ℓ1

2, ℓ
2
2)})

)
. Clearly it holds that

∑
ℓ∈L αℓ = 1. Define

the probability measures µ̂1 and µ̂−1 on {−1, 1} such that µ̂1({−1}) = 0, µ̂1({1}) = 1
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3.7. APPENDIX (BELL’S INEQUALITY) 73

and µ̂−1 = 1− µ̂1. It is easy to see that m
(
(g11

1 , g22
1 , g11

2 , g22
2 )−1({(x1

1, x
2
1, x

1
2, x

2
2)})

)
=

∑
ℓ∈L

αℓ µ̂ℓ11
({x1

1})µ̂ℓ21
({x2

1})µ̂ℓ12
({x1

2}) µ̂ℓ22
({x2

2}) (∀(x1
1, x

2
1, x

1
2, x

2
2) ∈ {−1, 1}4). Thus, putting

µi
k,(ℓ11,ℓ21,ℓ12,ℓ22)

= µ̂ℓi
k
, we can immediately see that the {αℓ}ℓ∈L and the {µi

k,ℓ : i, k = 1, 2, ℓ ∈
L} satisfy the condition (3.44).

¥

3.7.3 Generalized Bell’s inequality in Measurements

Put X = {−1, 1}. Consider a measurement MA( O ≡ (X8,P(X8), G), S[ρ0]) formu-

lated in arbitrary C∗-algebra A. Putting ν3
BI

( · ) = ρ0(G( · )), we have the sample space

(X8,P(X8), ν3
BI

), which is induced by the measurement MA( O, S[ρ0]). Consider the

{−1, 1}-valued functions gij
k on X8, (i, j, k = 1, 2). And define the correlation functions

P (gij
1 , gij

2 ) (i, j = 1, 2) by (3.41). Assume the condition (3.44) in Theorem 3.11. Then, we

see, by Theorem 3.11, that the following inequality holds:

|P (g11
1 , g11

2 ) − P (g12
1 , g12

2 )| + |P (g21
1 , g21

2 ) + P (g22
1 , g22

2 )| ≤ 2. (3.46)

Therefore, it may be viable to compare the measurement MA( O, S[ρ0]) with the measure-

ment
⊗

i,j=1,2 MB(C2⊗C2) (Oaibj , S[ρs]) in Bell’s thought experiment, though it is also sure

that these are not connected with each other. For example, some may, by some reason,

consider that the singlet state ρs in Bell’s thought experiment (cf. the formula (2.75)) is

reduced to a certain state ρ0 ( ∈ Sp(B(C2 ⊗ C2)∗)) such as

ρs ; ρ0 = |e⃗ ⊗ f⃗⟩⟨e⃗ ⊗ f⃗ | (3.47)

for some e⃗⊗f⃗ ( ∈ C2⊗C2) such that ∥e⃗∥C2 = ∥f⃗∥C2 = 1. If so, instead of the measurement⊗
i,j=1,2 MB(C2⊗C2)(Oaibj , S[ρs]), we must consider the measurement

⊗
i,j=1,2 MB(C2⊗C2)

(Oaibj , S[ρ0]), which has the sample space (X8,P(X8), ν) such that:

ν({(x11
1 , x11

2 , x12
1 , x12

2 , x21
1 , x21

2 , x22
1 , x22

2 )}) =
∏

i,j=1,2

ρ0

(
(Fai ⊗ Fbj)({(xij

1 , xij
2 )})

)
=

∏
i,j=1,2

[〈
e⃗, Fai({xij

1 })e⃗
〉〈

f⃗ , Fbj({xij
2 })f⃗

〉]
.

Or more generally (or, in the sense of “ensemble”), using the adjoint operator Φ∗ of a

Markov operator Φ : B(C2 ⊗C2) → B(C2 ⊗C2), we may consider the following Markov

evolution:

ρs
Φ∗
;ρm

0 =
2∑

n=1

2∑
m=1

αmn|e⃗m ⊗ f⃗n⟩⟨e⃗m ⊗ f⃗n|, (3.48)
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74 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)

where {e⃗m}2
m=1 and {f⃗m}2

i=1 are respectively the complete orthonormal basis in C2, and

0 ≤ αmn ≤ 1 such that
∑2

n=1

∑2
m=1 αmn = 1. Thus we have the (statistical) measurement⊗

i,j=1,2 MB(C2⊗C2) (ΦOaibj , S[ρs]). Thus, we may have the sample space (X8,P(X8), ν)

such that:

ν({(x11
1 , x11

2 , x12
1 , x12

2 , x21
1 , x21

2 , x22
1 , x22

2 )}) =
∏

i,j=1,2

ρs

(
(ΦFai ⊗ Fbj)({(xij

1 , xij
2 )})

)
=

∏
i,j=1,2

(Φ∗ρs)
(
(Fai ⊗ Fbj)({(xij

1 , xij
2 )})

)
=

∏
i,j=1,2

ρm
0

(
(Fai ⊗ Fbj)({(xij

1 , xij
2 )})

)
=

∏
i,j=1,2

[ 2∑
m=1

2∑
n=1

αmn

〈
e⃗m, Fai({xij

1 })e⃗m

〉〈
f⃗n, Fbj({xij

2 })f⃗n

〉]
.

Note that the probability space (X8,P(X8), ν) and the gij
k defined by (2.77) satisfy the

condition (3.44) in Theorem 3.11. That is because it suffices to put L = {−1, 1}2 and

µ1
1,(m,n)( · ) =

〈
e⃗m, Fa1( · )e⃗m

〉
, µ2

1,(m,n)( · ) =
〈
e⃗m, Fa2( · )e⃗m

〉
,

µ1
2,(m,n)( · ) =

〈
f⃗n, Fb1( · )f⃗n

〉
, µ2

2,(m,n)( · ) =
〈
f⃗n, Fb2( · )f⃗n

〉
,

for each (m,n) ( ∈ L ≡ {−1, 1}2). Thus, Theorem 3.11 says that such Markov evolution

as the above (3.47) or (3.48) does not occur in Bell’s thought experiment. Therefore we

can conclude that

• if we admit PMT (= “Axiom 1 + Axiom 2 (Markov relation)”), we must also admit

the fact that there is something faster than light. (3.49)

Of course we admit PMT, and therefore, we believe that there is something faster than

light.
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Chapter 4

Boltzmann’s equilibrium statistical
mechanics

As mentioned in Chapters 2 and 3, we see that (pure) measurement theory (= PMT) is formulated
as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (4.1)

(=(1.4))

The purpose of this chapter1 is to understand Boltzmann’s equilibrium statistical mechanics 2 (i.e.,
“the principle of equal a priori probability” and “the ergodic hypothesis”) as one of applications of
PMT. We believe that our approach completely justifies the the thermodynamical weight method
(i.e., the Gibbs method, cf. [26])3.

4.1 Introduction

In spite that equilibrium statistical mechanics is generally believed to be based on

Newtonian mechanics, the term “probability” frequently appears in equilibrium statistical

mechanics. Therefore, if we want to understand equilibrium statistical mechanics in the

framework of Newtonian mechanics, a certain rule concerning “probability” should be

added. That is, we hope to understand equilibrium statistical mechanics such as:

1It may be recommended that this chapter is skipped if readers want to study statistics in the frame-
work of PMT firstly (cf. Chapters 5 and 6).

2In this chapter readers are not required to have much knowledge of statistical mechanics.
3In this book, we think that statistical mechanics should be understood as one of applications of

measurement theory and not theoretical physics, (cf. Table (1.7)). Thus, it should be noted that no
serious test has been conducted in statistical mechanics. What we know is nothing but the fact that
statistical mechanics is quite useful (cf. Table (1.8)). Or, statistical mechanics is “almost empirically
true” to such a degree that statistical mechanics is assured to be useful in usual situations. Cf. the (I9)
in §1.2.

75
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76 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

“equilibrium statistical mechanics” = “Newton equation”

[Axiom 2 (3.26)]

+ “probabilistic rule”

[Axiom 1 (2.37)]

(4.2)
in PMT.

First we must answer the following question:

(Q1) What is the “probabilistic rule” in (4.2)?

Recall Example 2.16 (the urn problem), which is the most fundamental in the classical

measurement. Thus in order to understand “probabilistic rule (=Axiom 1) in (4.2)”, it

suffices to note the following simplest example:

(A1) “Consider a box containing 7× 1023 white balls and 3× 1023 black balls, and choose

a ball at random from the box. Then the probability that the ball is white is given as

0.7.”

Even without the knowledge of measurement theory (in Chapters 2 and 3), every reader

surely agrees that the probability appearing in urn (i.e., box) problems is most typical in

statistics.

Next we must refer to “Newtonian mechanics” in (4.2). Namely we must solve the

following question.

(Q2) What kinds of conditions are imposed on the Newton equation in (4.2)?

In equilibrium statistical mechanics, about 1024 (≈ 6.02 × 1023: “Avogadro constant”)

particles, of course, move hard in a box such as the following figure:
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4.1. INTRODUCTION 77

However it seems to be natural to think as follows:

(A1
2) All particles are even, or on a level.

(A2
2) The motions of particles are (almost) independent of each other. In other words,

the information about a subsystem composed of some particles is invalid for the

inference of the state of another subsystem.

This is our answer to the question (Q2). In §4.2, the (A1
2) and (A2

2) will be represented in

terms of PMT. Also, the (A1) will be discussed in §4.3.

Summing up, we think that equilibrium statistical mechanics is formulated as follows:

“equilibrium statistical mechanics” = “probabilistic rule”
(the probability such as in (A1))

+ “Newton equation”
(the conditions (A1

2) and (A2
2))︸ ︷︷ ︸

(+ “staying time interpretation”)

(4.4)

in PMT. Or, equivalently,

• An equilibrium statistical system can be regarded as an urn containing about 1024

particles. Also, the motions of particles are dominated by the Newtonian equation

with the conditions (A1
2) and (A2

2). Also, the “staying time interpretation” implies

the common sense such as it is almost impossible to find a rare event.

And moreover, two conventional principles (i.e., “the principle of equal a priori probability”

and “the ergodic hypothesis”) will be completely clarified in our proposal (4.4).

The first attempt to understand equilibrium statistical mechanics in the framework of

PMT was executed in [45]. The content in [45] will be slightly modified and improved in

this chapter.

Note, for completeness, that our purpose is to understand equilibrium statistical me-

chanics as one of applications of PMT and not to derive equilibrium statistical mechanics

from Newtonian mechanics (cf. [75]). That is, we are in theoretical informatics and not

in theoretical physics.4

4We have no experimental evidence that the ergodic approach to statistical mechanics is proper.
However, in theoretical informatics, it suffices to find a reason that many people do not doubt.
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78 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

4.2 Dynamical aspects of equilibrium statistical me-

chanics

In this section we shall devote ourselves to the mathematical description of the answers

(A1
2) and (A2

2) mentioned in Section 4.1. Readers should note that all arguments in

this section are within Newtonian mechanics. Namely, it should be noted that it is

prohibited to use the term “probability” in this section. For example, Lemma 4.9 (“the

law of large numbers” in §4.5 Appendix) is not only most important in Kolmogorov’s

probability theory but also in this section (i.e., the derivation of the ergodic hypothesis

(= Theorem 4.6)). Therefore, readers will see that Lemma 4.9 is used independently of

the concept of “probability”. This is the reason that the term “normalized measure” (and

not “probability measure”) is used in Lemma 4.9.

Now let us begin with the well-known ergodic theorem (cf. [57, 83]). In Newtonian

mechanics, any state of a system composed of N( ≈ 1024) particles is represented by a

point (q, p)
(
≡ (q1n, q2n, q3n, p1n, p2n, p3n)N

n=1

)
in a phase (or state) space R6N (cf. the

formula (2.8)). Let H : R6N → R be a Hamiltonian, i.e., a positive continuous function

on R6N . Define V (E), E ≥ 0, by “the volume of the set {(q, p) ∈ R6N | H(q, p) ≤ E}”,
and define the measure ν

E
on the energy surface S

E
(≡ {(q, p) ∈ R6N | H(q, p) = E})

such that

ν
E
(B) =

∫
B

|∇H(q, p)|−1dm6N−1 (∀B ∈ BS
E
, the Borel field of S

E
)5 (4.5)

where dm6N−1 is the usual surface measure on S
E
. Note that ν

E
(S

E
) = dV (E)

dE
holds. Let

{ψE
t }−∞<t<∞ be the flow on the energy surface S

E
induced by the Newton equation with

the Hamiltonian H. Liouville’s theorem (cf. [11]) says that the measure ν
E

is invariant

concerning the flow {ψE
t }−∞<t<∞. Defining the normalized measure ν

E
such that ν

E
=

ν
E

ν
E

(S
E

)
, we have the normalized measure space (S

E
, BS

E
, ν

E
).

In order that equilibrium statistical mechanics must hold, we first assume that the

Hamiltonian H satisfies the following ergodic hypothesis (EH):

(EH) The flow {ψE
t }−∞<t<∞ on the S

E
is ergodic. That is, there uniquely exists an

normalized invariant measure ν
E

on S
E

such that ν
E
(B) = ν

E
(ψt(B)) (−∞ < ∀t <

5Or usually, ν
E
(B) = 1

h3N N !

∫
B
|∇H(q, p)|−1dm6N−1, where h is the Plank constant. In this book, for

simplicity, the constant 1
h3N N !

will be omitted.
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4.2. DYNAMICAL ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 79

∞, ∀B ∈ BS
E
).

The ergodic theorem (cf. [11, 57]) says that the normalized measure ν
E

represents the

normalized averaging staying time, i.e., it holds that

ν
E
(B) = lim

K→∞

♯[{k | ψϵkω ∈ B, k = 1, 2, ..., K}]
K

(∀ω ∈ S
E
, ∀ϵ > 0).

or generally,∫
Ω

f(ω)ν
E
(dω)

(space average)

= lim
T→∞

1

T

∫ T

0

f(ψt(ω0))dt

(time average)

(∀f ∈ C(Ω), ∀ω0 ∈ Ω), (4.6)

which is equivalent to the (EH). Thus the normalized measure space (S
E
, BS

E
, ν

E
) is called

the normalized averaging staying time space (cf. Remark 4.1 later).

We assert that

(STI) [Staying time interpretation of statistical mechanics]. Let N ∈ BS
E

such that the

normalized averaging staying time ν
E
(N) is quite small (i.e., ν

E
(N) ≪ 1). Then it

is almost impossible (or precisely, quite rare) to see that the state (q(t), p(t)) belongs

to the N.

We think that this (STI) is a common sense rather than a principle. The concept of “time”

(or precisely “non-relativistic time”) is within Newtonian mechanics, and therefore the

statement (STI) (or “staying time”) can be understood within Newtonian mechanics.

Remark 4.1. [The probabilistic interpretation of (S
E
, BS

E
, ν

E
)]. The probabilistic in-

terpretation is as follows:

(PI) [Probabilistic interpretation of statistical mechanics]. The normalized averaging

staying time space (S
E
, BS

E
, ν

E
) is regarded as Kolmogorov’s probability space.

That is, the probabilistic interpretation, which is usually called “the principle of equal

a priori probability”, means that the probability that the state of the system belongs to

Ξ( ∈ BSE
) is given by ν

E
(Ξ). If the probabilistic interpretation (PI) is assumed, the (STI)

obviously holds. However, the concept of “normalized staying time” is clearly different

from that of “probability”. Note that:

• the former (i.e., “the staying time interpretation”) is within Newtonian mechanics,

but the latter (i.e., “the probabilistic interpretation”) is not so.
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80 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

Thus, in this chapter we choose a common sense (i.e., “the staying time interpretation”)

rather than a principle (i.e., “the probabilistic interpretation”).6 This is the reason that

the (S
E
,BS

E
, ν

E
) is not called the probability space in this chapter. Again note that all

arguments in this section are within Newtonian mechanics. In this chapter the (STI) will

be used instead of the (PI).

¥
We introduce the following notation:

Notation 4.2. [In the sense of (STI)]. Let P(q, p) be a proposition concerning a state

(q, p) ( ∈ S
E
) such that P(q(t), p(t)) is true for every t ∈ S

E
\N ( ≡ {ω | ω ∈ S

E
, ω /∈ N}).

Assume that the normalized averaging staying time ν
E
(N) is quite small (i.e., ν

E
(N)

≪ 1). Then we write it as

P(q(t), p(t)) is true (almost every t in the sense of (STI)), (4.7)(
Or, P(q(t), p(t)) is almost always true

)
.

Also, when the probabilistic interpretation (cf. Remark 4.1) is added to the (S
E
, BS

E
, ν

E
),

we may write it as

P(q(t), p(t)) is true (almost every t in the sense of (PR)).7 (4.8)

¥
As seen in Remark 4.1, it holds that (4.8)⇒(4.7). Throughout this chapter we, of

course, focus on the (4.7) and not (4.8).

Let ϵ > 0, f1, f2, ..., fK ∈ C0(R
6). Define the 0-neighborhood U in M(R6) (in the

sense of weak∗ topology of M(R6)) such that:

U( = U ϵ
f1,...fK

) = {ρ ∈ M(R6)(= C0(R
6)∗) : |

M(R6)
⟨ρ, fk⟩C0(R6)

| < ϵ, k = 1, 2, ..., K}.
(4.9)

6What is the most important is to recognize that statistical mechanics belongs to the category of
theoretical informatics and not that of theoretical physics. (cf. Table (1.7)). Thus, the present situation
is the same as the following situation. Two ready-made suits (A) and (B) are on sale. The (A) is
somewhat big, and the (B) is somewhat small. Which do you choose, (A) or (B)? Cf. (I15) in §1.3.
We must choose one from “the staying time interpretation” and “the probabilistic interpretation”. In
theoretical informatics, it can not be decided by experimental test. What we can say is we believe that
“the staying time interpretation” will win more popularity than “the probabilistic interpretation”.

7Note that this notation is different from that of Kolmogorov’s probability theory, in which we use
the phrase “almost every t in the sense of (PR)” when ν̄(N) = 0.
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4.2. DYNAMICAL ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 81

Put DN = {1, 2, ..., N( ≈ 1024)}. For each k ( ∈ DN ≡ {1, 2, ..., N( ≈ 1024)}), define

the map Xk : S
E
( ⊂ R6N) → R6 such that

Xk((q1n, q2n, q3n, p1n, p2n, p3n)N
n=1) = (q1k, q2k, q3k, p1k, p2k, p3k) (4.10)

for all (q, p) = (q1n, q2n, q3n, p1n, p2n, p3n)N
n=1 in S

E
( ⊂ R6N). For any subset D ( ⊆ DN ≡

{1, 2, ..., N( ≈ 1024)}), define the map R
(·)
D : S

E
( ⊂ R6N) → Mm

+1(R
6) ( ≡ {ρ ∈ M(R6) :

ρ ≥ 0, ρ(R6) = 1}) such that

R
(q,p)
D =

1

♯[D]

∑
k∈D

δXk(q,p) (∀(q, p) ∈ S
E
( ⊂ R6N)), (4.11)

where ♯[D] is the number of the elements of D and δx is a point measure at x ( ∈ R6).

Let U be a 0-neighborhood in M(R6) such as defined in (4.9). For any (p, q) ( ∈ SE),

put

HU(p, q) = kB log
[
νE({(p′, q′) ∈ SE | R

(p,q)
DN

− R
(p′,q′)
DN

∈ U})
]
, (4.12)

(kB is the Boltzmann constant, i.e., kB = 1.381×10−23J/K), which is called the U-entropy

of a state (p, q).

Let D0 ⊆ DN . Define ν
E
◦ ((Xk)k∈D0)

−1 ( ∈ Mm
+1(R

6×♯[D0])) by the image measure

concerning the map (Xk)k∈D0 : R6N → R6×♯[D0], that is,

ν
E
◦ ((Xk)k∈D0)

−1( ×
k∈D0

Ak) = ν
E
({(p, q) ∈ SE | Xk(p, q) ∈ Ak (k ∈ D0)}) (4.13)

for any open set Ak ( ⊆ R6) (k ∈ D0).

In what follows we shall represent the conditions (A1
2) and (A2

2) (mentioned in §4.1)

in terms of mathematics. Cf. [45].

Definition 4.3. [Thermodynamical condition, equilibrium state].8 Let DN be a set

{1, 2, ..., N(≈ 1024)}. And let H, E, νE, νE, Xk : SE → R6 be as in the above. A

Hamiltonian H on R6N (N ≈ 1024) is said to be thermodynamical (concerning energy E)

if the following condition (T ) is satisfied:

(T ) {Xk : SE → R6}N
k=1 is an almost independent sequence with the identical distribution.

8Although this condition may be superficial and not fundamental, we believe, from the measurement
theoretical point of view, that equilibrium statistical mechanics should start from this condition. Again
note that our purpose is to understand equilibrium statistical mechanics as one of applications of PMT
and not to derive equilibrium statistical mechanics from Newtonian mechanics.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



82 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

In other words, there exists a normalized measure ρ
E

on R6 (i.e., ρ
E
∈ Mm

+1(R
6)) such

that:

(T 1)
[
identical distribution, cf. (A1

2) in §4.1
]

it holds that

ρ
E
≈ ν

E
◦ X−1

k (∀k = 1, 2, ...., N( ≈ 1024)), (4.14)

(T 2)
[
independence, cf. (A2

2) in §4.1
]

it holds that⊗
k∈DN

ρ
E
(: product measure) ≈ ν

E
◦ ((Xk)k∈DN

)−1, (4.15)

though the condition (T 2) is too strong to assume it literally, (see Remark 4.4).

Here, a state (q, p) (∈ SE) is called an equilibrium state if R
(q,p)
DN

≈ ρE.9

¥
Let T be a sufficiently large number. Assume that the closed interval [0, T ] has

the measure: dt/T (thus, the total measure of [0, T ] is equal to 1). For each k ( ∈
DN ≡ {1, 2, ..., N( ≈ 1024)}), define the map wk : [0, T ] → R6 such that wk(t) =

(q1k(t), q2k(t), q3k(t), p1k(t), p2k(t), p3k(t)) for all t ( ∈ [0, T ]). Assume that

(♯) {wk | k ∈ DN} is a set composed of almost independent functions with the identical

distribution.

This assumption (♯) is essentially the same as (T ) in Definition 4.3.

6
R6

-

T

w1
w2

wN

almost independent
identically distributed

9In our formulation, we do not assume that the “equilibrium state” is defined by ν
E

since ν
E

is not
assumed to have the probabilistic interpretation (cf. Remark 4.1).
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4.2. DYNAMICAL ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 83

Remark 4.4. As mentioned in Definition 4.3, the condition (T 2) is too strong. Thus,

it should be understood symbolically and not literally. Therefore, we actually assume

some hypotheses, which are weaker than the (T2). For example we assume the following

conditions (T 2)′ and (T 2)′′:

(T 2)′
[
independence

]
it holds that⊗

k∈D0

ρ
E
≈ ν

E
◦ ((Xk)k∈D0)

−1, (4.16)

(∀D0 ⊂ {1, 2, ..., N( ≈ 1024)} such that 1 ≪ ♯[D0] ≪ N).

This is needed for the derivation of the ergodic hypothesis (cf. Theorem 4.6 later). Also,

we assume that

(T 2)′′
[
independence

]
it holds that(

ν
E
◦ ((Xk)k∈D1)

−1
) ⊗ (

ν
E
◦ ((Xk)k∈D2)

−1
)
≈ ν

E
◦ ((Xk)k∈D1∪D2)

−1, (4.17)

for any D1, D2 (⊂ D) such that D1 ∩ D2 = ∅ and 1 ≪ ♯[D1], ♯[D2] ≤ N .

That is because, in equilibrium statistical mechanics, we usually assume that the inter-

action between the subsystem composed of the particles D1 and that of the particles D2

can be neglected.

¥
Remark 4.5. (i) If N0 is arbitrarily large (and thus N = ∞) and if the approximation

symbol “≈” is interpreted by the equality “=”, then (4.4) and (4.16) imply that the

sequence {Xk}∞k=1 on the normalized averaging staying time space (S
E
,BS

E
, ν

E
) is an

independent sequence with the identical distribution ρ
E
. Thus, Lemma 4.9 (i.e., the law

of large numbers) says that

lim
N0(=♯[D])→∞

R
(q,p)
D = ρ

E
( in the sense of the weak∗ topology of M(R6)) (4.18)

holds for almost every (q, p) in (S
E
, B(S

E
), ν

E
). Note that Kolmogorov’s probability the-

ory [56] is mathematics, and therefore, it is valid even if the probabilistic interpretation

(cf. Remark 4.1) is not added to the normalized averaging staying time measure space

(S
E
, BS

E
, ν

E
). For completeness, again note that the terms: “identical distribution” in

(T 1) and “independence” in (T 2) are not related to the concept of “probability” (but that

of “staying time”).
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84 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

(ii) The reader may doubt if the concepts of “identical distribution” and “independence”

are meaningful without the probabilistic interpretation. However, the following example

shows that these concepts are not only meaningful on a measure space but also on a

topological space. Let f : Ω → R be a continuous function on a topological space Ω.

For each n(= 1, 2, ..., N), define the function fn : ΩN(= product topological space) → R

such that ΩN ∋ (ω1, ω2, ..., ωn, ..., ωN) 7→ f(ωn) ∈ R. Then we may say that {fn}N
n=1

is “an independent sequence with the identical distribution”. In fact we often say “The

motions of two particles are independent” in Newtonian mechanics (and not in statistical

mechanics).

¥

By an analogy of the arguments (i.e., the derivation of (4.18)) in the above Remark

4.5(i), we can assert that (4.14) and (4.16) imply that, if 1 ≪ N0( ≈ ♯[D0]) ≪ N( ≈ 1024),

R
(q(t),p(t))
D0

≈ ν
E
◦ X−1

k ( ≈ ρ
E

) ( almost every time t in the sense of (STI) ) (4.19)

holds for any k ( = 1, 2, ..., N( ≈ 1024)). Here consider the decomposition {D(1), D(2), ...,

D(L)} of DN ( ≡ {1, 2, ..., N( ≈ 1024)}) such that ♯[D(l)] ≈ N0 (l = 1, 2, ..., L). Then we

see, by (4.19), that

R
(q(t),p(t))
DN

=

∑L
l=1[♯[D(l)] × R

(q(t),p(t))
D(l)

]

N
≈

∑L
l=1[♯[D(l)] × ρ

E
]

N
= ν

E
◦ X−1

k ( ≈ ρ
E

)

( almost every time t in the sense of (STI) )

holds for any k ( = 1, 2, ..., N( ≈ 1024)).

Summing up, we have the following theorem.

Theorem 4.6. (Ergodic hypothesis). Assume the thermodynamical condition (i.e., (T1)

in Definition 4.3 and (T 2)′ in Remark 4.4). Then it holds that

R
(q(t),p(t))
DN

≈ ν
E
◦ X−1

k ( ≈ ρ
E

) (k = 1, 2, ..., N( ≈ 1024)) (4.20)

( almost every time t in the sense of (STI) )

Thus, the state of the system is almost always equal to the equilibrium state (cf. Definition

4.3). That is, we see:
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4.2. DYNAMICAL ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 85

• R
(q(t1),p(t1))
DN

≈ R
(q(t2),p(t2))
DN

( almost every time t1 and t2 in the sense of (STI)).

(4.21)

¥
This says that

“the distribution of N( ≈ 1024) particles at almost every time t” (in the sense of (STI))

=“normalized averaging staying time of the k-th particle (∀k = 1, 2, ..., N ≈ 1024)”
(4.22)

We believe that this is just what should be represented by the “ergodic hypothesis” :10

“population average of many particles” = “time average of one particle”, (4.23)

that is, we see that (4.20)=(4.22)=(4.23).

Remark 4.7. [Another formulation of equilibrium statistical mechanics]. For complete-

ness, note that the condition (T 2)′ in (4.16) is assumed in order that (4.21) holds. Thus

some may assert that it suffices to start from the SE (with the measure νE which induces

(STI)) and the (4.21). This formulation may be called the formulation without the ergodic

hypothesis. Also, see the formula (4.29) later.

¥
Remark 4.8. (i). If the probabilistic interpretation (i.e., the principle of equal a priori

probability) is assumed, in (4.20) we can replace “almost every time t in the sense of

(STI)” to “almost every time t in the sense of (PR)”. However, if the (STI) is accepted as

a common sense, we can do well without this replacement, that is, the replacement does

not bring us any merit. Thus we think that the probabilistic interpretation is not needed.

Cf. Remark 4.5

(ii). We may still have a question:

• Why is the thermodynamical condition (i.e., (T 1) and (T 2)) always satisfied in the

usual circumstance of equilibrium statistical mechanics?

Though we do not know the firm answer,11 we can easily show, by (4.20), that the thermo-

dynamical condition ((T 1) and (T 2)) explains the following law (i.e.,“the law of increasing

10In this book, the term “ergodic hypothesis” has two meanings. One is used in the sense of the formula
(4.6). And the other is used in the sense of the formula (4.23) (or, Theorem 4.6).

11If we think that statistical mechanics belongs to informatics and not physics (cf. in this book we
consider so), the firm answer may not be needed. If the thermodynamical condition is useful, it is enough.
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86 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

entropy” ).12

(IE) the U -entropy HU(q(t), p(t)), (cf. (4.12)), is increasing concerning t, that is

HU(q(t), p(t)) ↑ log[ν(SE)] ( if t ↑ ∞) in the sense of (STI) (4.24)

for a suitable small 0-neighborhood U in M(R6).

That is because HU(q(t), p(t)) ≈ log[ν(SE)] holds for almost every time t in the sense of

(STI) if the neighborhood U is chosen suitably. (How to choose the U suitably is our

future problem.) Therefore we consider that the law of increasing entropy is hidden

behind the thermodynamical condition ((T 1) and (T 2)).

¥

4.3 Probabilistic aspects of equilibrium statistical me-

chanics

In this section we shall study the probabilistic aspects of equilibrium statistical me-

chanics. Note that the (4.20) implies that the equilibrium statistical mechanical system

at almost every time t (in the sense of the (STI)) can be regarded as:

(U) an urn including about 1024 particles such as the number of the particles whose

states belong to Ξ ( ∈ BR6) is given by ρE(Ξ) × 1024.

Recall the (A1) in §4.1, that is, the probability appearing in classical systems (or particu-

larly, in the probabilistic rule in (4.2)) is essentially the same as the probability appearing

in urn problems. Therefore, we see, by the above (U),

(A′
1) if we choose a particle at random from the urn (=“box in Figure (4.3)”) at time t,

then the probability that the state of the particle belongs to Ξ ( ∈ BR6) is given by

ρE(Ξ).

12If my memory serves me right, in some book A. Einstein says: There is a possibility that someone
will find his relativity theory is not true, but there is no possibility that someone will find that the law
of increasing entropy is not true. We can understand what he wants to say, if we think that statistical
mechanics should be understood as an application of measurement theory, on the other hand, his relativity
theory belongs to theoretical physics. That is, we think that the law of increasing entropy is as “true” as
the statement “A cat is stronger than a mouse”. (Cf. footnote[9] in Chapter 2.) It should be noted that
the statement “A cat is stronger than a mouse” is ambiguous, fuzzy, vague, etc, though it is “almost
experimentally true” (cf. (I14) in §1.3).

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



4.3. PROBABILISTIC ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 87

In what follows, we shall represent this (A′
1) in terms of measurements. Define the ob-

servable O = (R6, BR6 , F ) in C(SE) such that, (cf. (4.11)),

[F (Ξ)](q, p) = [R
(q,p)
DN

](Ξ)
(
≡ ♯[{k | Xk(q, p) ∈ Ξ}]

♯[DN ]

)
(∀Ξ ∈ BR6 , ∀(q, p) ∈ S

E
( ⊂ R6N)).

(4.25)

Thus, we have the measurement MC(SE)(O ≡ (R6, BR6 , F ), S[δψt(q0,p0)]). Then we see that

(B′
1) the probability that the measured value obtained by the measurement MC(SE)(O ≡

(R6,BR6 , F ), S[δψt(q0,p0)]) belongs to Ξ(∈ BR6) is given by ρE(Ξ). That is because

Theorem 4.6 says that

[F (Ξ)](ψt(q0, p0)) = ρE(Ξ) (almost every time t in the sense of (STI)) (4.26)

which is just the measurement theoretical representation of the (A′
1).

Also, we see that

(A′′
1) if we choose N ′ particles at random from the urn (=“box in Figure (4.3)”), then

statistics say that the distribution of the states of these particles is almost surely

expected to be approximately equal to ρE, where 1 ≪ N ′ ≤ N( ≈ 1024).

Here, consider the product observable ON ′
= (R6N ′

, BR6N′ , FN ′
) in C(SE). For each k

( ∈ KN ′ ≡ {1, 2, ..., N ′), define the map Xk : R6N ′ → R6 such that

Xk((x1n, x2n, x3n, x4n, x5n, x6n)N ′

n=1) = (x1k, x2k, x3k, x4k, x5k, x6k)

for all x = (x1n, x2n, x3n, x4n, x5n, x6n)N ′
n=1 in R6N ′

). Define the map GN ′ : R6N ′ → Mm
+1(R

6)

( ≡ {ρ ∈ M(R6) : ρ ≥ 0, ρ(R6) = 1}) such that

GN ′(x) =
1

N ′

N ′∑
n=1

δXn(x) (∀x ∈ R6N ′
). (4.27)

Then we have the image observable GN ′(ON ′
) ≡ (Mm

+1(R
6),BMm

+1(R6), GN ′(FN ′
)). And

we see, by Theorem 4.6, that

(B′′
1 ) the measured value obtained by the measurement MC(SE)(GN ′(ON ′

), S[δψt(q0,p0)]) is

approximately equal to ρE.

which is just the measurement theoretical representation of the (A′′
1).
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88 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

4.4 Conclusions

In this chapter we assert that equilibrium statistical mechanics is formulated as fol-

lows:13

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+ STI)

(4.28)
(=(4.4))

in the framework of PMT.

It may be generally believed that the principle of equal a priori probability and the

ergodic hypothesis are two basic principles of statistical mechanics. However, our for-

mulation (4.28) says that the principle of equal a priori probability is not needed (cf.

Remark 4.5 and Remark 4.8(i)), and moreover, the ergodic hypothesis is a consequence

of the thermodynamical condition (i.e., (T 1) and (T 2) under the (EH)), cf. the formulas

(4.20)∼(4.23).

However we may assert that the following formulation is also possible:

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+ PI)

(4.30)

which is, strictly speaking, related to SMT (cf. Chapter 8, Statistical measurement the-

ory).

Thus we have the question:

• Which should be chosen, (4.28) or (4.30)?14

13Or simply (cf. Remark 4.7), we may consider that

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))
+ “Newton equation”

νE (in (4.5)) and (4.21)︸ ︷︷ ︸
(+ STI)

(4.29)

We believe that the term “economical” is one of the most important key-words of theoretical informatics
(cf. Table (1.8b)). In this sense, the (4.29) should be also admitted though we did not focus on the (4.29)
in this chapter.

14This situation is the same as the following situation. Two ready-made suits “the staying time
interpretation” and “the probabilistic interpretation” are on sale. The former is too weak, and so some-
what ambiguous. The latter may be too strong. However, we must choose one from “the staying time
interpretation” and “the probabilistic interpretation”. In theoretical informatics, we believe that it can
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4.4. CONCLUSIONS 89

The reason that we choose (4.28) is as follows: Recall quantum mechanics, in which

it is often emphasized that the concept of “probability” is not related to “Schrödinger

equation” but “Born’s quantum measurements”. Comparing quantum mechanics (1.3) and

the above (4.28), we have the reason to emphasize that the concept of “probability” is

not related to the thermodynamical condition but “probabilistic rule in (4.28)”. That

is because we want to believe in the spirit that the term of “probability” should be used

commonly in both classical and quantum systems, or, that there is no probability without

measurements. After all, we say that

• Our proposal (4.28) and quantum mechanics (1.3) are compatible.

On the other hand, the part “Newton equation ((T 1) and (T 2)) under (EH))” in (4.30) is

related to the concept of “probability” under the assumption “probabilistic interpretation

of νE”. Thus, we think that

• The (4.30) and quantum mechanics (1.3) are not compatible.

Thus, we do not choose the (4.30). However, we may choose the following (4.18):

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))︸ ︷︷ ︸
(+PI)

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+STI)

(4.31)

This (4.31)15 and quantum mechanics (1.3) are compatible. Thus, the following question

is meaningful in measurement theory.

• Which should be chosen, (4.28) or (4.31)?

This may be a matter of opinion (though it is not serious as statistical mechanics is

assumed to belong to theoretical informatics in this chapter). If we are required to say

something, we guess that the (4.28) will win more popularity than the (4.31). In fact,

not be decided by an experimental test. Or at least, we are convinced that it is not worthwhile deciding
it by an experimental test. That is because we believe that nobody wants to challenge the following
problem:

• Decide (4.28) or (4.30) (or (4.31)) by an experimental test!

Thus, “(4.28) or (4.30)” should be chosen from the philosophical point of view, if we are urged to choose
one. Cf. (I15) in §1.3.

15The part “probabilistic rule”
((B′′

1 )(= Axiom 1))︸ ︷︷ ︸
(PI)

in (4.31) is characterized as “Proclaim 1” in Chapter 8.
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90 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

• we prefer (4.28) to (4.31),

since we do not want use the (PI) if possible.16 This is our opinion, though, in theoretical

informatics, we must admit the case that opinion is divided.

We hope that our proposal (4.28) (or, (4.29), (4.31)) will be accepted as the standard

formulation of equilibrium statistical mechanics.

4.5 Appendix (The law of large numbers)

As a preparation of our main assertion (i.e., the derivation of the ergodic hypothesis

(4.20)), we add the following well-known Lemma 4.9.

Lemma 4.9. [The strong law of large numbers, cf. [56]]. Let (S,BS, ν) be a measure

space such that ν(S) < ∞. Let {Xn}∞n=1 be a sequence of bounded measurable (or

generally, L1) maps Xn : S → R6 such that there exists a normalized measure ρ on R6

(i.e., ρ(R6) = 1, ρ(Γ) ≥ 0 (∀Γ ∈ BR6)) such that:

• (identical distribution)

ν({x ∈ S | Xn(x) ∈ Γ})
ν(S)

= ρ(Γ) (∀n = 1, 2, ..., ∀Γ ∈ BR6),

• (independence) for any positive integer N , it holds that

ν({x ∈ S | Xn(x) ∈ Γn (∀n = 1, 2, ..., N)})
ν(S)

=
N

×
n=1

ρ(Γn) (∀Γn ∈ BR6).

Then, there exists a measurable set N( ∈ BS) such that ν(N) = 0 and

lim
N→∞

1

N

N∑
n=1

δXn(x) = ρ in the sense of weak∗ topology of M(R6),

for all x ∈ S \ N (≡ {x | x ∈ S, x /∈ N}). Here δw( ∈ Mm
+1(R

6)) is a point measure at

w( ∈ R6), i.e., δw(Γ) = 1 (if w ∈ Γ ∈ BR6), = 0 (if w /∈ Γ ∈ BR6).

¥
In the formula (4.18), readers should see that Lemma 4.9 is used in the part “Newton

equation” (and not “probability rule”) in our proposal (4.28), that is, Lemma 4.9 (the law

of large numbers) is used independently of the concept of “probability”.

16Also, recall “Occam’s razor”, that is, “Given two equally predictive theories, choose the simplest”.
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Chapter 5

Fisher’s statistics I (under Axiom 1)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (5.1)

(=(1.4))

In this chapter we intend to understand Fisher’s statistics in Axiom 1. The reader will see that
Fisher’s maximum likelihood method is a direct consequence of Axiom 1.1 And further, we discuss
“inference interval” and “testing statistical hypothesis” in Axiom 1. By the results obtained in
this chapter (and in the next chapter), we conclude that Fisher’s statistics is theoretically true.
(Cf. “Declaration (1.11)” in §1.4.)2

5.1 Introduction

The first attempt of the measurement theoretical approach to statistics was proposed

in [44]. Although the argument in [44] is not deep, at least it convinces us of the good

possibility of the axiomatic formulation (i.e., the measurement theoretical formulation) of

statistics.

Most statisticians consider that statistics is closely related to “measurements”, or,

statistics is the study to analyze “measured data” for some purpose. Therefore, PMT

should be immediately examined in comparison with statistics. The purpose of this chap-

ter is to execute it, in other words, to propose a measurement theoretical formulation of

statistics. We think that statistics is mainly related to the following aspect of measure-

ment theory:

1Readers are not required to have much knowledge of statistics.
2We believe that the philosophy of statistics should be more discussed in statistics, (Cf. [61]). That is

because it is indispensable for the understanding of “statistics (= mathematics + something)”. It should
be noted that “to formulate statistics in the framework of MT” implies “to introduce the philosophy of
MT into statistics”.

91
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92 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

(♯) how to derive some useful information from the measured data obtained by a mea-

surement.

Let MA

(
O ≡ (X, F, F ), S[ρp]

)
be a measurement formulated in a C∗-algebra A. Recall

the (III) in §2.5 [Remarks], that is, the measurement MA

(
O ≡ (X, F, F ), S[ρp]

)
always

determines the sample space
(
X, F,

A∗

〈
ρp, F ( · )

〉
A

)
. Here note that the mathematical

structure of the sample space
{

A∗

〈
ρp, F (Ξ)

〉
A

}
ρp∈Sp(A∗),Ξ∈F

is the same as that of the

conventional formulation of statistics
(
i.e,

{
P (Ξ, θ)

}
θ∈Θ,Ξ∈F

, where, for each θ in a pa-

rameter space Θ, P (·, θ) is a probability measure on a measurable space (X, F), cf. [86]
)
.

Therefore, there is good hope that statistics can be described in terms of measurements.

Also, this is precisely our motivation in this chapter. Following the common knowledge

of quantum mechanics, we believe that any scientific statement including the term “prob-

ability” is not meaningful without the concept of “measurement”. (cf. §2.5. Remarks).

As mentioned in the above, the term “state” in measurement theory corresponds to the

term “parameter” in statistics. The reason that we use the term “state” is due to that

we want to stress that PMT is constructed modeled on mechanics.3

5.2 Fisher’s maximum likelihood method

The purpose of this section is to study and understand “Fisher’s maximum likelihood

method” completely under Axiom 1 (of measurement theory). The following Problem 5.1

is the most typical in all examples of “Fisher’s maximum likelihood method”.

5.2.1 Fisher’s maximum likelihood method

Problem 5.1. [The urn problem by Fisher’s maximum likelihood method]. There are

two urns U1 and U2. The urn U1 [resp. U2] contains 8 white and 2 black balls [resp. 4

white and 6 black balls].

3This means that we study statistics by an analogy of “mechanics”. Note the following correspondence:

system S[ρp] (in PMT)
[represented by pure state]

⇐⇒ population (in the conventional statistics)
[represented by parameter]
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 93

U1 U2

Here consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., U1 or U2) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U1 or U2.

(P2) Pick up a ball out of the urn chosen by the procedure (P1). And you find that the

ball is white.

- �[∗]

You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.

The urn is U1 or U2? Which do you think?

U1 U2

Now we have the following question:

(Q) Which is the chosen urn (behind the curtain), U1 or U2?

This is quite easy. That is, everyone will immediately infer “the urn behind the curtain =

U1”. However, it is just “Fisher’s maximum likelihood method”. Cf. Example 5.8.

¥
We begin with the following definition.

Notation 5.2. [MA(O, S[∗])]. Consider a measurement MA(O ≡ (X, F, F ), S[ρp]) for-

mulated in a C∗-algebra A. In most measurements, it is usual to think that the state

ρp (∈ Sp(A∗)) is unknown. That is because the measurement MA(O, S[ρp]) may be taken
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94 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

in order to know the state ρp. Thus, when we want to stress that we do not know the

state ρp, the measurement MA(O, S[ρp]) is often denoted by MA(O, S[∗]).

¥
By using this notation, we can state our present problem as follows:

(I) Infer the unknown state [∗] (∈ Sp(A∗)) from the measured data obtained by the

measurement MA(O ≡ (X, F, F ), S[∗]).

In order to answer this problem, in [44] we introduced Fisher’s method (precisely,

Fisher’s max mum likelihood method) as follows:
(
Strictly speaking, Theorem 5.3 should

not be called “theorem” but “assertion”, since it is not a purely mathematical result but

a consequence of Axiom 1.
)

Theorem 5.3. [Fisher’s maximum likelihood method in classical and quantum mea-

surements, cf. [44]]. Consider a measurement MA(O ≡ (X, F, F ), S[∗]) formulated in a

C∗-algebra A. When we know that the measured value obtained by the measurement

MA(O, S[∗]) belongs to Ξ (∈ F), there is a reason to infer that the state [∗] of the system

S is equal to ρp
0 (∈ Sp(A∗)) such that:

A∗ ⟨ρp
0, F (Ξ)⟩

A
= max

ρp∈Sp(A∗)
A∗ ⟨ρp, F (Ξ)⟩

A
. (5.2)

Here, note, for completeness, that the state [∗] (in MA(O, S[∗])) is the state before the

measurement MA(O, S[∗]).
(
Cf. Corollary 5.6 later.

)
Although the ρp

0 in (5.2) is not

generally determined uniquely, in this book we usually assume the uniqueness.

Proof (or, Explanation). Let ρp
1 and ρp

2 be elements in Sp(A∗). Assume that “[ ∗ ] =

ρp
1 ” or “[ ∗ ] = ρp

2 ”. And assume that ρp
1(F (Ξ)) < ρp

2(F (Ξ)). Then, Axiom 1 says

that the fact that the measured value obtained by the MA(O, S[ρp
1]) belongs to Ξ happens

more rarely than the fact that the measured value obtained by the MA(O, S[ρp
2]) belongs

to Ξ happens. Thus, there is a reason to regard the unknown state [∗] as the state ρp
2

and not as the state ρp
1. Also, examining this proof, we can easily see that the state [∗]

(in MA(O, S[∗])) is the state before the measurement MA(O, S[∗]). This completes the

proof.

Remark 5.4. [Radon-Nikodým derivative]. Assume that there exists a measure ν on
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 95

(X, F) (cf. (III) in §2.5) and f(·, ρp) ∈ L1(Ω, ν) (∀ρp ∈ Sp(A∗)) such that:

ρp(F (Ξ)) =

∫
Ξ

f(x, ρp)ν(dx) (∀Ξ ∈ F, ∀ρp ∈ Sp(A∗)). (5.3)

Then, even if Ξ = {x0} and ρp(F ({x0}) = 0 (∀ρp ∈ Sp(A∗) ) in Theorem 5.3, we may

calculate as follows:

ρp
1(F ({x0}))

ρp
2(F ({x0}))

= lim
Ξ→{x0}

ρp
1(F (Ξ))

ρp
2(F (Ξ))

=
f(x0, ρ

p
1)

f(x0, ρ
p
2)

. (5.4)

In this sense (or, in the sense of “Radon-Nikodým derivative”), we can compare ρp
1(F ({x0}))

with ρp
2(F ({x0})), even when ρp

1(F ({x0})) = ρp
2(F ({x0})) = 0. When we know that the

measured value x0 ( ∈ X) is obtained by the measurement MA(O, S[∗]), by the same reason

in Theorem 5.3, we can infer that the state [∗] of the system S is equal to ρp
0 (∈ Sp(A∗))

such that:

f(x0, ρ
p
0) = max

ρp∈Sp(A∗)
f(x0, ρ

p).

Here, the map E : X → Sp(A∗), ( i.e., X ∋ x0 7→ ρp
0 ∈ Sp(A∗)), is called “Fisher’s

estimator”.

¥
We begin with the following corollary, which is used in the proof of Corollary 5.6 and

our main assertion
(
i.e., Regression Analysis II (in Chapter 6)

)
.

Corollary 5.5. [The conditional probability representation of Fisher’s method, cf. [55]].

Let O ≡ (X, F, F ) and O′ ≡ (Y, G, G) be observables in A. Let Ô be a quasi-product

observable of O and O′, that is, Ô ≡ O
qp

×××××××××O′ = (X × Y, F
⊗

G, F
qp

×××××××××G). Assume that we

know that the measured value (x, y) (∈ X × Y ) obtained by a measurement MA(Ô, S[∗])

belongs to Ξ×Y (∈ F
⊗

G). Then, there is a reason to infer that the unknown measured

value y (∈ Y ) is distributed under the conditional probability PΞ(·), where

PΞ(Γ) = A∗ ⟨ρp
0, F (Ξ)

qp

××××××××× G(Γ)⟩
A

A∗ ⟨ρp
0, F (Ξ)⟩

A

=
ρp

0(F (Ξ)
qp

××××××××× G(Γ))

ρp
0(F (Ξ))

 (∀Γ ∈ G), (5.5)

where ρp
0 (∈ Sp(A∗)) is defined by

A∗ ⟨ρp
0, F (Ξ)⟩

A
= max

ρp∈Sp(A∗)
A∗ ⟨ρp, F (Ξ)⟩

A
. (5.6)

Proof. Since we know that the measured value (x, y) (∈ X × Y ) obtained by a

measurement MA(Ô, S[∗]) belongs to Ξ × Y (∈ F
⊗

G), we can infer, by Theorem 5.3
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96 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

(Fisher’s method) and the equality F (Ξ) = F (Ξ)
qp

×××××××××G(Y ), that the [∗ ] (in MA(Ô, S[∗])) is

equal to ρp
0 (∈ Sp(A∗)). Thus, the conditional probability that PΞ( · ) under the condition

that we know that (x, y) ∈ Ξ × Y is given by

PΞ(Γ) =
ρp

0(F (Ξ)
qp

××××××××× G(Γ))

ρp
0(F (Ξ)

qp

××××××××× G(Y ))
=

ρp
0(F (Ξ)

qp

××××××××× G(Γ))

ρp
0(F (Ξ))

. (5.7)

This completes the proof.

The following corollary is the most essential in classical measurements. That is because

what we want to infer is usually the state after the measurement (cf. Theorem 5.3).

Corollary 5.6. [Fisher’s maximum likelihood method in classical measurements, cf.

[55]]. Let O ≡ (X, F, F ) be an observable in a commutative C∗-algebra C(Ω). Assume

that we know that the measured value obtained by a measurement MC(Ω)(O, S[∗]) belongs

to Ξ (∈ F). Then, we can assert the following (i) and (ii):

(i) there is a reason to infer that the state [∗] of the system S
(
i.e., “the state before

the measurement MC(Ω)(O, S[∗])” cf. Fisher’s method in classical and quantum

measurements)
)

is equal to δω0 (∈ M
p
+1(Ω)), where

[F (Ξ)](ω0) = max
ω∈Ω

[F (Ξ)](ω), (5.8)

and,

(ii) there is a reason to infer that the state after the measurement MC(Ω)(O, S[∗]) is also

regarded as the same δω0 (∈ M
p
+1(Ω)).

Summing up the above (i) and (ii), we see that

(iii) there is a reason to infer that

[ ∗ ] = “the state after the measurement MC(Ω)(O, S[∗])” = δω0 . (5.9)

0

1

Ω
ω0

[F (Ξ)](ω)
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 97

Proof. The (i) is the special case of Fisher’s maximum likelihood method (cf. Theorem

5.3), i.e., A = C(Ω). Thus it suffices to prove (ii) as follows:
(
This (ii) will be, under

the definition of “S-state” (cf. Definition 6.7), proved in Remark 6.12 as a special case

of Lemma 6.11 later. In this sense, the proof mentioned here is temporary.
)

Let O′ ≡
(Y, G, G) be any observable in C(Ω). Let Ô be the product observable of O and O′,

that is, Ô ≡ O ××××××××× O′ = (X × Y, F
⊗

G, F ××××××××× G). Consider a measurement MC(Ω)(Ô

≡ (X × Y, F
⊗

G, F ××××××××× G), S[∗]). And assume

(A) we know that the measured value (x, y) (∈ X × Y ) obtained by the measurement

MC(Ω)(Ô ≡ (X × Y, F
⊗

G, F ××××××××× G), S[∗]) belongs to Ξ × Y .

Corollary 5.5 says that there is a reason to infer that the unknown measured value y (∈ Y )

is distributed under the conditional probability PΞ(·), where

PΞ(Γ)[F (Ξ)](ω0) = [G(Γ)](ω0) (∀Γ ∈ G), (5.10)

where ω0 (∈ Ω) is defined in (5.8). Also note that the above (A) can be represented by

the following two steps (A1) and (A2)
(
i.e., (A) = (A1) + (A2)

)
:

(A1) we know that the measured value by a measurement MC(Ω)(O ≡ (X, F, F ), S[∗])

belongs to Ξ (∈ F).

and

(A2) And successively, we take a measurement of the observable O′ ≡ (Y, G, G), and get

a measured value y ( ∈ Y ).(
The above is somewhat metaphorical since “two measurements” seem to appear (cf.

§2.5[Remarks (II)]).
)

Comparing (A) and “(A1) + (A2)”, we see, by (5.10), that

“the probability that y belongs to Γ ( ∈ G) in (A2)” = [G(Γ)](ω0) (∀Γ ∈ G) (5.11)

That is, we get the sample space (Y, G, [G( · )](ω0)). Therefore, we say, from the arbitrari-

ness of O′ ≡ (Y, G, G), that

(A3) the state after the (A1) (i.e., the state after the measurement MC(Ω)(O, S[∗])) is

equal to δω0 .

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



98 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

This completes the proof.
(
This corollary does not hold in quantum measurements, since

the product observable Ô ≡ O×××××××××O′ = (X×Y, F
⊗

G, F×××××××××G) does not always exist. That

is, the concept of “the state after a measurement” is not always meaningful in quantum

theory.
)

The “Bayes operator (in the following Remark 5.7)” is hidden in the above proof. This

will be more clarified in Remark 6.12 later.

Remark 5.7. [Bayes operator]. Let O ≡ (X, F, F ) be an observable in C(Ω). For each

Ξ ( ∈ F), define the continuous linear operator B
(0,0)
Ξ (or, BO

Ξ , B
O,(0,0)
Ξ ) : C(Ω) → C(Ω)

such that:

B
(0,0)
Ξ (g)

(
≡ BO

Ξ (g) ≡ B
O,(0,0)
Ξ (g)

)
= F (Ξ) · g (∀g ∈ C(Ω)), (5.12)

which is called the Bayes operator (or, the simplest Bayes operator). Note that it clearly

holds that

(i) for any observable O1 ≡ (Y, G, G), there exists an observable Ô ≡ (X × Y, F
⊗

G,

F̂ ) in C(Ω) such that:

F̂ (Ξ × Γ) = B
(0,0)
Ξ (G(Γ)) (Ξ ∈ F, Γ ∈ G).

That is because it suffices to define Ô by the product observable O×O1. Define the map

R
(0,0)
Ξ : Mm

+1(Ω) → Mm
+1(Ω) (called “normalized Bayes dual operator”) such that:

R
(0,0)
Ξ (ν) =

[B
(0,0)
Ξ ]∗(ν)

∥[B(0,0)
Ξ ]∗(ν)∥M(Ω)

(∀ν ∈ Mm
+1(Ω),

where [B
(0,0)
Ξ ]∗ : M(Ω) → M(Ω) is the dual operator of [B

(0,0)
Ξ ], that is,

[R
(0,0)
Ξ (ν)](D0) =

∫
D0

[F (Ξ)](ω)ν(dω)∫
Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ∈ BΩ). (5.13)

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

Mm
+1(Ω) ∋ ν (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (ν) ∈ Mm

+1(Ω)4 (5.14)

Note that this says that (i)⇒(ii) in Corollary 5.6. That is because a simple calculation

shows that R
(0,0)
Ξ (δω0) = δω0 in the case of Corollary 5.6. In §6.2, the reader will again

4The pretest state [resp. posttest state] may be usually called “priori state” [resp. “posterior state”].
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 99

study the Bayes operator in more general situations.

¥

Example 5.8. [Continued from Problem 5.1 (Urn problem)5]. Recall Example 5.1. That

is, consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., U1 or U2) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U1 or U2.
6

(P2) Pick up a ball out of the urn chosen by the procedure (P1). And you find that the

ball is white.

- �[∗]

You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.

The urn is U1 or U2? Which do you think?

U1 U2

Now we have the following question:

(Q) Which is the chosen urn (behind the curtain), U1 or U2?

[Answer]. Put Ω = {ω1, ω2}. Here,{
ω1 · · · · · · the state that the urn U1 is behind the curtain
ω2 · · · · · · the state that the urn U2 is behind the curtain.

(5.15)

In this sense, we frequently use the following identification:

U1 ≈ ω1, U2 ≈ ω2. (5.16)

5As mentioned in Example 2.16, we believe that “urn problem” is the most fundamental in all examples
of statistics.

6Here we are not concerned with SMTPEP (i.e., the principle of equal probability, cf. §11.4)
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100 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

And define the observable O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Since we do not know whether the state is ω1 or ω2, we have the measurement MC(Ω)(O, S[∗]).

Thus, out situation is

• a measured value “w” is obtained by the measurement MC(Ω)(O, S[∗]).

Then, we conclude, by Fisher’s maximum likelihood method, that

• the urn behind the curtain is U1.

That is because

[F ({w})](ω1) = 0.8 = max{[F ({w})](ω1), [F ({w})](ω2)}.

¥
Example 5.9. [Urn problem]. Let Uj, j = 1, 2, 3, be urns that contain sufficiently many

colored balls as follows:

blue balls green balls red balls yellow balls

urn U1 60% 20% 10% 10%
urn U2 40% 20% 30% 10%
urn U3 20% 20% 40% 20%

(5.17)

Put U = {U1, U2, U3}. We consider the state space Ω
(
≡ {ω1, ω2, ω3}

)
with the

discrete topology, which is identified with U, that is, U ∋ Uj ↔ ωj ∈ Ω ≈ M
p
+1(Ω).7

U1 ≈ ω1 U2 ≈ ω2 U3 ≈ ω3

B B B G R

B B B G Y

B B G R R

B B G R Y

B G R R Y

B G R R Y

7Strictly speaking, we must consider the identification as (5.15).
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 101

Define the observable O ≡ (X = {b, g, r, y},P(X), F(·)) in C(Ω) by the usual way. That

is,

F{b}(ω1) = 6/10 F{g}(ω1) = 2/10 F{r}(ω1) = 1/10 F{y}(ω1) = 1/10

F{b}(ω2) = 4/10 F{g}(ω2) = 2/10 F{r}(ω2) = 3/10 F{y}(ω2) = 1/10

F{b}(ω3) = 2/10 F{g}(ω3) = 2/10 F{r}(ω3) = 4/10 F{y}(ω3) = 2/10. (5.18)

Then we have the measurement MC(Ω)(O, S[∗]).

[I] Now we consider the measurement MC(Ω)(O, S[∗]). And assume that we get the mea-

sured value ‘b’ by the measurement MC(Ω)(O, S[∗]). Then Fisher’s maximum likelihood

method (i.e., Corollary 5.6) says that there is a reason to infer that

[∗] = ω1

since

F{b}(ω1) = 0.6 = max
ω∈Ω

F{b}(ω) = max{0.6, 0.4, 0.2}.

That is, the unknown urn [∗] is U1.

[II] Also, consider the (iterated) measurement MC(Ω)(×2
k=1 O ≡ (X2, P(X2), ×2

k=1 F ),

S[∗]) where (×2
k=1 F )

Ξ1×Ξ2
(ω) = FΞ1(ω) · FΞ2(ω). Also, assume that

• the measured value (b, r) is obtained by the iterated measurement MC(Ω)(×2
k=1 O, S[∗]).

Applying Fisher’s method (= Corollary 5.6), we get the conclusion as follows: Put

E(ω) = F{b}(ω)F{r}(ω).

Clearly it holds that E(ω1) = 6 · 1/102 = 0.06, E(ω2) = 4 · 3/102 = 0.12 and E(ω3) =

2 · 4/102 = 0.08. Therefore, there is a very reason to think that [ ∗ ] = δω2 , that is, the

unknown urn [∗] is U2.

[III; Remark (moment method)]. Here, let us consider the above [II] by the moment

method (cf. Definition 2.27). Define the distance ∆ on Mm
+1(X) such that:

∆(ν1, ν2) =
∑

x∈X≡{b,g,r,y}

|ν1({x}) − ν2({x})|

=|ν1({b}) − ν2({b})| + |ν1({g}) − ν2({g})| + |ν1({r}) − ν2({r})| + |ν1({y}) − ν2({y})|.
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102 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Note that M(Ω)

〈
δω1 , F{b}

〉
C(Ω)

= δω1(F{b}) = F{b}(ω1) = 6/10, and similarly (cf. (5.18)),

δω1(F{b}) = 6/10 δω1(F{g}) = 2/10 δω1(F{r}) = 1/10 δω1(F{y}) = 1/10

δω2(F{b}) = 4/10 δω2(F{g}) = 2/10 δω2(F{r}) = 3/10 δω2(F{y}) = 1/10

δω3(F{b}) = 2/10 δω3(F{g}) = 2/10 δω3(F{r}) = 4/10 δω3(F{y}) = 2/10.

Since the measured value (b, r) is obtained, we have the sample space (X, 2X , ν) such that

ν({b}) = 1/2, ν({g}) = 0, ν({r}) = 1/2, ν({y}) = 0.

Then, we see that

∆(δω1(F{·}), ν) = |6/10 − 1/2| + |2/10 − 0| + |1/10 − 1/2| + |1/10 − 0| = 8/10

∆(δω2(F{·}), ν) = |4/10 − 1/2| + |2/10 − 0| + |3/10 − 1/2| + |1/10 − 0| = 6/10

∆(δω3(F{·}), ν) = |2/10 − 1/2| + |2/10 − 0| + |4/10 − 1/2| + |2/10 − 0| = 8/10.

Thus, the moment method says that the unknown urn [∗] is U2.

¥
Example 5.10. [At a gun shop, [44]]. Let G ≡ {G1, ..., G50} be a set of guns in a gun

shop. Assume that

the percentage of “hits of a gun Gj” =


80% if 1 ≤ j ≤ 30,
70% if 31 ≤ j ≤ 40,
10% if 41 ≤ j ≤ 50.

(5.19)

MarkGun Gj0

Assume the following situation (i)+(ii):

(i) Some one picks up a certain gun Gj0 from G. He does not know the information

concerning the j0.

(ii) He shoots the gun Gj0 three times. First and second he hits the mark, and third he

misses the mark.
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 103

Our present problem is to formulate the measurement (i)+(ii).

The above example is solved in what follows. Let Ω be a state space, which is identified

with the set G. That is, we have the identification: G ∋ Gj ↔ ωj ∈ Ω. Define the

observable O ≡ (X = {0, 1},P(X), F(·)) in C(Ω) such that:

F{1}(ωj) =


0.8 if 1 ≤ j ≤ 30,
0.7 if 31 ≤ j ≤ 40,
0.1 if 41 ≤ j ≤ 50

(5.20)

and F{0}(ωj) = 1 − F{1}(ωj). Of course we think that

(♯) “hit the mark by a gun Gj0” ⇔ “get the measured value 1 by the measurement

MC(Ω)(O, S[δωj0
])”

Here, consider the (three times) iterated measurement MC(Ω)

(×3
k=1 O = (X3, P(X3),

×3
k=1 F ), S[δωj0

]

)
in C(Ω) such that:

(
3

×
k=1

F )
Ξ1×Ξ2×Ξ3

(ω) = FΞ1(ω)FΞ2(ω)FΞ3(ω) (∀Ξ1×Ξ2×Ξ3 ∈ P(X3),∀ω ∈ Ω).

(5.21)

Clearly, the above statement (ii) implies that the measured value (1, 1, 0) is obtained by

MC(Ω)

(×3
k=1 O, S[∗]

)
.

(
The observer does not know that [∗] = δωj0

.
)

By a simple

calculation, we see

F{1}(ωj)F{1}(ωj)F{0}(ωj) =


0.128 if 1 ≤ j ≤ 30,
0.147 if 31 ≤ j ≤ 40,
0.009 if 41 ≤ j ≤ 50.

(5.22)

Therefore, by Fisher’s method (= Corollary 5.6), there is a very reason to consider that

31 ≤ j0 ≤ 40.

¥
Example 5.11. [(i): Gaussian observable]. Consider a commutative C∗-algebra C0(R).

And define the Gaussian observable Oσ2 ≡ (R, Bbd
R , F σ2

(·) ) in C0(R) such that:

F σ2

Ξ (µ) =
1√
2πσ

∫
Ξ

exp[ − 1

2σ2
(x − µ)2]dx (∀Ξ ∈ Bbd

R , ∀µ ∈ R). (5.23)

Further, consider the product observable ×××××××××3

k=1O (or in short, O3
σ2) ≡ (R3, Bbd

R3 , F σ2,3
(·) ) in

C0(R) such that:
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104 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

F σ2,3
Ξ1×Ξ2×Ξ3

(µ) = F σ2

Ξ1
(µ) · F σ2

Ξ2
(µ) · F σ2

Ξ3
(µ)

=
1

(
√

2πσ)3

∫
Ξ1×Ξ2×Ξ3

exp[ − (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]dx1dx2dx3

(∀Ξ = k ∈ Bbd
R , k = 1, 2, 3, ∀µ ∈ R). (5.24)

Here consider the measurement MC0(R)(O
3
σ2 , S[∗]). And assume that

• the measured value (x0
1, x

0
2, x

0
3) ( ∈ R3) is obtained by the MC0(R)(O

3
σ2 , S[∗]).

Then, Fisher’s method (=Corollary 5.6) and Remark 5.4 say that there is a reason to

think that the unknown state [ ∗ ] = µ0, where

1

(
√

2πσ)3
exp[ − (x0

1 − µ0)
2 + (x0

2 − µ0)
2 + (x0

3 − µ0)
2

2σ2
]

= max
µ∈R

[ 1

(
√

2πσ)3
exp[ − (x0

1 − µ)2 + (x0
2 − µ)2 + (x0

3 − µ)2

2σ2
]
]
, (5.25)

which is equivalent to

(x0
1 − µ0)

2 + (x0
2 − µ0)

2 + (x0
3 − µ0)

2

= min
µ∈R

[(x0
1 − µ)2 + (x0

2 − µ)2 + (x0
3 − µ)2] (5.26)

and moreover, equivalently,

µ0 = (x0
1 + x0

2 + x0
3)/3. (5.27)

[(ii): Gaussian observable]. Consider a commutative C∗-algebra C([0, 100]), where [0, 100]

≡ {µ ∈ R | 0 ≤ µ ≤ 100}. And define the Gaussian observable Oσ2 ≡ (R,Bbd
R , F σ2

(·) ) in

C([0, 100]) such that:

F σ2

Ξ (µ) =
1√
2πσ

∫
Ξ

exp[ − 1

2σ2
(x − µ)2]dx (∀Ξ ∈ Bbd

R , ∀µ ∈ [0, 100]). (5.28)

Further, consider the product observable O3
σ2 ≡ (R3,Bbd

R3 , F σ2,3
(·) ) in C0([0, 100]) such that:

F σ2,3
Ξ1×Ξ2×Ξ3

(µ)

=
1

(
√

2πσ)3

∫
Ξ1×Ξ2×Ξ3

exp[ − (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]dx1dx2dx3

(∀Ξ = k ∈ Bbd
R , k = 1, 2, 3, ∀µ ∈ [0, 100]). (5.29)

Here consider the measurement MC([0,100])(O
3
σ2 , S[∗]). And assume that
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5.2. FISHER’S MAXIMUM LIKELIHOOD METHOD 105

• the measured value (x0
1, x

0
2, x

0
3) ( ∈ R3) is obtained by the MC([0,100])(O

3
σ2 , S[∗])

Then, Fisher’s method and Remark 5.4 say that there is a reason to think that the

unknown state [ ∗ ] = µ0, where [ ∗ ] = µ0, where

1

(
√

2πσ)3
exp[ − (x0

1 − µ0)
2 + (x0

2 − µ0)
2 + (x0

3 − µ0)
2

2σ2
]

= max
µ∈[0,100]

[ 1

(
√

2πσ)3
exp[ − (x0

1 − µ)2 + (x0
2 − µ)2 + (x0

3 − µ)2

2σ2
]
]

(5.30)

which is equivalent to

(x0
1 − µ0)

2 + (x0
2 − µ0)

2 + (x0
3 − µ0)

2

= min
µ∈[0,100]

[(x0
1 − µ)2 + (x0

2 − µ)2 + (x0
3 − µ)2] (5.31)

and moreover, equivalently,

µ0 =


0 if x0

1 + x0
2 + x0

3 < 0

(x0
1 + x0

2 + x0
3)/3 if 0 ≤ x0

1 + x0
2 + x0

3 ≤ 100

100 if x0
1 + x0

2 + x0
3 > 100.

(5.32)

¥

5.2.2 Monty Hall problem in PMT

Problem 5.12. [Monty Hall problem, cf.[33]].

The Monty Hall problem is as follows:

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

You pick a door, say number 1, and the host, who knows what’s behind the doors,

opens another door, say “number 3”, which has a goat. He says to you, “Do you

want to pick door number 2?” Is it to your advantage to switch your choice of doors?
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106 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

? ? ?

Door Door Door

Number 1 Number 2 Number 3

[Answer]. Put Ω = {ω1, ω2, ω3}, where

ω1 · · · · · · the state that the car is behind the door number 1

ω2 · · · · · · the state that the car is behind the door number 2

ω3 · · · · · · the state that the car is behind the door number 3.

Define the observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 8

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0.

Thus we have a measurement MC(Ω)(O, S[∗]). Here, note that

(1) :“measured value 1 is obtained” ⇐⇒ The host says “Door (number 1) has a goat”,

(2) :“measured value 2 is obtained” ⇐⇒ The host says “Door (number 2) has a goat”,

(3) :“measured value 3 is obtained” ⇐⇒ The host says “Door (number 3) has a goat”.

The host said “Door (number 3) has a goat”. This implies that you get the measured

value “3” by the measurement MC(Ω)(O, S[∗]). Therefore, Fisher’s maximum likelihood

method says that you should pick door number 2. That is because we see that

[F ({3})](ω2) = 1.0 = max{0.5, 1.0, 0.0}

= max{[F ({3})](ω1), [F ({3})](ω2), [F ({3})](ω3)},

and thus, [∗] = δω2 . However, this is not all of the Monty Hall problem. See Remark 5.13,

Problem 8.8 and Problem 11.13 later.

¥
8Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P).
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5.3. INFERENCE INTERVAL 107

Remark 5.13. [Monty Hall problem by the moment method (cf. Definition 2.27)].

Here, consider Problem 5.12 by the moment method. Since you get measured value 3,

you get the sample space ({1, 2, 3}, 2{1,2,3}, νs) such that νs({1}) = 0, νs({2}) = 0 and

νs({3}) = 1. For example define the distance ∆ such that: for any ν1, ν2 ∈ Mm
+1({1, 2, 3}),

∆(ν1, ν2) = |ν1({1}) − ν2({1})| + |ν1({2}) − ν2({2})| + |ν1({3}) − ν2({3})|.

Then, we see

∆(νs, [F ( · )](ω1)) = |0 − 0| + |0 − 0.5| + |1 − 0.5| = 1,

∆(νs, [F ( · )](ω2)) = |0 − 0| + |0 − 0| + |1 − 1| = 0

and

∆(νs, [F ( · )](ω3)) = |0 − 0| + |0 − 1| + |1 − 0| = 2.

Thus, we can, by the moment method, infer that ω2 is most possible, that is, the car is

behind the door number 2.

¥

5.3 Inference interval

Let O( ≡ (X, F, F )) be an observable formulated in a C∗-algebra A. Assume that

X has a metric dX . And assume that the state space Sp(A∗) has the metric dS, which

induces the weak∗ topology σ(A∗, A). Let E : X → Sp(A∗) be a continuous map, which

is called “estimator”. Let γ be a real number such that 0 ≪ γ < 1, for example, γ = 0.95.

For any ρp( ∈ Sp(A∗)), define the positive number ηγ
ρp ( > 0) such that:

ηγ
ρp = inf{η > 0 :

A∗

〈
ρp, F (E−1(B(ρp; η))

〉
A
≥ γ} (5.33)

where B(ρp; η) = {ρp
1( ∈ Sp(A∗)) : dS(ρp

1, ρ
p) ≤ η}. For any x ( ∈ X), put

Dγ
x = {ρp(∈ Sp(A∗)) : dS(E(x), ρp) ≤ ηγ

ρp}. (5.34)

The Dγ
x is called the (γ)-inference interval of the measured value x.

Note that,
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108 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

(A) for any ρp
0( ∈ Sp(A∗)), the probability, that the measured value x obtained by the

measurement MA

(
O ≡ (X, F, F ), S[ρp

0]

)
satisfies the following condition (♭), is larger

than γ (e.g., γ = 0.95).

(♭) E(x) ∈ B(ρp
0; η

γ
ρp
0
) or equivalently d(E(x), ρp

0) ≤ ηγ
ρp
0
.

Assume that

(B) we get a measured value x0 by the measurement MA

(
O ≡ (X, F, F ), S[ρp

0]

)
.

Then, we see the following equivalences:

(♭) ⇐⇒ dS(E(x0), ρ
p
0) ≤ ηγ

ρp
0

⇐⇒ Dγ
x0

∋ ρp
0.

x0

E(x0)

ρp

Dγ
x0

Sp(A∗)X

Summing the above argument, we have the following theorem.

Theorem 5.14. [Inference interval]. Let O ≡ (X, F, F ) be an observable in A. Let ρp
0

be any fixed state, i.e., ρp
0 ∈ Sp(A∗), Consider a measurement MA

(
O ≡ (X, F, F ), S[ρp

0]

)
.

Let E : X → Sp(A∗) be an estimator. Let γ be such as 0 ≪ γ < 1 (e.g., γ = 0.95). For

any x( ∈ X), define Dγ
x as in (5.34). Then, we see,

(♯) the probability that the measured value x0( ∈ X) obtained by the measurement

MA

(
O ≡ (X, F, F ), S[ρp

0]

)
satisfies the condition that

Dγ
x0

∋ ρp
0 , (5.35)

is larger than γ.

¥
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5.3. INFERENCE INTERVAL 109

Example 5.15. [The urn problem]. Put Ω = [0, 1], i.e., the closed interval in R. We

assume that each ω ( ∈ Ω ≡ [0, 1]) represents an urn that contains a lot of red balls and

white balls such that:

the number of white balls in the urn ω

the total number of red and white balls in the urn ω
≈ ω (∀ω ∈ [0, 1] ≡ Ω). (5.36)

Define the observable O = (X ≡ {r, w}, 2{r,w}, F ) in C(Ω) such that where

F (∅)(ω) = 0, F ({r})(ω) = ω, F ({w})(ω) = 1 − ω, F ({r, w})(ω) = 1

(∀ω ∈ [0, 1] ≡ Ω). (5.37)

Here, consider the following measurement Mω:

Mω := “Pick out one ball from the urn ω, and recognize the color of the ball” (5.38)

That is, we consider

Mω = MC(Ω)(O, S[δω ]). (5.39)

Moreover we define the product observable ON ≡ (XN , P(XN), FN), such that:

[FN(Ξ1×Ξ2× · · ·×ΞN−1×ΞN)](ω)

=[F (Ξ1)](ω) · [F (Ξ2)](ω) · · · [F (ΞN−1)](ω) · [F (ΞN)](ω)

(∀ω ∈ Ω ≡ [0, 1], ∀Ξ1, Ξ2, · · · , ΞN ⊆ X ≡ {r, w}). (5.40)

As mentioned in Definition 2.27, we think that

“take a measurement Mω N times” ⇔ “take a measurement MC(Ω)(O
N , S[δω ])”

(5.41)

Define the estimator E : XN( ≡ {r, w}N) → Ω( ≡ [0, 1])

E(x1, x2, · · · , xN−1, xN) =
♯[{n ∈ {1, 2, · · · , N} | xn = r}]

N
(∀x = (x1, x2, · · · , xN−1, xN) ∈ XN ≡ {r, w}N). (5.42)

For each ω( ∈ [0, 1] ≡ Ω), define the positive number ηγ
ω such that:

ηγ
ω

= inf
{

η > 0
∣∣∣ [FN({(x1, x2, · · · , xN) | ω − η ≤ E(x1, x2, · · · , xN) ≤ ω + η})](ω) > 0.95

}
= inf

[F N ({(x1,x2,··· ,xN )|ω−η≤E(x1,x2,··· ,xN )≤ω+η})](ω)>0.95
η. (5.43)
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110 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Put

Dγ
x = {ω( ∈ Ω) : |E(x) − ω| ≤ ηγ

ω}. (5.44)

For example, assume that N is sufficiently large and γ = 0.95. Then we see, by (2.58),

that

η0.95
ω ≈ 1.96

√
ω(1 − ω)

N

and

D0.95
x = [E(x) − η−, E(x) + η+] (5.45)

where

η− = η0.95
E(x)−η− , η+ = η0.95

E(x)+η+
. (5.46)

Under the assumption that N is sufficiently large, we can consider that

η− ≈ η+ ≈ η0.95
E(x) ≈ 1.96

√
E(x)(1 − E(x))

N
.

Then we can conclude that

• for any urn ω( ∈ Ω ≡ [0, 1])), the probability, that the measured value x = (x1, x2, · · · ,

xN) obtained by the measurement MA

(
ON , S[δω ]

)
satisfies the following condition

(♯), is larger than γ (e.g., γ = 0.95).

(♯) E(x) − 1.96
√

E(x)(1−E(x))
N

≤ ω ≤ E(x) + 1.96
√

E(x)(1−E(x))
N

.

where E is defined by (5.42).

¥

5.4 Testing statistical hypothesis

Now we study “testing statistical hypothesis”, that is, answer the following question.
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5.4. TESTING STATISTICAL HYPOTHESIS 111

Problem 5.16. [Testing statistical hypothesis]. Consider a measurement MC(Ω)(O ≡
(X, F, F ), S[∗]) formulated in C(Ω). Let E : X → Ω be Fisher’s estimator. Assume the
following hypothesis:

(H) the unknown state [∗] belongs to a closed set CH ( ⊆ Ω).

And further assume that we see the following fact:

(F) a measured value x0( ∈ X) is obtained by measurement MC(Ω)(O ≡ (X, F, F ), S[∗]).

Here, our present purpose is to propose an algorithm that decides whether the above hy-
pothesis (H) can be denied by the fact (F). This algorithm is called “the testing statistical
hypothesis”.

In the above problem, it is usually expected that the hypothesis (H) is not true. In

this sense, the above (H) is called the null hypothesis.

Now we provide two answers (i.e., Answer 1 and Answer 2). Answer 1 (likelihood ratio

test) is, of course, well-known and authorized. Also, in order to solve the question: “Is

there another answer?”, we add Answer 2 after Answer 1.

Answer 1. [Likelihood ratio test]. Consider a measurement MC(Ω)(O ≡ (X, F, F ), S[∗])

formulated in C(Ω). Let E : X → Ω be Fisher’s estimator, i.e., it is defined by

E(x) = lim
Ξn→{x}

ωn (∀x ∈ X),

where ωn ( ∈ Ω) is chosen such that it satisfies

[F (Ξn)](ωn)

maxω∈Ω[F (Ξn)](ω)
= 1.

(
For the exact argument, see Remark 5.4 (Radon-Nikodým derivative).

)
Assume

both (H) and (F) in Problem 5.16. Consider a real number α such that 0 < α ≪ 1

(e.g. α = 0.05, which may be called a significance level. Let ω be in Ω. Then, by

Axiom 1, we have a sample probability measure Pω on X (of the measurement MC(Ω)(O

≡ (X, F, F ), S[δω ])) such that:

Pω(Ξ) = [F (Ξ)](ω) (∀Ξ ∈ F). (5.47)

Here define the function ΛCH
: X → [0, 1] such that:

ΛCH
(x) = lim

Ξ→{x}

supω∈CH
Pω(Ξ)

supω∈Ω Pω(Ξ)
(∀x ∈ X). (5.48)
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112 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Also, for any ϵ (0 < ϵ ≤ 1), define [D]ϵCH
( ∈ F) such that:

[D]ϵCH
= {x ∈ X | ΛCH

(x) < ϵ}. (5.49)

0

ϵ

1

X

[D]ϵCH

ΛCH
(x)

Thus we can define ϵ0.05
max such that:

ϵ0.05
max = sup{ϵ | sup

ω0∈CH

Pω0([D]ϵCH
) ≤ 0.05}. (5.50)

Now we can conclude that

Answer 1
if x0 ∈ [D]

ϵ0.05
max

CH
, then the hypothesis (H) can be denied

if x0 /∈ [D]
ϵ0.05
max

CH
, then the hypothesis (H) can not be denied

(5.51)

Next we shall propose “Answer 2”. Before this, we must prepare the following well-

known lemma.

Lemma 5.17. [Neyman-Pearson theorem, α-influential domain of ν1 for ν2, cf. [59]]. Let

(X, F) be a measurable space. Let ν1 and ν2 be probability measures on X. Define the

Radon-Nikodým derivative dν1

dν2
: X → [0,∞) such that:

dν1

dν2

(x) = lim
Ξ→x

ν1(Ξ)

ν2(Ξ)
(x ∈ X). (5.52)

Put

[D](ϵ,
dν1

dν2

) = {x ∈ X | dν1

dν2

(x) < ϵ}, (0 ≤ ϵ ≤ ∞). (5.53)
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5.4. TESTING STATISTICAL HYPOTHESIS 113

Thus we can define ϵ̆0.05
max such that:

ϵ̆0.05
max

(
≡ ϵ̆α=0.05

max

)
= sup{ϵ | ν1([D](ϵ,

dν1

dν2

)) ≤ 0.05}. (5.54)

Now we have the

[D](ϵ̆0.05
max,

dν1

dν2

), (5.55)

which is called “the 0.05-influential domain of ν1 for ν2”.

¥
Answer 2. [A test using Neyman-Pearson theorem]. Consider a measurement MC(Ω)(O

≡ (X, F, F ), S[∗]) formulated in C(Ω). Let E : X → Ω be Fisher’s estimator. Assume

both (H) and (F) in Problem 5.16. Consider a real number α such that 0 < α ≪ 1

(e.g. α = 0.05 which may be also called a significance level. Let ω be in CH . Consider

a measurement MC(Ω)(O ≡ (X, F, F ), S[δω ]) . Let x be in X. Then, we have two sample

probability measures Pω and PE(x) on X such that:

νω(Ξ) = Pω(Ξ) = [F (Ξ)](ω) (∀Ξ ∈ F)

and

ν
E(x)

= PE(x)(Ξ) = [F (Ξ)](E(x)) (∀Ξ ∈ F). (5.56)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ϵ̆0.05
max,

dνω

dν
E(x)

). (5.57)

Put

[D]
ϵ̆0.05
max

CH ,x = ∩ω∈CH
[D](ϵ̆0.05

max,
dνω

dν
E(x)

). (5.58)

Lastly, we put

[D]
ϵ̆0.05
max

CH
= {x ∈ X | x ∈ [D]

ϵ̆0.05
max

CH ,x}. (5.59)

Now we can conclude that

Answer 2
if x0 ∈ [D]

ϵ̆0.05
max

CH
, then the hypothesis (H) can be denied

if x0 /∈ [D]
ϵ̆0.05
max

CH
, then the hypothesis (H) can not be denied

(5.60)
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114 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Remark 5.18. [Answers 1 and 2]. We believe that the above two answers 1 and 2

are proper though the meanings of “significant level” is different in each answer (cf. [II;

CH = [0,∞)] in Examples 5.16 and 5.17). We do not know whether there is another

proper answer.

¥
Example 5.19. [Likelihood ratio test for the Gaussian observable]. Put Ω = R, A =

C0(Ω), Oσ2 ≡ (R,Bbd
R , F σ2

(·) ) in C0(Ω) such that:

F σ2

Ξ (ω) =
1√
2πσ

∫
Ξ

exp[ − (x − ω)2

2σ2
]du (∀Ξ ∈ Bbd

R , ∀ω ∈ Ω = R). (5.61)

And thus. consider the product observable O2
σ ≡ (R2,Bbd

R2 , F σ2

(·) )×F σ2

(·) ) in C0(Ω). That

is,

(F σ2

Ξ1
×F σ2

Ξ2
)(ω) =

1

(
√

2πσ)2

∫∫
Ξ1×Ξ2

exp[ − (x1 − ω)2 + (x2 − ω)2

2σ2
]dx1dx2

(∀Ξk ∈ Bbd
R (k = 1, 2), ∀ω ∈ Ω = R). (5.62)

[Case(I): Two sided test, i.e., CH = {ω0}]. Assume that CH = {ω0}, ω0 ∈ Ω = R. Then,

Λ{ω0}(x1, x2) = lim
Ξ1×Ξ2→{(x1,x2)}

supω∈{ω0} Pω(Ξ1 × Ξ2)

supω∈Ω Pω(Ξ1 × Ξ2)

=
exp[ − (x1−ω0)2+(x2−ω0)2

2σ2 ]

exp[ − (x1−(x1+x2)/2)2+(x2−(x1+x2)/2)2

2σ2 ]

= exp[ − [(x1 + x2) − 2ω0]
2

4σ2
] = exp[ − [(x1 + x2)/2 − ω0]

2

2(σ/
√

2)2
]

(∀(x1, x2) ∈ R2). (5.63)

Also, for any ϵ( > 0), define [D]ϵ{ω0} ( ∈ F) such that:

[D]ϵ{ω0} = {(x1, x2) ∈ R2 | Λ{ω0}(x1, x2) < ϵ}. (5.64)

Thus we can define ϵ0.05
max such that:

ϵ0.05
max = sup{ϵ | sup

ω∈{ω0}
Pω([D]ϵ{ω0}) ≤ 0.05}. (5.65)

Now we can conclude that

[D]
ϵ0.05
max

{ω0}

={(x1, x2) ∈ R2 | (x1 + x2)/2 ≤ ω0 − 1.96σ/
√

2}⋃
{(x1, x2) ∈ R2 | (x1 + x2)/2 ≥ ω0 + 1.96σ/

√
2}

=“Slash part in the following figure”
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5.4. TESTING STATISTICAL HYPOTHESIS 115

x1

x2

-

6

ω0

2(ω0 − 1.96σ/
√

2) 2(ω0 + 1.96σ/
√

2)

2(ω0 − 1.96σ/
√

2)

2(ω0 + 1.96σ/
√

2)

[Case(II): One sided test, i.e., CH = [ω0,∞)]. Assume that CH = [ω0,∞), ω0 ∈ Ω = R.

Then,

Λ[0,∞)(x1, x2) = lim
Ξ1×Ξ2→{(x1,x2)}

supω∈[ω0,∞) Pω(Ξ1 × Ξ2)

supω∈Ω Pω(Ξ1 × Ξ2)

=

{
exp[ − [(x1+x2)−2ω0]2

4σ2 ] (x1+x2

2
< ω0)

1 ( otherwise )
(5.66)

Also, for any ϵ( > 0), define [D]ϵ[ω0,∞) ( ∈ F) such that:

[D]ϵ[0,∞) = {(x1, x2) ∈ R2 | Λ[0,∞)(x1, x2) ≤ ϵ}

= {(x1, x2) ∈ R2 | x1 + x2

2
− ω0 <

√
4σ2 log ϵ}. (5.67)

Thus we can define ϵ0.05
max such that:

ϵ0.05
max = sup{ϵ | sup

ω0∈[0,∞)

Pω0([D]ϵ[0,∞)) ≤ 0.05}. (5.68)

Therefore, we can conclude that

[D]
ϵ0.05
max

[0,∞)

={(x1, x2) ∈ R2 | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√

2}. (cf. (2.58)).

=“Slash part in the following figure”
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x1

x2

-

6

ω0

2(ω0 − 1.65σ/
√

2)

2(ω0 − 1.65σ/
√

2)

¥
Example 5.20. [The test using Neyman-Pearson theorem for the Gaussian observable].

Put Ω = R, A = C0(Ω), Oσ2 ≡ (R, Bbd
R , F σ2

(·) ) and O2
σ2 ≡ (R2,Bbd

R2 , F σ2

(·) ×F σ2

(·) ) in C0(Ω)

are as in the above.

[Case(I): Two sided test, i.e., CH = {ω0}]. Assume that CH = {ω0}, ω0 ∈ Ω = R. Then,

νω0
1 (Ξ1×Ξ2) = Pω0(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](ω0) (∀Ξ1×Ξ2 ∈ Bbd

R2)

and

ν
E(x0)
2 = PE(x0)(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](E(x0)) (∀Ξ1×Ξ2 ∈ Bbd

R2). (5.69)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ϵ̆0.05
max, ϕν

ω0
1 /ν

E((x1,x2))
2

) =

{
{(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/

√
2} (E(x0) < ω0)

{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/
√

2} (E(x0) > ω0).

Put

[D]
ϵ̆0.05
max

{ω0},(x1,x2) = ∩ω0∈{ω0}[D](ϵ̆0.05
max, ϕν

ω0
1 /ν

E((x1,x2))
2

) = [D](ϵ̆0.05
max, ϕν

ω0
1 /ν

E((x1,x2))
2

) (∀(x1, x2) ∈ R2).

(5.70)

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



5.5. MEASUREMENT ERROR MODEL IN PMT 117

Therefore, we can conclude that

[D]
ϵ̆0.05
max

{ω0} ={(x1, x2) ∈ R2 | (x1, x2) ∈ [D]
ϵ̆0.05
max

{ω0},(x1,x2)}

={(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√

2}⋃
{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/

√
2}.

[Case(II): One sided test, i.e., CH = [ω0,∞)]. Assume that CH = [ω0,∞), ω0 ∈ Ω = R.

Then,

νω0
1 (Ξ1×Ξ2) = Pω0(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](ω0) (∀Ξ1×Ξ2 ∈ Bbd

R2)

and

ν
E(x0)
2 (Ξ1×Ξ2) = PE(x0)(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](E(x0)) (∀Ξ1×Ξ2 ∈ Bbd

R2).

(5.71)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ϵ̆0.05
max, ϕν

ω0
1 /ν

E((x1,x2))
2

) =

{
{(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/

√
2} (E(x0) < ω0)

{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/
√

2} (E(x0) > ω0).

Put

[D]
ϵ̆0.05
max

[0,∞),(x1,x2) = ∩ω0∈[0,∞)[D](ϵ̆0.05
max, ϕν

ω0
1 /ν

E(x)
2

) (∀(x1, x2) ∈ R2). (5.72)

Therefore, we can conclude that

[D]
ϵ̆0.05
max

[0,∞) ={(x1, x2) ∈ R2 | (x1, x2) ∈ [D]
ϵ̆0.05
max

[0,∞),(x1,x2)}

={(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√

2}.

¥

5.5 Measurement error model in PMT

Although we have several kinds of measurement error models in statistics (cf. Fuller

[25], Cheng, etc. [16]), the following may be the simplest one (i.e., with normal distribu-

tions (= Gaussian distributions)):
ỹn = θ0 + θ1xn + en,
x̃n = xn + un

(en, un) ∼ NI[average(0, 0), variance(σ2
ee, σ

2
uu)],

9

(5.73)

(n = 1, 2, ..., N),
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118 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

which, of course, corresponds to the conventional statistics (i.e., the measurement equa-

tion in the dynamical system theory (1.2)). The first equation is a classical regression

specification, but the true explanatory variable xn is not observed directly. The observed

measure of xn, denoted by x̃n, may be obtained by a certain measurement. Our present

concern is how to infer the unknown parameters θ0 and θ1 from the measured value

{(x̃n, ỹn)}N
n=1. Precisely speaking, the purpose of this section is to study this problem in

general situations (i.e., without the assumption of normal distributions).

Put A0 ≡ C(Ω0) and A1 ≡ C(Ω1). Let Θ be a compact space, which may be called

an index state space (or parameter space). Consider a parameterized continuous map ψθ :

Ω0 → Ω1, θ ∈ Θ, which induces the parameterized homomorphism Ψθ : C(Ω1) → C(Ω0)

such that (cf. (3.14))

(Ψθf1)(ω) = f1(ψ
θ(ω)) (∀f1 ∈ C(Ω1),∀ω ∈ Ω0).

Consider observables O0 ≡ (X, F, F ) in C(Ω0) and O1 ≡ (Y, G, G) in C(Ω1). And recall

that ΨθO1 can be identified with the observable in C(Ω0) (cf. Remark 3.6 (i)). Thus, we

can consider the product observable Õθ = (X×Y, F×G, F×××××××××ΨθG) in C(Ω0). Thus, we get

the measurement MC(Ω0)(Õ
θ, S[δω ]), (ω ∈ Ω0). Consider the N times repeated measure-

ment of MC(Ω0)(Õ
θ, S[δω ]), which is represented by MC(ΩN

0 )(
⊗N

n=1 Õθ, S[⊗N
n=1δωn ]). Here,

⊗N
n=1δωn = δ(ω1,ω2,...,ωN ) (∈ M

p
+1(Ω

N
0 )) and

⊗N
n=1 Õθ = (XN × Y N , FN × GN ,

⊗N
n=1(F ×××××××××

ΨθG)) in
⊗N

n=1 C(Ω0) ≡ C(ΩN
0 ), that is,

[(
N⊗

n=1

(F ××××××××× ΨθG))(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN)

=[F ××××××××× ΨθG(Ξ1 × Γ1)](ω1) · [F ××××××××× ΨθG(Ξ2 × Γ2)](ω2) · · · [F ××××××××× ΨθG(ΞN × ΓN)](ωN)

(∀Ξn ∈ F, ∀Γn ∈ G,∀(ω1, ..., ωN) ∈ ΩN
0 ). (5.74)

Our present problem is as follows:

(♯) Consider the measurement MC(ΩN
0 )(

⊗N
n=1 Õθ̄, S[⊗N

n=1δω̄n ]) where it is assumed that

ω̄1, ω̄2, ..., ω̄N and θ̄ (∈ Θ) are unknown. Assume that we know that the mea-

sured value (x̃1, ..., x̃N , ỹ1, ..., ỹN) (∈ XN × Y N) obtained by the measurement

MC(ΩN
0 ) (

⊗N
n=1 Õθ̄, S[⊗N

n=1δω̄n ]) belongs to
∏N

n=1(Ξn ×Γn). Then, infer the unknown

ω̄1, ω̄2, ..., ω̄N and θ̄ (particularly, θ̄).

9Independent random variables with normal distributions
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5.5. MEASUREMENT ERROR MODEL IN PMT 119

That is, for simplicity under the assumption that Ω0 = X, Ω1 = Y , we can illustrate this

problem (♯) as follows:

Ω1

Ω0

ω1 = ψθ1(ω0)

ω1 = ψθ3(ω0)

ω1 = ψθ2(ω0)

Question
From the measured data

(x̃1, ..., x̃5, ỹ1, ..., ỹ5) (∈ Ω5
0 × Ω5

1) ,

infer the reasonable θ.
Answer
“Probably θ3 !”

• (x̃1, ỹ1)

• (x̃2, ỹ2)

• (x̃3, ỹ3) • (x̃4, ỹ4)

• (x̃5, ỹ5)

This problem is solved as follows: Define the observable Ô ≡ (XN × Y N , FN × GN , Ĥ) in

C(ΩN
0 × Θ) such that [Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ) = (5.74). Note

that we have the following identification:

MC(ΩN
0 ×Θ)(Ô, S[(⊗N

n=1δωn )⊗δθ]) = MC(ΩN
0 )(

N⊗
n=1

Õθ, S[⊗N
n=1δωn ]).

Consider the measurement MC(ΩN
0 ×Θ)(Ô, S[(⊗N

n=1δω̄n )⊗δθ̄]) where it is assumed that we

do not know ω̄1, ω̄2, ..., ω̄N , θ̄. Then, we can, by Fisher’s maximum likelihood method (cf.

Corollary 5.6), infer the unknown state (⊗N
n=1δω̄n) ⊗ δθ̄ such that:

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω̄1, ..., ω̄N , θ̄)

= max
(ω1,...,ωN ,θ)∈ΩN

0 ×Θ
[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ). (5.75)

This is the answer to the above problem (♯). It should be noted that the problem (♯) is

stated under the very general situations (i.e., Ω0, Ω1, X and Y are not necessarily the

real lines R).

In the following example, we apply our result (5.75) to the simple measurement error

model (5.73) with normal distributions.

Example 5.21. [The simple example of measurement error model (the case that θ0, θ1,

ω1 , ..., ωN are unknown)]. Let L be a sufficiently large number. Put Ω0 = [ − L,L],

Ω1 = [−L2 −L, L2 + L], Θ = [−L,L]2 , and define the map ψ(θ0,θ1) : Ω0 → Ω1 such that:

ψ(θ1,θ2)(ω) = θ1ω + θ0 (∀ω ∈ Ω0,∀(θ0, θ1) ∈ Θ.
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120 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Also, put (X, F, F ) = (R,BR, Gσ1) in C(Ω0) and (Y, G, G) = (R, BR, Gσ2) in C(Ω1)

(cf. Example 2.17). Thus, we define the product observable Õ(θ0,θ1) = (X ×Y, F×G, Hθ),

where Hθ ≡ F ××××××××× ΨθG, in C(Ω0) such that:

[Hθ(Ξ × Γ)](ω) = (
1√

2πσ1σ2

)2

∫∫
Ξ×Γ

exp[ − (x − ω)2

2σ2
1

− (y − (θ1ω + θ0))
2

2σ2
2

]dxdy

(∀Ξ ∈ BR, ∀Γ ∈ BR,∀ω ∈ Ω0).

Thus, we have the observable Ô = (R2N ,BR2N , Ĥ) in C(ΩN
0 × Θ) such that:

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ0, θ1)

=(
1√

2πσ1σ2

)2N

∫
· · ·

∫
ΠN

n=1(Ξn×Γn)

e
−

PN
n=1(xn−ωn)2

2σ2
1

−
PN

n=1(yn−(θ1ωn+θ0))2

2σ2
2 dx1dy1 · · · dxNdyN .

(5.76)

Assume the conditions in the problem (♯), and further add that

Ξϵ
n = [x̃n − ϵ, x̃n + ϵ], Γϵ

n = [ỹn − ϵ, ỹn + ϵ] (for sufficiently small positive ϵ).

Then, our main result (5.75) says that

max
(ω1,...,ωN ,θ0,θ1)∈ΩN

0 ×Θ
[Ĥ(Ξϵ

1 × · · · × Ξϵ
N × Γϵ

1 × · · · × Γϵ
N)](ω1, ..., ωN , θ)

⇐⇒ min
(ω1,...,ωN ,θ0,θ1)∈ΩN

0 ×Θ

[ N∑
n=1

(
x̃n

σ1

− ωn

σ1

)2 +
N∑

n=1

(
ỹn

σ2

− (
θ1σ1

σ2

ωn

σ1

+
θ0

σ2

))2
]

(since ϵ is small)

(
Here, note that the distance between a point ( exn

σ1
, eyn

σ2
) and a line y = θ1σ1

σ2
x + θ0

σ2
is equal

to |eyn−θ1exn−θ0|√
σ2
2+σ2

1θ2
1

. Then, we see
)

⇐⇒ min
(θ0,θ1)∈Θ

∑N
n=1(ỹn − θ1x̃n − θ0)

2

σ2
2 + σ2

1θ
2
1

(5.77)

⇐⇒

{ ∑N
n=1(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂

∂θ0
(5.77) = 0),∑N

n=1(θ̄1ỹnσ2
1 + x̃nσ2

2 − θ̄0θ̄1σ
2
1)(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂

∂θ1
(5.77) = 0).

(5.78)

Thus, the unknown parameters θ̄1 and θ̄2 are inferred by the solution of this equation

(5.78). Note that this is a direct consequence of our main result (5.75).

¥
Example 5.22. [The case that θ0, θ1, σ2

1, σ2
2, ω1 , ..., ωN are unknown]. Assume that θ0,

θ1, σ2
1, σ2

2, ω1 , ..., ωN are unknown. The log-likelihood is

L(θ0, θ1, σ
2
1 , σ2

2 , ω1, ..., ωN ) = log[(5.76)]

= − N log σ2
1

2
− N log σ2

2

2
−

∑N
n=1(xn − ωn)2

2σ2
1

−
∑N

n=1(yn − θ0 − θ1ωn)2

2σ2
2

.
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5.6. APPENDIX (ITERATIVE LIKELIHOOD FUNCTION METHOD) 121

Taking partial derivatives with respect to θ0, θ1, σ2
1, σ2

2 and ω1, ..., ωN , and equating the

results to zero, gives the likelihood equations,

N∑
n=1

(yn − θ0 − θ1ωn) = 0,
N∑

n=1

(yn − θ0 − θ1ωn)ωn = 0,∑N
n=1(xnωn)2

N
= σ2

1,

∑N
n=1(yn − θ0 − θ1ωn)2

N
= σ2

2,

(xnωn)2

2σ2
1

− (yn − θ0 − θ1ωn)2

2σ2
2

= 0, (n = 1, 2, ..., N).

Thus we can easily solve it as follows:

θ2
1 =

σ2
2

σ2
1

=
Syy

Sxx

, 2σ2
1 = Sxx −

Sxy

θ1

, 2σ2
2 = Syy − Sxyθ1,

θ0 = ȳ − θ1x̄, 2ωn = xn +
yn − θ0

θ1

= xn + x̄ +
yn − ȳn

θ1

,

where

x̄ =
x1 + · · · + xN

N
, ȳ =

y1 + · · · + yN

N
,

Sxx =
(x1 − x̄)2 + · · · + (xN − x̄)2

N
, Syy =

(y1 − ȳ)2 + · · · + (yN − ȳ)2

N
,

Sxy =
(x1 − x̄)(y1 − ȳ) + · · · + (xN − x̄)(yN − ȳ)

N
.

(Cf. Cheng, etc. [16]).

¥

5.6 Appendix (Iterative likelihood function method)

In this section we study the “Iterative likelihood function method (cf. [47])”, which

will be related to subjective Bayesian statistics (see §8.6 later).

Consider the “measurement” described in the following “step [1]” and “step [2]”,

[1] First we take a measurement MC(Ω)(O1 ≡ (X, 2X , F ), S[∗]), and we know that the

measured value is equal to x ( ∈ X).

[2] And successively, we take a measurement MC(Ω)(O2 ≡ (Y, 2Y , G), S[∗]), and we know

that the measured value is equal to y ( ∈ Y ).
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122 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Note that “[1]+[2]” ie equal to the following [3]10 :

[3] We take a measurement MC(Ω)(O1 × O2 ≡ ≡ (X × Y, F × G, H ≡ F × G) S[∗]),

and we know that the measured value obtained by MC(Ω)(O1 ×O2, S[∗]) is equal to

(x, y) ( ∈ X × Y ).(
A non-negative (real-valued) continuous function F (Ξ) in an observable (X, F, F ) is

called a likelihood function, or, a likelihood quantity.
)

Then we can say:

[♭] By Step [1], we get the likelihood function F ({x}). And further by step [2] (i.e.,

by “[1]+[2]” (=[3])), we get the new likelihood function F ({x})G({y}) ( ≡ [F ×
G]({x} × {y})).

Using the Bayes operator (cf. the formula (5.12)), this statement [♭] can be rewritten as

follows:

I
Step (1)−−−−→
B

O1
{x}

F ({x}) Step (2)−−−−→
B

O2
{y}

F ({x})G({y}) in C(Ω), (5.79)

where I( ∈ C(Ω)) is the identity element, i.e., the constant function such that I(ω) =

1(∀ω ∈ Ω).

Step (1)-

BO1

{x}

Step (2)-

BO2

{y}

Ω

1

0

I

Ω

1

0

[F ({x})](ω)

Ω

[F ({x})G({y})](ω)

1

0

It should be noted that:

(F1) the constant likelihood function “I” (or “k × I” where k > 0) is the likelihood

function that represents the fact “we have no information about the system S[∗]”.

Now we introduce the following notation. Cf. [47].

Notation 5.23. [S[∗]((G))lq]. The system S[∗] (formulated in C(Ω)) such that we know it

has the likelihood quantity G (G ∈ C(Ω), 0 ≤ G(ω) (∀ω ∈ Ω)) is denoted by S[∗]((G))lq.

10Recall §2.5 (Remarks(II)), that is, “Only one measurement is permitted to be conducted”. Thus,
“[1]+[2]” is a methodological explanation.
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5.6. APPENDIX (ITERATIVE LIKELIHOOD FUNCTION METHOD) 123

Thus, the symbol MC(Ω)

(
O, S[∗]((kG))lq

)
means “the measurement MC(Ω)

(
O, S[∗]

)
under

the condition that we know the likelihood quantity of the system S[∗] is equal to kG,

where G ∈ C(Ω), 0 ≤ G(ω) (∀ω ∈ Ω)”.

¥
Under this notation, the conventional Fisher’s maximum likelihood method (i.e., Corol-

lary 5.6) says that:

(F ′
1) Assume that we first have no information about the system S[∗]. And we take a

measurement MC(Ω)

(
O, S[∗]

)
, i.e., MC(Ω)

(
O, S[∗]((kI))lq

)
. Then, from the fact that

the measured value x ( ∈ X) is obtained by the MC(Ω)

(
O, S[∗]((kI))lq

)
, we know

that the likelihood quantity of the system S[∗] is equal to k[F ({x})](ω).
(
Thus,

there is a reason to regard the unknown state [ ∗ ] as the state ω0( ∈ Ω) such that

k[F ({x})](ω0) = maxω∈Ω k[F ({x})](ω).
)

However, it is usual to assume that we have a little bit of information before a measure-

ment. Thus, let us start from the measurement MC(Ω)

(
O ≡ (X, 2X , F ), S[∗]((G0))lq

)
. Here

we have the following problem:

(PG) How to infer the new likelihood quantity of the system S[∗] from the fact that the

measured value x ( ∈ X) is obtained by the MC(Ω)

(
O, S[∗]((G0))lq

)
.

This is equivalent to the following problem:

(P′
G) How to infer the likelihood quantity of the system S[∗] from the fact that the mea-

sured value (y0, x) ( ∈ {y0, y1} × X) is obtained by the iterated measurement

MC(Ω)

(
O0 × O, S[∗]((kI))lq

)
, where O0 = ({y0, y1}, 2{y0,y1}, G) and G({y0}) = G0,

G({y1}) = I − G0.

Thus, from (F ′
1) and “(PG)↔(P′

G)”, the problem (PG) is solved as follows:

(F2) (The answer of the (PG)): We know that the new likelihood quantity Gnew of the

system S[∗] is equal to BO
{x}(G0). Here, Bayes operator BO

{x} : C(Ω) → C(Ω) is

defined by BO
{x} (G) = F ({x})G (∀G ∈ C(Ω)).

Thus we see:

S[∗]((I))lq

MC(Ω)
`

O1, S[∗]((I))lq
´

−−−−−−−−−−−→
x is obtained

S[∗]((F ({x})))lq

MC(Ω)
`

O2, S[∗]((F ({x})))lq
´

−−−−−−−−−−−−−−→
y is obtained

S[∗]((F ({x})G({y})))lq
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124 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

where O1 = (X, 2X , F ) and O2 = (Y, 2Y , G).

Summing up, we can symbolically describe it as follows:
[F1] No information quantity ←→ kI( ∈ C(Ω)

[F2] S[∗]((G))lq

MC(Ω)
`

O, S[∗]((G))lq
´

−−−−−−−−−−−→
x is obtained

S[∗]((B
O
{x}G))lq

(
= S[∗]((F ({x})G))lq

)
,

(5.80)

where O = (X, 2X , F ).

The following example will promote the understanding of “iterative likelihood function

method”.

Example 5.24. [The urn problem]. There are two urns ω1 and ω2. The urn ω1 [resp.

ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Assume that they

can not be distinguished in appearance.

• Choose one urn from the two.

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball”.

(Q1) Which is the chosen urn, ω1 or ω2?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Which is the chosen urn, ω1 or ω2?

The illustration of MC(Ω)(O, S[∗]) (or, MC(Ω)(O, S[∗]((kI))lq) )

- �[∗]

ω1 ω2

[Answers]. In what follows this problem is studied in the iterative likelihood function

method. Put Ω = {ω1, ω2}. O = ({w, b}, 2{w,b}, F ) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.
(5.81)
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5.6. APPENDIX (ITERATIVE LIKELIHOOD FUNCTION METHOD) 125

The situation of no information in Fisher’s method is represented by kI (k > 0). Thus,

it suffices to consider the measurement MC(Ω)(O, S[∗]((kI))lq). Since the measured value

“w” was obtained, the new likelihood quantity Gnew is given as follows:

Gnew(ω1)
(

= kI · [F ({w})](ω1)
)
= 0.8k,

Gnew(ω2)
(

= kI · [F ({w})](ω2)
)
= 0.4k. (5.82)

Thus, by Fisher’s maximum likelihood method, we see that

(A1) there is a reason to infer that [ ∗ ] = ω1.

For the further case, it suffices to consider the measurement MC(Ω)(O, S[∗]((Gnew))lq).

Thus we similarly calculate that

Gnew2(ω1)
(
= [Gnew](ω1) · [F ({b})](ω1)

)
= 0.16k,

Gnew2(ω2)
(
= [Gnew](ω2) · [F ({b})](ω2)

)
= 0.24k. (5.83)

Thus we, by Fisher’s maximum likelihood method, see that

(A2) there is a reason to infer that [ ∗ ] = ω2.

¥

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



Chapter 6

Fisher’s statistics II (related to
Axioms 1 and 2)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (6.1)

(=(1.4))

In this chapter we study the relation between Fisher’s statistics (mentioned in the previous chapter)
and Axiom 2. Particularly we show that regression analysis can be completely understood within
the framework of Axioms 1 and 2. We expect that our result will make the readers notice that
regression analysis is more profound than they usually think. As mentioned in Chapter 1 (cf.
Declaration (1.11)), we assert that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics
is theoretically true (in PMT)”. 1

6.1 Regression analysis I

6.1.1 Introduction

The purpose of this chapter is to study and understand “regression analysis” com-

pletely under Axiom 1 and 2 (of measurement theory). The following Example 6.1 is the

most typical in all examples of “regression analysis”.

Example 6.1. [A typical example of regression analysis]. Let Ω ≡ {ω1, ω2, ..., ω100} be a

set of all students of a certain high school. Define h : Ω → [0, 200] [resp. w : Ω → [0, 200]]

1We believe that only “Fisher’s maximum likelihood method” and “regression analysis” are most
essential in statistics. Thus we believe that, in order to justify statistics, it suffices to show that the two
(i.e., “Fisher’s maximum likelihood method” and “regression analysis”) are formulated in PMT.

127
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128 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

such that:

h(ωn) = “the height of a student ωn” (n = 1, 2, ..., 100)[
resp. w(ωn) = “the weight of a student ωn” (n = 1, 2, ..., 100)

]

ω

h(ω)

w(ω)

Ω

0 100 200

0 100 200

(
Note that this is a special case of Fig. (3.20).

)
Assume that:

(1) The principal of this high school knows the both functions h and w. That is, he

knows the exact data of the height and weight concerning all students.

Also, assume that:

(2) Some day, a certain student helped a drowned girl. But, he left without reporting

the name. Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(ii) his height [resp. weight] is about 170 cm [resp. about 80 kg].

Now we have the following question:

• Under the above assumption (1) and (2), how does the principal infer who is he?

This is just what regression analysis says. For the solution, see Regression Analysis I (6.7)

later.

¥
In order to explain our main assertion, let us begin with the following Example 6.2 (the

conventional argument of regression analysis in Fisher’s maximum likelihood method),

which is easy and well-known.

Example 6.2. [The conventional argument of regression analysis in Fisher’s method].

We have a rectangular water tank filled with water. Assume that the height of water at
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6.1. REGRESSION ANALYSIS I 129

time t is given by the following function h(t):

h(t) = α0 + β0t, (6.2)

where α0 and β0 are unknown fixed parameters such that α0 is the height of water filling

the tank at the beginning and β0 is the increasing height of water per unit time. The

measured height hm(t) of water at time t is assumed to be represented by

hm(t) = α0 + β0t + e(t), (6.3)

where e(t) represents a noise (or more precisely, a measurement error) with some suitable

conditions. And assume that we obtained the measured data of the heights of water at

t = 1, 2, 3 as follows:

hm(1) = 1.9, hm(2) = 3.0, hm(3) = 4.7. (6.4)

h(t)

?

6

Under this setting, we consider the following problem:

(i) Infer the true value h(2) of the water height at t = 2 from the measured data (6.4).

This problem (i) is usually solved as follows: From the theoretical point of view, we can

infer, by Fisher’s maximum likelihood method and regression analysis, that

(α0, β0) = (0.4, 1.4). (6.5)(
For the derivation of (6.5) from (6.4), see Example 6.4 (6.16) later.

)
And next, we can

infer that

h(2) = 3.2, (6.6)
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130 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

by the calculation: h(2) = 0.4 + 1.4 × 2 = 3.2. This is the answer to the problem (i).

¥

The above argument in Example 6.2 is, of course, well known and adopted as the usual

regression analysis. Thus all statisticians may think that there is no serious problem in

regression analysis. However it is not true. For example, we have the basic problem in

the argument of Example 6.2 as follows:

(ii) What kinds of axioms are hidden behind the argument in Example 6.2? And more-

over, justify the argument in Example 6.2 under the axioms.

It is important. If we have no answer to the question: “What kinds of rules are permitted

to be used in statistics?”, we can not prove (or, justify) that the argument in Example 6.2

is true (or not). That is because there is no justification without an axiomatic formulation.

In this sense, we believe that the above question (ii) is the most important problem in

theoretical statistics. Also, if some know the great success of the axiomatic formulation

in physics (e.g., the three laws in Newtonian mechanics, or von Neumann’s formulation of

quantum mechanics, cf. [71], [84]), it is a matter of course that they want to understand

statistics axiomatically.

Trying to solve the problem (ii), some may consider as follows:

(iii) Firstly, Fisher’s maximum likelihood method should be declared as an axiom (cf.

Corollary 5.6). Also, the derivation of the (6.6) from the (6.5) should be justified

under some axioms. That is, it must not be accepted as a common sense.

This opinion (iii) may not be far from our assertion proposed in this chapter. However,

in order to describe the above (iii) precisely, we must make vast preparations.

Our standing point of this book is extremely theoretical (and not practical). However

we expect that many statisticians will be interested in our proposal. That is because we

believe that every statistician may want to know the justification of both the (6.5) and

the (6.6) in Example 6.2.

6.1.2 Regression analysis I in measurements

By the results in the previous chapters (i.e., Theorem 3.7 and Corollary 5.6), we can

easily propose:
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6.1. REGRESSION ANALYSIS I 131

REGRESSION ANALYSIS I [The conventional regression analysis in PMT]. (6.7)

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {Φπ(t),t :

C(Ωt) → C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an

observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Let Õ0

be the Heisenberg picture representation of the sequential observable [{Ot}t∈T , {Φt,π(t) :

C(Ωt) → C(Ωπ(t))}t∈T\{0} ] in C(Ω0). Then, we have a measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S[∗]). (cf. Theorem 3.7).

Assume that the measured value by the measurement MC(Ω0)(Õ0, S[∗]) belongs to
∏

t∈T Ξt (∈
2

Q

t∈T Xt). Then, there is a reason to infer that the state [∗] of the system S
(
i.e.,

the state before the measurement MC(Ω0)(Õ0, S[∗])
)
, the state after the measurement

MC(Ω0)(Õ0, S[∗]) and the δω0 (∈ M
p
+1(Ω))

(
defined by (6.9)

)
are equal. That is, Corollary

5.6 says that there is a reason to infer that

[ ∗ ] = “the state after the measurement MC(Ω0)(Õ0, S[∗])” = δω0 . (6.8)

Here the δω0 (∈ M
p
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.9)

¥
Remark 6.3. [Regression analysis I]. The above regression analysis is quite applicable.

For example, note that the “Φπ(t),t : C(Ωt) → C(Ωπ(t))” is generally assumed to be

Markov operators (and not homomorphisms). In this sense, Regression analysis I may

not be “conventional”.

¥
Now we shall review Example 6.2 in the light of Regression Analysis I.

Example 6.4. [Continued from Example 6.2, the conventional argument of regression

analysis in Fisher’s method]. Put Ω0 = [0.0, 1.0] × [0.0, 2.0], and put Ω1 = Ω2 = Ω3 =

[0.0, 10.0]. For each t (∈ {1, 2, 3}), define a continuous map ϕ0,t : Ω0 → Ωt such that:

Ω0( ≡ [0.0, 1.0] × [0.0, 2.0]) ∋ ω ≡ (α, β) 7→
ϕ0,t

α + βt ∈ Ωt( ≡ [0.0, 10.0]). (6.10)

Thus, for each t (∈ {1, 2, 3}), we have a homomorphism Φ0,t : C(Ωt) → C(Ω0) such that:

[Φ0,tft](ω) = ft(ϕ0,t(ω)) (∀ω ∈ Ω0, ∀ft ∈ C(Ωt)). (6.11)

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



132 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

It is usual to assume that regression analysis is applied to the system with a parallel

structure such as in the figure (6.12).
(
From the peculiarity of this problem, we can also

assume that this system has a series structure. However, we are not concerned with it.
)

C(Ω2)

C(Ω1)

C(Ω0)

C(Ω3)

¾
+

k
Φ0,2

Φ0,1

Φ0,3

(6.12)

For each t ∈ {1, 2, 3}, consider the discrete Gaussian observable Oσ2,N ≡ (XN , 2XN , Fσ,N)

in C(Ωt), (cf.(2.60) in Example 2.18). That is,

Ωt = [0.0, 10.0], XN = { k

N
| k = 0,±1,±2, ...,±N2},

and

[Fσ,N({k/N})](ω)

=


1√

2πσ2

∫ ∞
N− 1

2N
exp[ − (x−ω)2

2σ2 ]dx (k = N2,∀ω ∈ [a, b]),

1√
2πσ2

∫ k
N

+ 1
2N

k
N
− 1

2N

exp[ − (x−ω)2

2σ2 ]dx (∀k = 0,±1,±2, ...,±(N2 − 1), ∀ω ∈ [a, b]),

1√
2πσ2

∫ −N+ 1
2N

−∞ exp[ − (x−ω)2

2σ2 ]dx (k = −N2,∀ω ∈ [a, b]).

(cf. (2.aa60) in Example 2.18)

Here, we define the observable Õ0 ≡ (X3
N , 2X3

N , F̃0) in C(Ω0) such that:

[F̃0(Ξ1 × Ξ2 × Ξ3)](ω) = [Φ0,1Fσ2,N ](ω) · [Φ0,2Fσ2,N ](ω) · [Φ0,3Fσ2,N ](ω)

=[Fσ2,N(Ξ1)](ϕ0,1(ω)) · [Fσ2,N(Ξ2)](ϕ0,2(ω)) · [Fσ2,N(Ξ3)](ϕ0,3(ω))

(∀Ξ1, Ξ2, Ξ3 ∈ 2XN , ∀ω = (α, β) ∈ Ω0 = [0.0, 1.0] × [0.0, 2.0]). (6.13)

Then, we have the measurement MC(Ω0)( Õ0, S[∗]). The (6.4) says that the measured value

obtained by the measurement MC(Ω0)(Õ0, S[∗]) is equal to

(1.9, 3.0, 4.7) (∈ X3
N). (6.14)

Here, Fisher’s method (Corollary 5.6) says that it suffices to solve the problem

“Find (α0, β0) such as max(α,β)∈Ω0 [F̃0({1.9} × {3.0} × {4.7}(α, β)”. (6.15)
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6.1. REGRESSION ANALYSIS I 133

Putting

Ξ1 = [1.9 − 1

2N
, 1.9 +

1

2N
], Ξ2 = [3.0 − 1

2N
, 3.0 +

1

2N
], Ξ3 = [4.7 − 1

2N
, 4.7 +

1

2N
],

we see, under the assumption that N is sufficiently large, that

(6.15) ⇒ max
(α,β)∈Ω0

1
√

2πσ2
3

∫ ∫ ∫
Ξ1×Ξ2×Ξ3

e[− (x1−(α+β))2+(x2−(α+2β))2+(x3−(α+3β))2

2σ2 ]dx1dx2dx3

⇒ max
(α,β)∈Ω0

exp
(
− [(1.9 − (α + β))2 + (3.0 − (α + 2β))2 + (4.7 − (α + 3β))2]/(2σ2)

)
⇒ min

(α,β)∈Ω0

[(1.9 − (α + β))2 + (3.0 − (α + 2β))2 + (4.7 − (α + 3β))2]

(by the least squares method)

⇒
{

(1.9 − (α + β)) + (3.0 − (α + 2β)) + (4.7 − (α + 3β)) = 0
(1.9 − (α + β)) + 2(3.0 − (α + 2β)) + 3(4.7 − (α + 3β)) = 0

⇒ (α0, β0) = (0.4, 1.4). (6.16)

This is the conclusion of Regression Analysis I (6.7). Also, using the notations in Regres-

sion Analysis I, we remark that:

(R) the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (6.16)
(
= (6.5) in Example 6.2

)
.

This fact will be important in §6.3.

¥
The above may be the standard argument of the conventional regression analysis in

measurement theory. However, our problem (i) in Example 6.2 is not to infer the (α0, β0)

but h(2). In this sense the above regression analysis I is not sufficient. As the answer

of the problem (i) in Example 6.2, we usually consider that it suffices to calculate h(2)(
≡ ϕ0,2(0.4, 1.4)

)
in the following:

h(2) = 0.4 + 1.4 × 2 = 3.2. (6.17)

However, this is doubtful.
(
In fact, this (6.17) is not always true in general situations.

(cf. Regression analysis II (6.51) later).
)

We should not rely on “a common sense” but

Axioms 1 and 2. That is, we must solve the problem:

• How can the above (6.17)
(
= (6.6) in Example 6.2

)
be deduced from Axioms 1

and 2?

In order to do this, we will make some preparations in the next section.
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134 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

6.2 Bayes operator, Schrödinger picture, and S-states

In order to improve Regression Analysis I (introduced in the previous section), in this

section we make some preparations (i.e., Bayes operator, Schrödinger picture, S-state,

etc.). Our main assertion (Regression Analysis II) will be mentioned in §6.3. We begin

with the following definition, which is a general form of “Bayes operator” in Remark 5.7.

Definition 6.5. [Bayes operator (or precisely, Bayes-Kalman operator)]. Let (T ≡
{0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S[∗] ≡ [S[∗]; {C(Ωt)

Φπ(t),t→
C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an observable

Ot ≡ (Xt, Ft, Ft) in C(Ωt) be given for each t ∈ T . Let Õ0 ≡ (
∏

t∈T Xt,
⊗

t∈T Ft, F̃0) be

as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). That is, Õ0 is the Heisenberg picture

representation of the sequential observable [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}]. Let

τ be any element in T . If a positive bounded linear operator B
(0,τ)
Πt∈T Ξt

: C(Ωτ ) → C(Ω0)

satisfies the following condition (BO), we call {B(0,τ)
Πt∈T Ξt

| Ξt ∈ Ft (∀t ∈ T )} [resp. B
(0,τ)
Πt∈T Ξt

]

a family of Bayes operators [resp. a Bayes operator]:

(BO) for any observable O′
τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ), there exists an observable Ô0 ≡(

(
∏

t∈T Xt) × Yτ , (
⊗

t∈T Ft)
⊗

Gτ ), F̂0

)
in C(Ω0) such that

(i) Ô0 is the Heisenberg picture representation of [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}

t∈T\{0}], where Ot = Ot (if t ̸= τ), = Oτ ××××××××× O′
τ (if t = τ),

(ii) F̂0((
∏

t∈T Ξt) × Γτ ) = B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) (∀Ξt ∈ Ft (∀t ∈ T ),∀Γτ ∈ Gτ ),

(iii) F̂0((
∏

t∈T Ξt) × Yτ ) = F̃0(
∏

t∈T Ξt)
(
≡ B

(0,τ)
Πt∈T Ξt

(1τ )
)
, (∀Ξt ∈ Ft (∀t ∈ T )), where 1τ

is the identity in C(Ωτ ).

Also, define the map R
(0,τ)
Πt∈T Ξt

: Mm
+1(Ω0) → Mm

+1(Ωτ ) such that:

R
(0,τ)
Πt∈T Ξt

(ν) =
(B

(0,τ)
Πt∈T Ξt

)∗(ν)

∥(B(0,τ)
Πt∈T Ξt

)∗(ν)∥M(Ωτ )

(∀ν ∈ Mm
+1(Ω0)), (6.18)

where (B
(0,τ)
Πt∈T Ξt

)∗ : C(Ω0)
∗ → C(Ωτ )

∗ is the adjoint operator of B
(0,τ)
Πt∈T Ξt

: C(Ωτ ) → C(Ω0).

The map R
(0,τ)
Πt∈T Ξt

is called a “normalized dual Bayes operator”. Bayes operator is also

called “Bayes-Kalman operator”.

¥
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6.2. BAYES OPERATOR, SCHRÖDINGER PICTURE, AND S-STATES 135

We see

B
(0,τ)
Πt∈T Ξt

(gτ ) ≤ Φ0,τgτ (∀gτ ∈ C(Ωτ ) such that gτ ≥ 0), (6.19)

because it holds, for any observable O′
τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ),

B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) = F̂0((
∏
t∈T

Ξt) × Γτ ) ≤ F̂0((
∏
t∈T

Xt) × Γτ )

= Φ0,τGτ (Γτ )
(

= B
(0,τ)
Πt∈T Xt

(Gτ (Γτ ))
)

(∀Γτ ∈ Fτ ). (6.20)

The following theorem is essential to Regression Analysis II later.

Theorem 6.6. [The existence theorem of the Bayes operator (cf. [46, 55])]. Let Õ0 ≡
(
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). And,

for any s (∈ T ), put Ts ≡ {t ∈ T | s ≤ t}. Assume that, for each s (∈ T ), there exists

an observable Õs ≡ (
∏

t∈Ts
Xt, 2

Q

t∈Ts
Xt , F̃s) in C(Ωs) such that Φπ(s),sF̃s(

∏
t∈Ts

Ξt) =

F̃π(s)

(
(
∏

t∈Tπ(s)\Ts
Xt) × (

∏
t∈Ts

Ξt)
)

(∀Ξt ∈ 2Xt (∀t ∈ T )), (cf. Theorem 3.7). Let τ be

any element in T . Then, there exists a family of Bayes operators {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈
T )}.

Proof. See [46]. The proof in [46] is essentially true, but it is not complete. That is

because the definition of “Bayes operator” (i.e., Definition 6.5) was not mentioned in [46].

Thus, we add the complete proof in what follows. It will be proved by induction. Let O′
τ

= (Yτ , 2
Yτ , Gτ ) be any observable in C(Ωτ ).

[Step 1] First, define the positive bounded linear operator B̂
(τ,τ)
Πt∈Tτ Ξt

: C(Ωτ ) → C(Ωτ ) such

that:

B̂
(τ,τ)
Πt∈Tτ Ξt

(gτ ) = F̃τ (Πt∈Tτ Ξt) × gτ (∀gτ ∈ C(Ωτ )), (6.21)

and define the observable Ôτ ≡ ((Πt∈Tτ Xt) × Yτ , 2
Xτ×Yτ , F̂τ ) in C(Ωτ ) such that:

F̂τ (Πt∈Tτ Ξt × Γτ ) = B̂
(τ,τ)
Πt∈Tτ Ξt

(Gτ (Γτ )) (∀Γτ ∈ 2Yτ ), (6.22)

which is clearly the Heisenberg picture representation of the sequential observable [{Ot}t∈Tτ ,

{C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Tτ\{τ}], where Ot = Ot (if t ̸= τ), = Oτ × O′

τ (if t = τ). Thus,

the operator B̂
(τ,τ)
Πt∈Tτ Ξt

: C(Ωτ ) → C(Ωτ ) is the Bayes operator induced from the Õτ

(
=

(Πt∈Tτ Xt, 2
Πt∈Tτ Xt , F̃τ )

)
, which is uniquely determined.
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136 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

[Step 2] Let s be any element in T \ {0} such that s ≤ τ . Here, assume that B̂
(s,τ)
Πt∈TsΞt

:

C(Ωτ ) → C(Ωs) is the Bayes operator induced from the Õs

(
= (Πt∈TsXt, 2

Πt∈T′s
Xt , F̃s)

)
.

That is, there exists an observable Ôs ≡ ((
∏

t∈Ts
Xt) × Yτ , 2(

Q

t∈Ts
Xt)×Yτ , F̂s) in C(Ωs)

such that

(i) Ôs is the Heisenberg picture representation (cf. Theorem 3.7) of the sequential

observable [{Ôt}t∈Ts , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Ts\{s}], where Ot = Ot (if t ̸= τ),

= Oτ × O′
τ (if t = τ),

(ii) F̂s((Πt∈TsΞt) × Γτ ) = B̂
(s,τ)
Πt∈TsΞt

(Gτ (Γτ )) (Ξt ∈ 2Xt (∀t ∈ Ts), ∀Γτ ∈ 2Yτ ),

(iii) F̂s((Πt∈TsΞt) × Yτ ) = F̃s(
∏

t∈Ts
Ξt) (Ξt ∈ 2Xt (∀t ∈ Ts)).

Let (xt)t∈Tπ(s)
be any element in Πt∈Tπ(s)

Xt. Note that {(xt)t∈Tπ(s)
} = Πt∈Tπ(s)

{xt}. Define

the positive bounded linear operator B̂
(π(s),τ)
Πt∈Tπ(s)

{xt} : C(Ωτ ) → C(Ωπ(s)) by

[B̂
(π(s),τ)
Πt∈Tπ(s)

{xt}(gτ )](ωπ(s)) =
[F̃π(s)(

∏
t∈Tπ(s)

{xt})](ωπ(s)) × [Φπ(s),sB̂
(s,τ)
Πt∈Ts{xt}(gτ )](ωπ(s))

[F̃π(s)((Πt∈Tπ(s)\TsXt) ×
∏

t∈Ts
{xt})](ωπ(s))

(∀gτ ∈ C(Ωτ ), ∀ωπ(s) (∈ Ωπ(s))). (6.23)

Here, the above is assumed to be equal to 0 if the denominator of (6.23) is equal to

0
(
i.e., [F̃π(s)((Πt∈Tπ(s)\TsXt) ×

∏
t∈Ts

{xt})](ωπ(s)) = 0
)
. And thus, we can define the

positive bounded linear operator B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
: C(Ωτ ) → C(Ωπ(s)) by

B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
=

∑
(xt)t∈Tπ(s)

∈Πt∈Tπ(s)
Ξt

B̂
(π(s),τ)
{(xt)t∈Tπ(s)

}.

Define the observable Ôπ(s) ≡ ((
∏

t∈Tπ(s)
Xt)× Yτ , 2

(
Q

t∈Tπ(s)
Xt)×Yτ

, F̂π(s)) in C(Ωπ(s)) such

that:

F̂π(s)((Πt∈Tπ(s)
Ξt) × Γτ ) = B̂

(π(s),τ)
Πt∈Tπ(s)

Ξt
(Gτ (Γτ )) (Ξt ∈ 2Xt (∀t ∈ Tπ(s)), ∀Γτ ∈ 2Yτ ),

which is clearly the Heisenberg picture representation of [{Ot}t∈Tπ(s)
, {C(Ωt)

Φπ(t),t→ C(Ωπ(t))

}t∈Tπ(s)\{π(s)}], where Ot = Ot (if t ̸= τ), = Oτ × O′
τ (if t = τ). Also, it holds that

F̂π(s)((Πt∈Tπ(s)
Ξt) × Yτ ) = F̃π(s)(

∏
t∈Tπ(s)

Ξt) (Ξt ∈ 2Xt (∀t ∈ Tπ(s))).
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6.2. BAYES OPERATOR, SCHRÖDINGER PICTURE, AND S-STATES 137

That is because we see

F̂π(s)((Πt∈Tπ(s)
Ξt) × Yτ ) = B̂

(π(s),τ)
Πt∈Tπ(s)

Ξt
(1τ ) =

∑
(xt)t∈Tπ(s)

∈Πt∈Tπ(s)
Ξt

B̂
(π(s),τ)
Πt∈Tπ(s)

{xt}(1τ )

=
∑

(xt)t∈Tπ(s)
∈Πt∈Tπ(s)

Ξt

F̃π(s)(
∏

t∈Tπ(s)
{xt}) × Φπ(s),sB̂

(s,τ)
Πt∈Ts{xt}(1τ )

F̃π(s)((Πt∈Tπ(s)\TsXt) ×
∏

t∈Ts
{xt})

=
∑

(xt)t∈Tπ(s)
∈Πt∈Tπ(s)

Ξt

F̃π(s)(
∏

t∈Tπ(s)
{xt}) × F̃π(s)((Πt∈Tπ(s)\TsXt) ×

∏
t∈Ts

{xt})

F̃π(s)((Πt∈Tπ(s)\TsXt) ×
∏

t∈Ts
{xt})

=
∑

(xt)t∈Tπ(s)
∈Πt∈Tπ(s)

Ξt

F̃π(s)(
∏

t∈Tπ(s)

{xt}) = F̃π(s)(
∏

t∈Tπ(s)

Ξt). (6.24)

Therefore, we see that B̂
(π(s),τ)
Πt∈Tπ(s)

Ξt
: C(Ωτ ) → C(Ωπ(s)) is the Bayes operator induced from

the Õπ(s)

(
= (Πt∈Tπ(s)

Xt, 2
Πt∈Tπ(s)

Xt , F̃π(s))
)
. Thus, we can, by induction, finish the proof

since it suffices to put B
(0,τ)
Πt∈T Ξt

= B̂
(0,τ)
Πt∈T0

Ξt
.

Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), O′
τ ≡ (Yτ , 2

Yτ , Gτ ), {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )},
Ô0 ≡ ((

∏
t∈T Xt) × Yτ , 2

(
Q

t∈T Xt)×Yτ , F̂0) and {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in

Definition 6.5. Assume that

(C1) we know that the measured value (xt)t∈T (∈ (
∏

t∈T Xt)) obtained by MC(Ω0)(Õ0, S[δω0 ])

belongs to
∏

t∈T Ξt.

Note that this (C1) is the same as the following (C2).

(C2) we know that the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained by MC(Ω0)

(Ô0, S[δω0 ]) belongs to (
∏

t∈T Ξt) × Yτ .

Thus we see that

(C3) the probability distribution of unknown y
(
under the assumption (C2)

(
=(C1)

))
,

i.e., the probability that y (∈ Yτ ) belongs to Γτ , is represented by

C(Ω0)∗ ⟨δω0 , F̂0((
∏

t∈T Ξt) × Γτ )⟩C(Ω0)

C(Ω0)∗ ⟨δω0 , F̂0((
∏

t∈T Ξt) × Yτ )⟩C(Ω0)

(
≡ C(Ω0)∗ ⟨δω0 , B

(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))⟩C(Ω0)

C(Ω0)∗ ⟨δω0 , B
(0,τ)
Πt∈T Ξt

(1τ )⟩C(Ω0)

)
. (6.25)

A simple calculation shows:

(6.25) =
C(Ωτ )∗ ⟨

(B
(0,τ)
Πt∈T Ξt

)∗(δω0)

∥(B(0,τ)
Πt∈T Ξt

)∗(δω0)∥M(Ω)

, Gτ (Γτ )⟩C(Ωτ )
=

C(Ωτ )∗ ⟨R
(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )⟩C(Ωτ )
.

Therefore, we say that
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138 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

(C4) the probability distribution of unknown y
(
under (C2)

(
=(C1)

))
is represented by

C(Ωτ )∗ ⟨R
(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )⟩C(Ωτ )
. (6.26)

Let this (C4) be, as an abbreviation, denoted (or, called) by

(C5) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ])

)
at τ (in T ) is equal to

R
(0,τ)
Πt∈T Ξt

(δω0).

For completeness, again note that (C4) = (C5), i.e., (C5) is an abbreviation for (C4). Note

that the concept of “S-state” and that of “state” are completely different. In measurement

theory, as seen in Axiom 1, the state always appears as the ρp in MA(O, S[ρp]). That is,

the state ρp is always fixed and never moves. In this sense, the ρp may be called a “real

state”. On the other hand, the “S-state” is used in the abbreviation (C5) of (C4).

Summing up the above argument, we have the following definition.

Definition 6.7. [S-state (= Schrödinger picture)]. Assume the above situation. If

the above statement (C4) holds, then we say “(C5) holds”, i.e., “the S-state (after the

measurement MC(Ω0) (Ô0, S[δω0 ])) at τ (∈ T ) is equal to R
(0,τ)
Πt∈T Ξt

(δω0)”. The representation

using “S-state” is called the Schrödinger picture representation. The S-state is also called

a Schrödinger state or imaginary state.

¥
As seen in the above argument, we must note that the Bayes operator is always hidden

behind the Scrödinger picture representation.

We sum up the above argument
(
i.e., (C1)⇒(C5)

)
as the following lemma.

Lemma 6.8. [S-state]. Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )}
and {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5. Assume that

• we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained by MC(Ω0)(Õ0, S[δω0 ])

belongs to
∏

t∈T Ξt.

Then, we can say

(♯) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ])

)
at τ (in T ) is equal to

R
(0,τ)
Πt∈T Ξt

(δω0).

¥
The following lemma will be used as Theorem 6.13.
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6.2. BAYES OPERATOR, SCHRÖDINGER PICTURE, AND S-STATES 139

Lemma 6.9. [Inference and S-state]. Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), {B(0,τ)
Πt∈T Ξt

|
Ξt ∈ 2Xt (∀t ∈ T )} and {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5. Assume

that

( • ) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained by MC(Ω0)(Õ0, S[∗])

belongs to
∏

t∈T Ξt.

Then, there is a reason to infer that

(♯) the S-state
(
after the measurement MC(Ω0)(Õ0, S[∗])

)
at τ (in T ) is equal to R

(0,τ)
Πt∈T Ξt

(δω0).

Here the δω0 (∈ M
p
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.27)

Proof. The proof is similar to that of Corollary 5.6. Let (Yτ , 2
Yτ , Gτ ) be any observable

in C(Ωτ ). Note that the above (•) is the same as the following:

(•)’ we know the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained by MC(Ω0)(Ô, S[∗])

belongs to (
∏

t∈T Ξt) × Yτ (where Ô0 is as in Definition 6.5).

Thus we can infer, by Theorem 5.3 (Fisher’s method) and the equality F̃0(
∏

t∈T Ξt) =

F̂0((
∏

t∈T Ξt)×Yτ ), that the unknown state [∗]
(
in MC(Ω0)(Ô, S[∗])

)
is equal to δω0

(
defined

by (6.27)
)
. Thus the conditional probability PΠt∈T Ξt(·) under the condition that we know

that ((xt)t∈T , y) ∈ (
∏

t∈T Xt) × Yτ is given by

PΠt∈T Ξt(Γτ ) =
C(Ω0)∗ ⟨δω0 , F̂0((

∏
t∈T Ξt) × Γτ )⟩C(Ω0)

C(Ω0)∗ ⟨δω0 , F̂0((
∏

t∈T Ξt) × Yτ )⟩C(Ω0)

=
C(Ω0)∗ ⟨δω0 , B

(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))⟩C(Ω0)

C(Ω0)∗ ⟨δω0 , B
(0,τ)
Πt∈T Ξt

(1τ )⟩C(Ω0)

=
C(Ωτ )∗ ⟨R

(0,τ)
Πt∈T Ξt

(δω0), Gτ (Γτ )⟩C(Ωτ )
(∀Γτ ∈ 2Yτ ).

From the equivalence of (C4) and (C5), we can conclude the (♯).

Now we consider the simplest case that T ≡ {0, τ} and S[δω0 ] ≡ [S[δω0 ]; C(Ωτ )
Φ0,τ→

C(Ω0)]. For each k = 0, τ , consider the null observable O
(nl)
k ≡ ({0, 1}, 2{0,1}, F

(nl)
k ) in

C(Ωk) (cf. Example 2.21). Then, we have the measurement

MC(Ω0)

(
Õ0 ≡ ({0, 1}2, 2{0,1}2

, F
(nl)
0 × Φ0,τF

(nl)
τ ), S[δω0 ]

)
. (6.28)

Note that:
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140 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

(i) the probability that the measured value (by MC(Ω0)(Õ0, S[δω0 ])) is equal to (1, 1) is

given by 1. That is, the measured value is always (or surely) equal to (1, 1).

Thus,

(ii) the measured value obtained by MC(Ω0)(Ô0, S[δω0 ]) has always the form ((1, 1), y) (∈
{0, 1}2 × Yτ ). Here Ô0 is defined by

({0, 1}2 × Yτ , 2
{0,1}2×Yτ , F

(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ ) (6.29)

for any any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ).

Note that MC(Ω0)(Ô0, S[δω0 ]) and MC(Ω0)((Yτ , 2
Yτ , Φ0,τGτ ), S[δω0 ]) are essentially the same.

That is because “to take MC(Ω0)(Õ0, S[δω0])” is essentially the same as “to take no mea-

surement” (cf. Example 2.21). Thus, the above (ii) implies that

(iii) the probability distribution of unknown y
(
under (ii)

(
= (i)

))
, i.e., the probability

that y ∈ Γτ , is represented by

C(Ωτ )∗ ⟨Φ
∗
0,τ (δω0), Gτ (Γτ )⟩C(Ωτ )

for any (Yτ , 2
Yτ , Gτ ) in C(Ωτ ) and any Γτ (∈ 2Yτ ).

That is because it holds that

C(Ω0)∗ ⟨δω0 , (F
(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Γτ )⟩C(Ω0)

C(Ω0)∗ ⟨δω0 , (F
(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Yτ )⟩C(Ω0)

=
C(Ωτ )∗ ⟨Φ

∗
0,τ (δω0), Gτ (Γτ )⟩C(Ωτ )

.

Thus,we get the following (iv), which is short for (iii).

(iv) the S-state at τ (∈ T ≡ {0, τ}) is equal to Φ∗
0,τ (δω0).

Thus we conclude that (i) ⇒ (iv). However, note that (i) always holds. Therefore, we

think that (iv) always holds.

From the above argument, we have the following lemma. This will be used in the

statement (6.33).

Lemma 6.10. [The Schrödinger picture representation]. Put T = {0, τ}. Let S[δω0 ] ≡
[S[δω0 ]; {C(Ωτ )

Φ0,τ→ C(Ω0)}] be a general system with an initial state S[δω0 ]. Then we see

that
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6.2. BAYES OPERATOR, SCHRÖDINGER PICTURE, AND S-STATES 141

(♯) the S-state at τ (∈ T ≡ {0, τ} ) is Φ∗
0,τ (δω0).

Here it should be noted that the measurement MC(Ω0)((Yτ , 2
Yτ , Φ0,τGτ ), S[δω0 ])

(
or, MC(Ω0)

(Ô0, S[δω0 ]),
)

is hidden behind the assertion (♯).

¥
Also, the following lemma is the formal representation of Corollary 5.6 (ii).

(
Cf. Re-

mark 6.12.
)

Lemma 6.11. [Inference and the Schrödinger picture representation]. Put T = {0, τ}.
Let S[∗] ≡ [S[∗]; {Φ0,τ : C(Ωτ ) → C(Ω0)}] be a general system with an initial state S[∗]. Let

O0 = (X0, 2
X0 , F0) be an observable in C(Ω0). And, let O

(nl)
τ = ({0, 1}, 2{0,1}, F

(nl)
τ ) be

the null observable in C(Ωτ ) (cf. Example 2.21). Consider a measurement MC(Ω0)(Õ0(≡
O0××××××××× Φ0,τO

(nl)
τ ), S[∗]), which is essentially the same as MC(Ω0)(O0, S[∗]). Assume that

• we know that the measured value obtained by MC(Ω0)(Õ0 ≡ O0 ××××××××× Φ0,τO
(nl)
τ , S[∗])

belongs to Ξ0 × {1} (∈ 2X0×{0,1}).

Then we see that

(♯) there is a reason to infer that the S-state (after the measurement MC(Ω0)(Õ0, S[∗]))

at τ (∈ T ≡ {0, τ}) is Φ∗
0,τ (δω0),

where δω0 (∈ M
p
+1(Ω0)) is defined by

[F0(Ξ0)](ω0) = max
ω∈Ω0

[F0(Ξ0)](ω). (6.30)

Proof. Let B
(0,τ)
Ξ0×{1} : C(Ωτ ) → C(Ω0) and R

(0,τ)
Ξ0

: Mm
+1(Ω0) → Mm

+1(Ωτ ) be as in

Definition 6.5. Here, note that, from the property of null observable, it holds that F0(Ξ0)×
Φ0,τF

(nl)
τ ({1}) = F0(Ξ0). Thus we see that B

(0,τ)
Ξ0×{1}(gτ ) = F0(Ξ0) × Φ0,τgτ for any gτ (∈

C(Ωτ )). By Lemma 6.9, it suffices to prove R
(0,τ)
Ξ0

(δω0) = Φ∗
0,τ (δω0). This is shown as

follows:

C(Ωτ )∗ ⟨R
(0,τ)
Ξ0×{1}(δω0), gτ ⟩C(Ωτ )

=
C(Ωτ )∗ ⟨

(B
(0,τ)
Ξ0×{1})

∗(δω0)

∥(B(0,τ)
Ξ0×{1})

∗(δω0)∥M(Ωτ )

, gτ ⟩C(Ωτ )

=
1

∥(B(0,τ)
Ξ0×{1})

∗(δω0)∥M(Ωτ )
C(Ω0)∗ ⟨δω0 , B

(0,τ)
Ξ0×{1}(gτ )⟩C(Ω0)

=
[F0(Ξ0)](ω0) × [Φ0,τgτ ](ω0)

[F0(Ξ0)](ω0)

=
C(Ωτ )∗ ⟨Φ

∗
0,τ (δω0), gτ ⟩C(Ωτ )

(∀gτ ∈ C(Ωτ )). (6.31)

Then, we see that R
(0,τ)
Ξ0×{1}(δω0) = Φ∗

0,τ (δω0). This completes the proof.
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142 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

The following remark shows that Corollary 5.6 (ii) is a direct consequence of Lemma

6.11.

Remark 6.12. [Continued from Corollary 5.6 (Fisher’s maximum likelihood method in

classical measurements)]. As mentioned before, the proof of Corollary 5.6 is temporary.

Corollary 5.6 should be understood as a corollary of Lemma 6.11 as follows: In Lemma

6.11, put Ω0 = Ωτ = Ω+0. And let Φ0,τ : C(Ω+0) → C(Ω0) be the identity map. Since

“the S-state (after the measurement MC(Ω0)(O0, S[∗])) at τ(= +0)” = Φ0,τ (δω0) = δω0 , we

easily see that Corollary 5.6 is a consequence of Lemma 6.11. This should be regarded as

the formal proof of Corollary 5.6.

¥

6.3 Regression analysis II in measurements

Now let us explain the reason why we consider:

(♯) it is worthwhile doubting the derivation of (6.6)
(
= (6.17)

)
from (6.5)

(
= (6.16)

)
,

i.e., the formula h(2) = 0.4 + 1.4 × 2 = 3.2.

Using the notations in Regression Analysis I (6.7), we recall the statement (R) of Example

6.4 as follows:

(R) the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (6.5)
(
=(6.16)

)
.

And we conclude, by Corollary 5.6 (or Remark 6.12), that

[ ∗ ] = “the S-state after the measurement MC(Ω0)(Õ0, S[∗])”

= δω0 . (6.32)

Here the δω0 (∈ M
p
+1(Ω0)) is defined by [F̃0(

∏
t∈T Ξt)](ω0) = maxω∈Ω0 [F̃0(

∏
t∈T Ξt)](ω).

On the other hand,

• the map “δω0 7→ Φ∗
0,τ (δω0)”

(
i.e., the derivation of (6.6)

(
= (6.17)

)
from (6.5)(

= (6.16)
))

is due to the Schrödinger picture, behind which the measurement

MC(Ω0)(Φ0,τO
′
τ ≡ (Yτ , 2

Yτ , Φ0,τGτ ), S[δω0 ]) is hidden. Cf. Lemma 6.10. (6.33)
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6.3. REGRESSION ANALYSIS II IN MEASUREMENTS 143

Thus, in order to conclude the assertion (6.6)
(
= (6.17)

)
, we need the above “two

measurements”, that is,

“MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt , F̃0), S[∗]) ” and “ MC(Ω0)(Φ0,τO′
τ ≡ (Yτ , 2Yτ , Φ0,τGτ ), S[δω0 ])”.

(6.34)

However, note that it is forbidden to conduct “two measurements” (cf. §2.5(II)). This

is the reason that we think that it is worthwhile doubting (6.6)
(
= (6.17)

)
. In order to

avoid this confusion, it suffices to consider the “simultaneous” measurement:

MC(Ω0)(Ô0 ≡ ((
∏
t∈T

Xt) × Yτ , 2
(
Q

t∈T Xt)×Yτ , F̂0), S[∗]), (where Ô0 is as in Definition 6.5),

(6.35)

instead of (6.34).

Then, we rewrite Lemma 6.9 as an main theorem as follows:

Theorem 6.13. [= Lemma 6.9, Inference in Markov relation]. Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt ,

F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). And consider a measure-

ment MC(Ω0)(Õ0, S[∗]). Let τ be any element in T . Let {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )}
be as in Definition 6.5. Assume that we know that the measured value (obtained by

MC(Ω0)(Õ0, S[∗])) belongs to
∏

t∈T Ξt. Then, there is a reason to infer that

(♯) “the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈T Ξt

(δω0). (6.36)

Here δω0 (∈ M
p
+1(Ω)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.37)

¥
Lastly, we prove the following lemma, which justifies the inference (6.6).

Lemma 6.14. [Some property of homomorphic relation]. Let Õ0 ≡ (
∏

t∈T Xt, 2
Q

t∈T Xt ,

F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). Consider the family of Bayes

operators {B(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (t ∈ T )} such as in Definition 6.5. Let τ be any element in

T . Assume that Φπ(t),t : C(Ωt) → C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is homomorphic.

Then, it holds that:

B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) = F̃0(
∏
t∈T

Ξt) × Φ0,τGτ (Γτ ) (∀Ξt ∈ 2Xt (∀t ∈ T ),∀Γτ ∈ 2Yτ ), (6.38)
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144 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

for any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ). That is, we see that the Bayes operator B

(0,τ)
Πt∈T Ξt

:

C(Ωτ ) → C(Ω0) is determined uniquely under the homomorphic condition.

Proof. The proof is shown in the following three steps.

[Step 1]. Let ω0 be any element in Ω0. And let gτ and hτ be in C(Ωτ ) such that:

0 ≤ gτ ≤ 1, gτ (ϕ0,τ (ω0)) = 0, 0 ≤ hτ ≤ 1, and hτ (ϕ0,τ (ω0)) = 1. (6.39)

where ϕ0,τ : Ω0 → Ωτ is defined by (3.14). Then we see, by (6.19), that

0 ≤ [B
(0,τ)
Πt∈T Ξt

(gτ )](ω) ≤ (Φ0,τgτ )(ω) = gτ (ϕ0,τ (ω)) (∀ω ∈ Ω0). (6.40)

Putting ω = ω0 in (6.40), we get, by (6.39), that

[B
(0,τ)
Πt∈T Ξt

(gτ )](ω0) = 0. (6.41)

Also, from the linearity of Bayes operator and the condition (iii) of Definition 6.5, we get

[B
(0,τ)
Πt∈T Ξt

(1τ − hτ )](ω) = [B
(0,τ)
Πt∈T Ξt

(1τ )](ω) − [B
(0,τ)
Πt∈T Ξt

(hτ )](ω)

= [F̃0(
∏
t∈T

Ξt)](ω) − [B
(0,τ)
Πt∈T Ξt

(hτ )](ω) (∀ω ∈ Ω0). (6.42)

Thus, putting ω = ω0 in (6.42), we get, by (6.39), that

0 ≤ [B
(0,τ)
Πt∈T Ξt

(1τ − hτ )](ω0)

≤ [(Φ0,τ (1τ − hτ ))](ω0) = 1τ (ϕ0,τ (ω0)) − hτ (ϕ0,τ (ω0)) = 1 − 1 = 0. (6.43)

Then, we obtain

[B
(0,τ)
Πt∈T Ξt

(hτ )](ω0) = [F̃0(
∏
t∈T

Ξt)](ω0). (6.44)

[Step 2]. Let ω0 be any fixed element in Ω0. Fix any f (∈ C(Ωτ )) such that 0 ≤ f ≤ 1.

Define gτ , hτ (∈ C(Ωτ )) such that:

gτ (ωτ ) = max{0, f(ωτ ) − f(ϕ0,τ (ω0))} (∀ωτ ∈ Ωτ ),

hτ (ωτ ) = min{ f(ωτ )

f(ϕ0,τ (ω0))
, 1} (∀ωτ ∈ Ωτ ). (6.45)

The gτ and the hτ clearly satisfy (6.39). And moreover, we see, for any ωτ ∈ Ωτ , that

gτ (ωτ ) + f(ϕ0,τ (ω0))hτ (ωτ )

= max{0, f(ωτ ) − f(ϕ0,τ (ω0))} + min{f(ωτ ), f(ϕ0,τ (ω0))}

=

{
(f(ωτ ) − f(ϕ0,τ (ω0)) + f(ϕ0,τ (ω0)), if f(ωτ ) ≥ f(ϕ0,τ (ω0))
0 + f(ωτ ), if f(ωτ ) ≤ f(ϕ0,τ (ω0))

= f(ωτ ). (6.46)
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6.3. REGRESSION ANALYSIS II IN MEASUREMENTS 145

[Step 3]. Let ω0 be any element in Ω0. Let Γτ be any element in 2Yτ . From the [step

2], we see that there exist ĝτ (∈ C(Ωτ )) and ĥτ (∈ C(Ωτ )) such that Gτ (Γτ ) = ĝτ+

[Gτ (Γτ )](ϕ0,τ (ω0))ĥτ , ĝτ (ϕ0,τ (ω0)) = 0, ĥτ (ϕ0,τ (ω0)) = 1. Then we see

[B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))](ω) =
[
B

(0,τ)
Πt∈T Ξt

(
ĝτ + [Gτ (Γτ )](ϕ0,τ (ω0))ĥτ

)]
(ω)

=[B
(0,τ)
Πt∈T Ξt

(ĝτ )](ω) + [Gτ (Γτ )](ϕ0,τ (ω0)) × [B
(0,τ)
Πt∈T Ξt

(ĥτ )](ω) (∀ω ∈ Ω0). (6.47)

Putting ω = ω0, we see, by (6.41) and (6.44), that [B
(0,τ)
Πt∈T Ξt

(ĝτ )](ω0) = 0 and [B
(0,τ)
Πt∈T Ξt

(ĥτ )](ω0)

= [F̃0(
∏

t∈T Ξt)](ω0). And, we see, by (6.47), that

[B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ ))](ω0) = [Gτ (Γτ )](ϕ0,τ (ω0)) × [F̃0(
∏
t∈T

Ξt)](ω0)

= [Φ0,τGτ (Γτ )](ω0) × [F̃0(
∏
t∈T

Ξt)](ω0).

Since ω0 (∈ Ω0) is arbitrary, we obtain (6.38). This completes the proof.

Now we can propose our main assertion as follows:

REGRESSION ANALYSIS II [The new proposal of regression analysis, cf.[55]].

(6.48)

Let (T ≡ {0, 1, ..., N}, π : T\{0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {C(Ωt)
Φπ(t),t→

C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an observable

Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Then, we have a

measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S[∗]) (cf. Theorem 3.7). (6.49)

Assume that the measured value by the measurement MC(Ω)(Õ0, S[∗]) belongs to
∏

t∈T Ξt (∈
2

Q

t∈T Xt). Also define δω0 (∈ M
p
+1(Ω0)) such that:

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.50)

Let τ be any element in T . Let {R(0,τ)
Πt∈T Ξt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5.(
The existence of {R(0,τ)

Πt∈T Ξt
| Ξt ∈ 2Xt (∀t ∈ T )} is assumed by Theorem 6.6.

)
Then, we

see:
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146 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

(i). [The S-state at τ (∈ T )]. There is a reason to infer that

(♯) “The S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈T Ξt

(δω0). (6.51)

Also

(ii). [The S-state at τ (∈ T ) for homomorphism Φ0,τ ]. Assume that Φ0,τ : C(Ωτ ) → C(Ω0)

is homomorphic
(
i.e., Φπ(t),t : C(Ωt) → C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is

homomorphic
)
. Then there is a reason to infer that

“the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = Φ∗
0,τ (δω0). (6.52)

Here note that Φ∗
0,τ (δω0) = δϕ0,τ (ω0) where ϕ0,τ : Ω0 → Ωτ is defined by (3.14).

Proof. (i). See Theorem 6.13 (= Lemma 6.9).

(ii). We see, by Lemma 6.14, that

C(Ωτ )∗ ⟨R
(0,τ)
Πt∈T Ξt

(δω0), gτ ⟩C(Ωτ )
=

C(Ωτ )∗ ⟨
(B

(0,τ)
Πt∈T Ξt

)∗(δω0)

(B
(0,τ)
Πt∈T Ξt

)∗(δω0)
, gτ ⟩C(Ωτ )

=
1

∥(B(0,τ)
Πt∈T Ξt

)∗(δω0)∥M(Ωτ )
C(Ω0)∗ ⟨δω0 , B

(0,τ)
Πt∈T Ξt

(gτ )⟩C(Ω0)

=
1

[F̃0(
∏

t∈T Ξt)](ω0)
C(Ω0)∗ ⟨δω0 , F̃0(

∏
t∈T

Ξt) × Φ0,τgτ ⟩C(Ω0)
(by Lemma 6.14)

=
C(Ωτ )∗ ⟨Φ

∗
0,τ (δω0), gτ ⟩C(Ωτ )

(∀gτ ∈ C(Ωτ )).

Then, we see that R
(0,τ)
Πt∈T Ξt

(δω0) = Φ∗
0,τ (δω0).

Remark 6.15. [(i) Continued from Example 6.2]. Note that our problem (i) in Example

6.2 was to infer the h(2) and not (α0, β0). Regression analysis II (6.52) is applicable to

our problem, that is, the above (6.52) says that there is a reason to calculate h(2) in the

following:

h(2) = ϕ0,2(0.4, 1.4) = 0.4 + 1.4 × 2 = 3.2. (6.53)

[(ii) Interesting logic]. It should be noted that, when τ = 0, the Regression Analysis II

is the same as the Regression Analysis I. Thus, we also conclude (6.5), i.e., (α0, β0) =

(0.4, 1.4). After all, the Regression Analysis II says that

(M1) as the result in the case that τ = 0, the conclusion (6.5) in Example 6.2 is reasonable,
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6.4. CONCLUSIONS 147

or

(M2) as the result in the case that τ ̸= 0, the conclusion (6.6) in Example 6.2 is reasonable.

However, it should be noted that the Regression Analysis II does not guarantee that

(M3) both (6.5) and (6.6) in Example 6.2 are (simultaneously) reasonable.

That is because two measurements
(
i.e., the measurement M1 behind (M1) and the mea-

surement M2 behind (M2)
)

are included in (M1) and (M2). If we want to conclude

this (M3), we must consider the simultaneous measurement of “measurement M1” and

“measurement M2”, that is, we must generalize Definition 6.5 (Bayes operator) such as

B
(0,(0,τ))
Πt∈T Ξt

: C(Ω0) × C(Ωτ ) → C(Ω0) satisfying similar conditions since only one measure-

ment is permitted (cf. §2.5(II)). This is, of course, interesting, though it is not discussed

in this book.

¥

6.4 Conclusions

In this chapter we show that regression analysis can be completely understood in PMT

as follows (cf. [55]):

measurement theory

=⇒



Axiom 1 ⇒ Theorem 5.3
(Fisher’s method)

⇒
{

Corollary 5.5 (conditional probability)
Corollary 5.6 (classical Fisher’s method)

Axiom 2 ⇒


Theorem 3.7 (measurability)
Theorem 6.6 (the existence of Bayes operator)
Lemma 6.14 (some property of homomorphic relation).

And, using these results, we derive “regression analysis” as follows:

(i) : “Corollary 5.6” + “Theorem 3.7” ⇒ “Regression Analysis I ”,

(ii) :

Theorem 3.7

“Corollary 5.5” + “Theorem 6.6” ⇒ “Theorem 6.13”
(Markov inference)

“Lemma 6.14”


⇒ “Regression Analysis II”.
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148 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

We believe that Regression Analysis II is the best (i.e., precise, wide, deep etc.) in all

conventional proposals of regression analysis (though it should be generalized as mentioned

in Remark 6.15.). It is surprising that both statistics and quantum mechanics can be

understood in the same theory, i.e., measurement theory (6.1) (=(1.4)).

We believe that every statistician may want to know the justification of (6.5) and

(6.6) in Example 6.2. Thus we expect that many statisticians will be interested in our

axiomatic approach. That is because there is no justification without axioms.

We think that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics is

theoretically true”, (cf. Declaration (1.11)).
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Chapter 7

Practical logic

It is certain that pure logic (cf. [89]) is merely a kind of rule in mathematics (or meta-mathematics).
However, if it is so, the logic is not guaranteed to be applicable to our world. For instance, (pure)
logic does not assure the following famous statement:

[♯] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.

That is, we think that the problem: “Is the [♯] true or not?” should be answered. Thus, the purpose
of this chapter is to prove the statement [♯], or more generally, to propose “practical logic”, i.e.,
“logic with an interpretation”, 1 which is formulated in the framework of the measurement theory:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (7.1)

(=(1.4))

Firstly, the symbol “A ⇒ B” (i.e., “implication” ) is defined in terms of measurements. And we
prove the standard syllogism for classical systems:

“A ⇒ B, B ⇒ C” implies “A ⇒ C” 2 (7.2)

(This is not trivial, because the (7.2) does not necessarily hold in quantum systems.) We can
assert, by “Declaration (1.11)” in §1.4, that this theorem (7.2) guarantees that the above (7.2) (or,
the statement [♯]) is “theoretical true”. Several variants may be interesting. For example, under
the condition that “A ⇒ B, B ⇒ C”, we can assert a kind of conclusion such as “C ⇒ A”. For
completeness, “pure logic” and “practical logic” must not be confused. The former is a basic rule
on which mathematics is founded. On the other hand, the latter is a collection of theorems (whose
forms are similar to that of “pure logic”) in MT. All results in this chapter are due to [41]. Also,
this chapter can be skipped if readers want to study statistics in the framework of SMT firstly (cf.
Chapters 8).

1We have no confidence for the naming “practical logic”. We may choose the other namings: “empirical
logic”, “applied logic”, “usual logic”. etc.

2It is said that the syllogism is said to be, for the first time, introduced by Aristotle (B.C.384-B.C.322)
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150 CHAPTER 7. PRACTICAL LOGIC

7.1 Measurement, inference, control and

practical logic

The PMT has various aspects. For example, we believe that three concepts:

“measurement”, “inference”, and “control” are different aspects of the same thing.

Let us explain it as follows: Let MA

(
O ≡ (X, F, F ), S[ρp]

)
be a measurement formulated

in a C∗-algebra A. Note that Axiom 1 can be regarded as the answer to the following

problem:

(M) What kind of measured value is obtained by a measurement MA

(
O, S[ρp]

)
?

As mentioned in Chapter 5, the measurement MA

(
O, S[ρp]

)
is often denoted by MA

(
O,

S[∗]
)
, if we want to stress that we do not know the state ρp. Using this notation, we can

respectively characterize “inference (I)” and “control (C)” as follows:

(I) Assume that we get a measured value x( ∈ X) by a measurement MA

(
O, S[∗]

)
.

Then, infer the state [ ∗ ],

and

(C) Assume that we want to get a measured value x( ∈ X) by a measurement MA

(
O,

S[∗]
)
. Then, settle the state [ ∗ ].

Of course, Fisher’s maximum likelihood method is one of the answers of the above prob-

lems (I) and (C).

Also, we think that

(L) “Practical logic” is characterized as “a qualitative theory concerning conditional

probability (cf. §2.5 (IV)) in PMT”.

Thus “practical logic” is also one of the aspects of Axiom 1. Also, since “(practical)

logic” is a qualitative aspect of “inference”, we can say that “(practical) logic” [resp.

“inference”] is used in rough [resp. precise] arguments. For completeness, “pure logic” and

“practical logic” must not be confused. The former is a basic rule on which mathematics is

built. And thus it is not related to our world. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic”) in PMT. Since practical logic
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7.2. QUASI-PRODUCT OBSERVABLES WITH DEPENDENCE 151

is regarded as a theorem in PMT, it automatically possesses the measurement theoretical

interpretation. That is, we think that

“practical logic” = “theorems (whose forms are similar to (pure) logic) in MT”.

Recall, throughout this book, that the measured value set (or, label set) X is assumed

to be finite if we write (X, 2X , F ) (or, (X, P(X), F ) and not (X, F, F ). In this chapter we

always assume that X is finite.

7.2 Quasi-product observables with dependence

We begin with the following definition.

Definition 7.1. [Marginal observable, quasi-product observable, consistency. (cf. Defi-

nition 2.10.)]. Let A be a C∗-algebras. Let K = {1, 2, ..., |K|}.

(i). Consider an observable O ≡ (×k∈K Xk, 2×k∈K Xk , F ) (with a label set ×k∈K Xk)

in A. Let D be D ⊆ K. An observable OD ≡ (×k∈D Xk, 2×k∈D Xk , FD) in A is called

a D-marginal observable of O if it satisfies that

FD( ×
k∈D

Ξk) = F
(
( ×

k∈D
Ξk)×( ×

k∈K\D
Xk)

)
,

for all Ξk ∈ 2Xk , k ∈ D. Also this OD is denoted by O
∣∣
D
. Here note that the marginal

observable O
∣∣
D

is equal to the image observable O[g
D

] where ×k∈K Xk ∋ (xk)k∈K

g
D7−→

(xk)k∈D ∈ ×k∈D Xk.

(ii). For each k ∈ K, consider an observable Ok ≡ (Xk, 2
Xk , Fk) in A. If there exists an

observable OK ≡ (×k∈K Xk, 2
×k∈K Xk , F ) in A such that OK

∣∣
{k} = Ok for all k ∈ K,

then [Ok : k ∈ K] is called consistent. Also, this OK is called a quasi-product observable of

[Ok : k ∈ K], and is sometimes denoted by (×k∈K Xk, 2
×k∈K Xk ,×OK

k∈K Fk), or×OK

k∈K Ok(
or, (×k∈K Xk, 2

×k∈K Xk ,
qp

×××××××××k∈KFk), or
qp

×××××××××k∈KOk

)
.

¥
Note that the consistency of observables [(Xk, 2

Xk , Fk) : k ∈ K] in A is not guaranteed

in general. If the commutativity condition:

Fk1(Ξk1)Fk2(Ξk2) = Fk2(Ξk2)Fk1(Ξk1) (∀Ξk1 ∈ 2Xk1 , ∀Ξk2 ∈ 2Xk2 , k1 ̸= k2)
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152 CHAPTER 7. PRACTICAL LOGIC

holds, then we can construct a quasi-product observable O ≡ (×k∈K Xk, 2
×k∈K Xk , F ≡

×O
k∈K Fk) such that:

F (Ξ1×Ξ2× · · ·×Ξ|K|) = F1(Ξ1)F2(Ξ2) · · ·F|K|(Ξ|K|).

It is, of course, the case that the uniqueness is not guaranteed even under the above

commutativity condition.

Remark 7.2. [Only one measurement is permitted (cf. §2.5. Remarks (II))]. If we want

the data concerning both O1 and O2 for the system S[ρp], we must take a simultaneous

measurement MA(O12 ≡ O1×O12 O2, S[ρp]). Therefore, if a quasi-product observable

O12 does not exist (i.e., [O1,O2] is not consistent), the concept of “the data concerning

O1 and O2 for the system S[ρp]” is nonsense, i.e., it has no reality. This is a prevalent

notion in quantum theory as in the case that the concept “the momentum and position

of a particle” or “the trajectory of a particle” is meaningless in quantum theory. (For the

recent results, see [37, 40].) It should be emphasized that the importance of this spirit

(i.e., “the consistency of [O1,O2]” ⇔ “the reality of data”) is essential.

¥

As the classical PMT is rather easy, people tend to overlook important facts in classical

systems. Since quantum theory is moderately difficult, it is rather handy compared to

classical theory.

Let X = {x1, x2, ...., xJ}. Let O ≡ (X, 2X , F ) be an observable in a commutative C∗-

algebra A (hence by Gelfand theorem, we can assume that A = C(Ω)). We can consider

the following identification:

(X, 2X , F ) ←→
[

[F ({xj})](ω) : j = 1, 2, ..., J
]

(where F ({xj}) ≡ [F ({xj})] ∈ C(Ω)), and therefore denote

Rep[O] = Rep[(X, 2X , F )] =
[
[F ({xj})](ω) : j = 1, 2, ..., J

]
.

It is clear that

0 ≤ [F ({xj})](ω) ≤ 1 and
J∑

j=1

[F ({xj})](ω) = 1 (∀ω ∈ Ω),

that is, Rep[(X, 2X , F )] is considered to be the resolution of the identity (cf. §2.3).
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7.2. QUASI-PRODUCT OBSERVABLES WITH DEPENDENCE 153

Consider two observables O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2

X2 , F2) in C(Ω) such

that:

X1 = {x1
1, x

2
1, ..., x

J1
1 } and X2 = {x1

2, x
2
2, ..., x

J2
2 }.

Let O12 ≡ (X1×X2, 2
X1×X2 , F ≡ F1×O12 F2) be a quasi-product observable with the

marginal observables O1 and O2. (The existence of O12 is guaranteed by Theorem 2.11

since C(Ω) is commutative.) Put

Rep[O12] =


[F ({(x1

1, x
1
2)})](ω) [F ({(x1

1, x
2
2)})](ω) . . . [F ({(x1

1, x
J2
2 )})](ω)

[F ({(x2
1, x

1
2)})](ω) [F ({(x2

1, x
2
2)})](ω) . . . [F ({(x2

1, x
J2
2 )})](ω)

...
...

. . .
...

[F ({(xJ1
1 , x1

2)})](ω) [F ({(xJ1
1 , x2

2)})](ω) . . . [F ({(xJ1
1 , xJ2

2 )})](ω)

 .

Let X = {x1, x2, ...., xJ}. Let O ≡ (X, 2X , F ) be an observable in a C∗-algebra A. Put

X = Ξy

⋃
Ξn (where Ξy

⋂
Ξn = ∅). Define the map g : X → X(2) ≡ {y, n} such that

g(x) = y (if x ∈ Ξy), = n ( if x ∈ Ξn). Here we can define the two-valued observable

(X(2) ≡ {y, n}, 2X(2) , F(2)) in A as the image observable O[g]. This two-valued observable

is also called yes-no observable or 1 − 0 observable. The following lemma says about the

conditions that a quasi-product observable of yes-no observables should satisfy.

Lemma 7.3. [The existence condition of yes-no quasi-product observable]. Consider yes-

no observables O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2X2 , F2) in a commutative C∗-algebra

C(Ω) such that:

X1 = {y1, n1} and X2 = {y2, n2}.

Let O12 ≡ (X1×X2, 2
X1×X2 , F ≡ F1×O12 F2) be a quasi-product observable with the

marginal observables O1 and O2.

Put

Rep[O12] =

[
[F ({(y1, y2)})](ω) [F ({(y1, n2)})](ω)
[F ({(n1, y2)})](ω) [F ({(n1, n2)})](ω)

]
=

[
α(ω) [F1({y1})](ω) − α(ω)

[F2({y2})](ω) − α(ω) 1 + α(ω) − [F1({y1})](ω) − [F2({y2})](ω)

]
, (7.3)

where α ∈ C(Ω).
(
Note that [F ({(y1, y2)})](ω) + [F ({(y1, n2)})](ω) = [F1({y1})](ω) and

[F ({(y1, y2)})](ω) + [F ({(n1, y2)})](ω) = [F2({y2})](ω)
)
.

That is,
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154 CHAPTER 7. PRACTICAL LOGIC

[F2({y2})](ω) [F2({n2})](ω)

[F1({y1})](ω) α(ω) [F1({y1})](ω) − α(ω)
[F1({n1})](ω) [F2({y2})](ω) − α(ω) 1 + α(ω) − [F1({y1})](ω) − [F2({y2})](ω)

Then, it holds that

max{0, [F1({y1})](ω) + [F2({y2})](ω) − 1} ≤ α(ω) ≤ min{[F1({y1})](ω), [F2({y2})](ω)}

(∀ω ∈ Ω). (7.4)

Conversely, for any α ( ∈ C(Ω)) that satisfies (7.4), the observable O12 defined by (7.3)

is a quasi-product observable with the marginal observables O1 and O2. Also, note that

[F ({(y1, n2)})](ω) = 0 ⇔ α(ω) = [F1({y1})](ω) ⇒ [F1({y1})](ω) ≤ [F2({y2})](ω).
(7.5)

Proof. Though this lemma is easy, we add a brief proof for completeness. Since 0 ≤
[F ({(x1

1, x
2
2)})] (ω) ≤ 1, (∀x1, x2 ∈ {y, n}), we see, by (7.3), that

0 ≤ α(ω) ≤ 1, 0 ≤ [F1({y1})](ω) − α(ω) ≤ 1, 0 ≤ [F2({y2})](ω) − α(ω) ≤ 1,

0 ≤ 1 + α(ω) − [F1({y1})](ω) − [F2({y2})](ω) ≤ 1, (7.6)

which clearly implies (7.4). Conversely. if α satisfies (7.4), then we easily see (7.6). Also,

(7.5) is obvious. This completes the proof.

Next we provide several examples, which will promote a understanding of our theory.

Example 7.4. [Tomatoes’ example]. Let Ω = {ω1, ω2, ...., ωN} be a set of tomatoes,

which is regarded as a compact Hausdorff space with the discrete topology. Consider

yes-no observables ORD ≡ (XRD, 2XRD , FRD) and OSW ≡ (XSW, 2XSW , FSW) in C(Ω) such

that:

XRD = {yRD, nRD} and XSW = {ySW, nSW},

where we consider that “yRD” and “nRD” respectively mean “RED” and “NOT RED”.

Similarly, “ySW” and “nSW” respectively mean “SWEET” and “NOT SWEET”.

For example, the ω1 is red and not sweet, the ω2 is red and sweet, etc. as follows.
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7.2. QUASI-PRODUCT OBSERVABLES WITH DEPENDENCE 155

ω1

yRD

nSW

ω2

yRD

ySW

ω3

nRD

ySW

· · ·

· · ·
· · ·

ωN

nRD

nSW

We see that

(∗) the probability that xRD ( ∈ XRD ≡ {yRD, nRD}), the measured value by the mea-

surement MC(Ω)(ORD, S[δωn ]), belongs to ΞRD ( ⊆ XRD ≡ {yRD, nRD}) is given by

δωn(FRD(ΞRD)) (= [FRD(ΞRD)](ωn) ) .

That is, the probability that the tomato ωn is observed as “RED”
[

resp. “NOT RED”
]

is given by [FRD({yRD})] (ωn)
[

resp. [FRD({nRD})] (ωn)
]
. (Continued to Example 7.5).

¥
Example 7.5. [Tomatoes’ example; continued from Example 7.4]. Consider the quasi-

product observable as follows:

O = (XRD×XSW, 2XRD×XSW , F ≡ FRD

O

×FSW),

that is,

Rep[O] =

[
[F ({(yRD, ySW)})](ω) [F ({(yRD, nSW)})](ω)
[F ({(nRD, ySW)})](ω) [F ({(nRD, nSW)})](ω)

]
=

[
α(ω) [FRD({yRD})](ω) − α(ω)

[FSW({ySW})](ω) − α(ω) 1 + α(ω) − [FRD({yRD})](ω) − [FSW({ySW})](ω)

]
where α(ω) satisfies (7.4). Hence by Axiom 1, when we observe that the tomato ωn is

“RED”, we can see that the probability that the tomato ωn is “SWEET” is given by

[F ({(yRD, ySW)})](ωn)

[F ({(yRD, ySW)})](ωn) + [F ({(yRD, nSW)})](ωn)
. (7.7)

(
For the conditional probability, see §2.5(IV).

)
Here note that (7.7) implies ;

“[F ({(yRD, nSW)})](ωn) = 0” if and only if “RED” ⇒ “SWEET” , (7.8)
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156 CHAPTER 7. PRACTICAL LOGIC

which is also clearly equivalent to “NOT SWEET” ⇒ “NOT RED”.

¥

Being motivated by the above (7.8), we introduce the following definition of “implica-

tion” as a general form which is applicable to classical and quantum systems.

Definition 7.6. [Implication]. Let O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2

X2 , F2) be observ-

ables (not necessarily two-valued observables ) in a C∗-algebra A. Let O12 = (X1 × X2,

2X1×X2 , F1×O12 F2) be a quasi-product observable of O1 and O2. Let ρp ∈ Sp(A∗).

Let Ξ1 ∈ P(X1) and Ξ2 ∈ P(X2). Then, the condition

ρp
(
(F1

O12× F2)(Ξ1×(X2 \ Ξ2))
)
= 0 (7.9)

is denoted by

OΞ1
1 =⇒

MA(O12,S[ρp])
OΞ2

2 . (7.10)

¥
Remark 7.7. [Contraposition]. Assume that we get a measured value (x1, x2) ( ∈
X1×X2) by the measurement MA(O12, S[ρp]). And assume the condition (7.10). If we

know that x1 ∈ Ξ1, then we can assure that x2 ∈ Ξ2. Also, (7.9) is of course also equal to

O
X1\Ξ1

1 ⇐=
MA(O12,S[ρp])

O
X2\Ξ2

2 since O12 = O{1,2} = O21 (i.e., K = {1, 2} is not regarded as

an ordered set). That is, “O
X1\Ξ1

1 ⇐=
MA(O12,S[ρp])

O
X2\Ξ2

2 ” is the contraposition of (7.10).

¥

7.3 Consistency and syllogism

In this section we study the consistent condition for observables. We show several

theorems of practical syllogisms (i.e., theorems concerning “implication” in Definition

7.6).

7.3.1 Consistent condition

Though we are not concerned with quantum theory in this chapter, our investigations

for classical systems become clearer in comparison with quantum theory. Therefore, the
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7.3. CONSISTENCY AND SYLLOGISM 157

following definitions (Definitions 7.8 and 7.9) are common in both classical and quantum

theory.

Definition 7.8. [Covering family]. Let A be a C∗-algebra. For each k ∈ K ≡
{1, 2, ..., |K|−1, |K|}, consider a label set Xk. Consider D (⊆ 2K) such that

⋃
D∈D D = K.

Then, G ≡ [ OD ≡ (×k∈D Xk, 2×k∈D Xk , FD) : D ∈ D ] is called a covering family of

observables in A, if it satisfies the following condition:

OD1

∣∣
D1∩D2

= OD2

∣∣
D1∩D2

(∀D1, ∀D2 ∈ D such that D1 ∩ D2 ̸= ∅).

Note that, if G is a covering family, it holds that OD1

∣∣
{k} = OD2

∣∣
{k} for any k ∈ K and any

D1, D2 ∈ D such that k ∈ D1

⋂
D2. Thus, a covering family of observables G determines

a unique {k}-marginal observable Ok ≡ (Xk, 2
Xk , Fk) for each k ∈ K.

¥
The following definition is a generalization of Definition 7.1 (i.e., the case that D =

{{1}, {2}, ..., {|K|}}).
Definition 7.9. [Consistent condition]. Let A be a C∗-algebra. A covering family of

observable G ≡ [ OD ≡ (×k∈D Xk, 2×k∈D Xk , FD) : D ∈ D ( ⊆ 2K) ] in A is called

consistent, if there exists an observable OK ≡ (×k∈K Xk, 2×k∈K Xk , F ) in A such that:

OK

∣∣
D
= OD (∀D ∈ D). (7.11)

Also, the above relation (7.11) is denoted by

[OD : D ∈ D] < OK . (7.12)

¥
Remark 7.10. [Consistent condition]. Under the condition (7.12), the data concerning

G ≡ [OD : D ∈ D] for the system S[ρp] is obtained by the simultaneous measurement

MA(OK , S[ρp]). Thus, a covering family G has no reality, if it is not consistent. Recall

the arguments in Remark 7.2, which correspond to the above definition for the case that

D = {{1}, {2}}.
¥

Lemma 7.11. [Consistent condition]. Let A be a C∗-algebra. Let G1 ≡ [ O1
D1

: D1 ∈ D1

( ⊆ 2K) ] be a covering family of observables in A. And let G2 ≡ [ O2
D2

: D2 ∈ D2 ( ⊆ 2K)

] be a consistent covering family of observables in A. Assume that for any D1 ∈ D1 there
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158 CHAPTER 7. PRACTICAL LOGIC

exists an D2 ( ∈ D2) such that:

D1 ⊆ D2 and O1
D1

= O2
D2

∣∣
D1

. (7.13)

Then, G1 is consistent.

Proof. Since a covering family G2 is consistent, there exists an observable OK ≡
(×k∈K Xk, 2×k∈K Xk , FK) in A such that O2

D2
= OK

∣∣
D2

(∀D2 ∈ D2). Let D1 be any

element in D1. Then, by choosing D2( ∈ D2) satisfying (7.13), we see that O1
D1

= O2
D2

∣∣
D1

= (OK

∣∣
D2

)
∣∣
D1

= OK

∣∣
D1

. This completes the proof.

Lemma 7.12. [Consistent condition and quasi-product observables]. Let A be a com-

mutative C∗-algebra (i.e., A = C(Ω)). Let D12 and D23 be subsets of K. Put D123 ≡
D12

⋃
D23 ≡ (D12 \ D23)

⋂
(D12 ∩ D23)

⋂
(D23 \ D12) ≡ D1

⋃
D2

⋃
D3. Consider the

following observables in C(Ω) :

OD12 ≡ ( ×
k∈D12

Xk,P( ×
k∈D12

Xk), FD12) and OD23 ≡ ( ×
k∈D23

Xk, P( ×
k∈D23

Xk), FD23)

such that OD12

∣∣
D2

= OD23

∣∣
D2

. Then, there exists an observable OD123 ≡ (×k∈D123
Xk,

P(×k∈D123
Xk), FD123) such that OD123

∣∣
D12

= OD12 and OD123

∣∣
D23

= OD23 .

Proof. Assume that D12

⋂
D23 ̸= ∅. (If D12

⋂
D23 = ∅, this lemma is trivial. Put

Ym = ×k∈Dm Xk = {y1
m, y2

m, ..., yjm
m , ..., yMm

m }, m = 1, 2, 3. (So, Mm =
∏

k∈Dm
|Xk|.)

Thus, we can put, by Y1×Y2 = ×k∈D12
Xk and Y2×Y3 = ×k∈D23

Xk, that

OD12 = (Y1×Y2,P(Y1×Y2), F12 ≡ FD12)

and

OD23 = (Y2×Y3,P(Y2×Y3), F23 ≡ FD23).

Define the observable OD123 ≡ (×3
m=1 Ym,P(×3

m=1 Ym), F123) in C(Ω) such that:

[F123({(yj1
1 , yj2

2 , yj3
3 )})](ω)

=

{
[F12({(yj1

1 ,y
j2
2 )})](ω)·[F23({(yj2

2 ,y
j3
3 )})](ω)

[F2({yj2
2 })](ω)

if [F2({yj2
2 })](ω) ̸= 0

0 if [F2({yj2
2 })](ω) = 0

for 1 ≤ ∀j1 ≤ M1, 1 ≤ ∀j2 ≤ M2, 1 ≤ ∀j3 ≤ M3. Therefore, it is clear that this lemma

holds. For example, OD123

∣∣
D23

= OD23 is easily seen as follows:
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7.3. CONSISTENCY AND SYLLOGISM 159

[F123(Y1×{(yj2
2 , yj3

3 )})](ω) =
∑

y
j1
1 ∈Y1

[F123({(yj1
1 , yj2

2 , yj3
3 )})](ω)

=
∑

y
j1
1 ∈Y1

[F12({(yj1
1 , yj2

2 )})](ω) · [F23({(yj2
2 , yj3

3 )})](ω)

[F2({yj2
2 })](ω)

=
[F12(Y1×{yj2

2 })](ω) · [F23({(yj2
2 , yj3

3 )})](ω)

[F2({yj2
2 })](ω)

=
[F2({yj2

2 })](ω) · [F23({(yj2
2 , yj3

3 )})](ω)

[F2({yj2
2 })](ω)

= [F23({(yj2
2 , yj3

3 )})](ω) (∀ω ∈ Ω, 1 ≤ ∀j2 ≤ M2, 1 ≤ ∀j3 ≤ M3).

This completes the proof.

The following theorem is a kind of generalization of Theorem 2.11
(
which essentially

corresponds to the result for D = {{1}, {2}, ..., {|K|}} in the following theorem
)
. Here

note that a covering family [OD : D ∈ D] is equivalent to [OD′ : D′ ∈ {D′ : D′ ⊆ D for

some D ∈ D}] where OD′ = OD

∣∣
D′ for any D′ such that D′ ⊆ D.

Theorem 7.13. [Consistent condition and quasi-product observables]. Let D = {{1, 2},
{2, 3}, ..., {|K|−1, |K|}} ( ⊆ 2K). Let G = [OD = (×k∈D Xk, 2

×k∈D Xk , FD) : D ∈ D] be

a covering family of observables in a commutative C∗-algebra C(Ω).
(
Here we can put G

= [ Ok,k+1 ≡ (Xk×Xk+1, P(Xk×Xk+1), Fk,k+1 ≡ Fk×Ok,k+1 Fk+1) : k = 1, 2, ..., |K|−1

].
)

Then, G = [ Ok,k+1 : k = 1, 2, ..., |K| − 1 ] is consistent.

Proof. Put D12 = {1, 2} and D23 = {2, 3}. By Lemma 7.12, we get O123 ( = OD123)

such that G3 = [O123,O34,O45, ...,O|K|−1,|K|] is a covering family in C(Ω) where O12 =

O123

∣∣
{1,2} and O23 = O123

∣∣
{2,3}. Iteratively, we get G|K|−1 = [O123···|K|−1,O|K|−1,|K|] and

G|K| = [O123···|K|−1,|K|] ≡ [OK ], which is clearly consistent. So, by Lemma 7.11, we see

that G|K|−1 < OK . Therefore, we iteratively get G < OK . This completes the proof.

Remark 7.14. [Quantum PMT]. This theorem is due to the commutativity of a C∗-

algebra C(Ω). In general (particularly in quantum systems, i.e., A = C(V )), there exists

no O123 such that [O12,O23] < O123 (i.e., [O12,O23] is not consistent in general). Thus,

we have no simultaneous measurement MA(O123, S[ρp]). Therefore, in general, we can

not get information (i.e., data) concerning the covering family [O12,O23] for the quantum

system S[ρp]. That is, in general, the covering family [O12,O23] has no reality in quantum

mechanics.

¥
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The following notation is the preparation for Theorems 7.19 and 7.23.

Notation 7.15. [Preparation for Theorems 7.19 and 7.23]. Let G = [O12,O23, ...O|K|−1,|K|]

≡ [ (Xk×Xk+1, P(Xk×Xk+1), Fk,k+1 ≡ Fk×Ok,k+1 Fk+1) : k = 1, 2, ..., |K| − 1 ] be a

covering family of observables in a commutative C∗-algebra C(Ω). (So, G is consistent as

in Theorem 7.13). Suppose that Xk = {yk, nk} for each k ∈ K. As in Definition 7.8, put

Rep[Ok] = Rep[(Xk, 2
Xk , Fk)] =

[
[Fk({yk})](ω), [Fk({nk})](ω)]

]
≡

[
p1

k(ω), p0
k(ω)

]
for all k = 1, 2, 3, ..., |K|. And put

Rep[Ok,k+1] = Rep[(Xk×Xk+1, 2
Xk×Xk+1 , Fk,k+1)]

=

[
[Fk,k+1({yk}×{yk+1})](ω) [Fk,k+1({yk}×{nk+1})](ω)
[Fk,k+1({nk}×{yk+1})](ω) [Fk,k+1({nk}×{nk+1})](ω)

]
≡

[
p11

k,k+1(ω) p10
k,k+1(ω)

p01
k,k+1(ω) p00

k,k+1(ω)

]
≡

[
p11

k,k+1(ω) p1
k(ω) − p11

k,k+1(ω)
p1

k+1(ω) − p11
k,k+1(ω) 1 + p11

k,k+1(ω) − p1
k(ω) − p1

k+1(ω)

]
(7.14)

for all k = 1, 2, ..., |K| − 1, where p11
k,k+1(ω) satisfies (7.4). Let OK ≡ (×k∈K Xk,

P(×k∈K Xk), FK) be any observable in C(Ω) such that:

[O12,O23, ...O|K|−1,|K|] < OK . (7.15)

(The existence of OK is guaranteed by Theorem 7.13.) Put

[
p

j1,j2,...,j|K|
1,2,...,|K| (ω) : j1, j2, ..., j|K| = 1, 0

]
≡

[
[FK(

|K|
×
k=1

{xjk

k })](ω) : j1, j2, ..., j|K| = 1, 0

]
,

(7.16)

where xjk

k = yk (if jk = 1 ) and xjk

k = nk (if jk = 0 ). Define O1,|K| ≡ (X1×X|K|,

P(X1×X|K|), F1,|K|) such that O1,|K| = OK

∣∣
{1,|K|}. Put

Rep[O1,|K|] = Rep[(X1×X|K|, 2
X1×X|K| , F1,|K|)]

=

[
[F1,|K|({y1}×{y|K|})](ω) [F1,|K|({y1}×{n|K|})](ω)
[F1,|K|({n1}×{y|K|})](ω) [F1,|K|({n1}×{n|K|})](ω)

]
≡

[
p11

1,|K|(ω) p10
1,|K|(ω)

p01
1,|K|(ω) p00

1,|K|(ω)

]
≡

[
p11

1,|K|(ω) p1
1(ω) − p11

1,|K|(ω)

p1
|K|(ω) − p11

1,|K|(ω) 1 + p11
1,|K|(ω) − p1

1(ω) − p1
|K|(ω)

]
.

(7.17)
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7.3. CONSISTENCY AND SYLLOGISM 161

(Continued to Lemmas 7.16 and 7.17 and Theorem 7.19 for K = {1, 2, 3}, and to Theorem

7.23 for general case).

¥
Lemma 7.16. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1, 2, 3},
we see, (putting pj1j2j3

123 = pj1j2j3
123 (ω) in (7.16), p111

123 = A and p101
123 = B),

p111
123 = A(ω), p011

123 = p11
23 − A(ω),

p110
123 = p11

12 − A(ω), p010
123 = p1

2 − p11
12 − p11

23 + A(ω),

p101
123 = B(ω), p001

123 = p1
3 − p11

23 − B(ω),

p100
123 = p1

1 − p11
12 − B(ω), p000

123 = 1 − p1
1 − p1

2 − p1
3 + p11

12 + p11
23 + B(ω), (7.18)

where

max{0,−p1
2(ω) + p11

12(ω) + p11
23(ω)} ≤ A(ω) ≤ min{p11

12(ω), p11
23(ω)} (7.19)

and

max{0, p1
1(ω) + p1

2(ω) + p1
3(ω) − p11

12(ω) − p11
23(ω) − 1}

≤ B(ω) ≤ min{p1
1(ω) − p11

12(ω), p1
3(ω) − p11

23(ω)}. (7.20)

Proof. From (7.16), (7.15) and (7.14) for K = {1, 2, 3}, we see

p111
123 + p110

123 = p11
12, p101

123 + p100
123 = p10

12 = p1
1 − p11

12,

p011
123 + p010

123 = p01
12 = p1

2 − p11
12, p001

123 + p000
123 = p00

12 = 1 + p11
12 − p1

1 − p1
2,

p111
123 + p011

123 = p11
23, p110

123 + p010
123 = p10

23 = p1
2 − p11

23,

p101
123 + p001

123 = p01
23 = p1

3 − p11
23, p100

123 + p000
123 = p00

23 = 1 − p11
23 − p1

2 − p1
3.

After a small computation, we get (7.18). Since 0 ≤ pj1j2j3
123 (ω) ≤ 1, we see, from (7.18),

that

0 ≤ A ≤ 1, p11
23 − 1 ≤ A ≤ p11

23, p11
12 − 1 ≤ A ≤ p11

12,

− p1
2 + p11

12 + p11
23 ≤ A ≤ 1 − p1

2 + p11
12 + p11

23,

0 ≤ B ≤ 1, p1
3 − p11

23 − 1 ≤ B ≤ p1
3 − p11

23, p1
1 − p11

12 − 1 ≤ B ≤ p1
1 − p11

12,

p1
1 + p1

2 + p1
3 − p11

12 − p11
23 − 1 ≤ B ≤ p1

1 + p1
2 + p1

3 − p11
12 − p11

23.

This implies (7.19) and (7.20). This completes the proof.
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Lemma 7.17. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1, 2, 3},
we see

max{0,−p1
2(ω) + p11

12(ω) + p11
23(ω)}

+ max{0, p1
1(ω) + p1

2(ω) + p1
3(ω) − p11

12(ω) − p11
23(ω) − 1}

≤ p11
13(ω) (7.21)

≤ min{p11
12(ω), p11

23(ω)} + min{p1
1(ω) − p11

12(ω), p1
3(ω) − p11

23(ω)}. (7.22)

Proof. Since p11
13(ω) = p111

123(ω)+ p101
123(ω) = A(ω) + B(ω) in Lemma 7.16, by (7.19) and

(7.20) we can easily get (7.21) and (7.22). This completes the proof.

Remark 7.18. [Comparison]. Let us compare the result in Lemma 7.17 with the result

(7.4) in Lemma 7.3 (i.e., the result without consistent condition). Note that (7.4) implies

C1 ≡ max{0, p1
1(ω) + p1

3(ω) − 1} ≤ p11
13(ω) ≤ min{p1

1(ω), p1
3(ω)} ≡ C2.

Here we can easily see that C1 ≤ (7.21) and (7.22) ≤ C2 from the following trivial

inequalities:

max{0, α1 + α2} ≤ max{0, max{0, α1} + max{0, α2}} = max{0, α1} + max{0, α2}

and

min{α1, α2} + min{α3, α4} = min{ α1 + α3, α1 + α4, α2 + α3, α2 + α4 }

≤ min{ α1 + α3, α2 + α4 } .

Therefore, we see in Lemma 7.17 that the value p11
13(ω) is restricted under the consistent

condition of [O12,O23].

¥

7.3.2 Practical syllogism

Now we show several theorems of practical syllogisms (i.e., theorems concerning “im-

plication” in Definition 7.6) as the consequences of our arguments.

Theorem 7.19. [Practical syllogism, [41]]. Assume Notation 7.15 for K = {1, 2, 3}.
That is, [O12,O23] is a covering family of observables in a commutative C∗-algebra C(Ω).
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7.3. CONSISTENCY AND SYLLOGISM 163

Let δω0 ∈ M
p
+1(Ω) for any fixed ω0 ∈ Ω. Let O123 (= OK) be any observable such that

[O12,O23] < O123 and let O13 = O123

∣∣
{1,3}. (The existence of O123 is guaranteed by

Theorem 7.13.) Then we have the following statements [1] ∼ [3]:

[1]. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δ[ω0]]
)
O

{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O

{y3}
3 . (7.23)

Then, we see that[
p11

13(ω0) p10
13(ω0)

p01
13(ω0) p00

13(ω0)

]
=

[
p1

1(ω0) 0
p1

3(ω0) − p1
1(ω0) 1 − p1

3(ω0)

]
, (7.24)

hence, we see that

O
{y1}
1 =⇒

MC(Ω)(O13,S[δω0 ])
O

{y3}
3 . (7.25)

[2]. Assume that

O
{y1}
1 ⇐=

MC(Ω)(O12,S[δω0 ])
O

{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O

{y3}
3 . (7.26)

Then, we see that[
p11

13(ω0) p10
13(ω0)

p01
13(ω0) p00

13(ω0)

]
=

[
α(ω0) p1

1(ω0) − α(ω0)
p1

3(ω0) − α(ω0) 1 + α(ω0) − p1
1(ω0) − p1

3(ω0)

]
where

max{p1
2(ω0), p

1
1(ω0) + p1

3(ω0) − 1} ≤ α(ω0) ≤ min{p1
1(ω0), p

1
3(ω0)}. (7.27)

Also (7.26) is equivalent to

O
{y2}
2 =⇒

MC(Ω)(O123,S[δω0 ])
O

{(y1,y3)}
13 . (7.28)

[3]. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δω0 ])
O

{y2}
2 , O

{y2}
2 ⇐=

MC(Ω)(O23,S[δω0 ])
O

{y3}
3 . (7.29)

Then, we see that[
p11

13(ω0) p10
13(ω0)

p01
13(ω0) p00

13(ω0)

]
=

[
α(ω0) p1

1(ω0) − α(ω0)
p1

3(ω0) − α(ω0) 1 + α(ω0) − p1
1(ω0) − p1

3(ω0)

]
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where

max{0, p1
1(ω0) + p1

3(ω0) − p1
2(ω0)} ≤ α(ω0) ≤ min{p1

1(ω0), p
1
3(ω0)}. (7.30)

Also (7.29) is equivalent to

O
{(y1,y3),(y1,n3),(n1,y3)}
13 =⇒

MC(Ω)(O123,S[δω0 ])
O

{y2}
2 . (7.31)

Proof. [1]. By (7.23) and (7.5), we see that p10
12 = p10

23 = 0, so, p11
12 = p1

1 ≤ p1
2 = p11

23 ≤
p1

3. Therefore, we see that (7.21) = p11
12 + max{0, p1

3 − 1} = p1
1. And (7.22) = p1

1 + 0 = p1
1.

This implies that p11
13 = p1

1, i.e., (7.24). Also, (7.25) follows from p10
13 = 0.

[2]. By (7.26) and (7.5), we see that p01
12 = p10

23 = 0, so, p11
12 = p1

2 ≤ p1
1 and p11

23 = p1
2 ≤ p1

3.

Therefore, we see that (7.21) = p11
23+ max{0, p1

1−p1
2 +p1

3−1} = max{p1
2, p

1
1 +p1

3−1}. And

(7.22) = min{p1
2, p

1
2} + min{p1

1 − p1
2, p

1
3 − p1

2} = min{p1
1, p

1
3}. This implies (7.27). Also, we

see that (7.26) ⇔ p01
12 = p10

23 = 0 ⇔ p010
123 = p011

123 = p110
123 = 0 ⇔ (7.28).

[3]. By (7.29) and (7.5), we see that p10
12 = p01

23 = 0, so, p11
12 = p1

1 ≤ p1
2 and p11

23 = p1
3 ≤ p1

2.

Therefore, we see that (7.21) = max{0, p1
1−p1

2+p1
3} + max{0, p1

2−1} = max{0, p1
1−p1

2+p1
3}.

And (7.22) = min{p1
1, p

1
3}. This implies (7.30). Also, (7.29) ⇔ p10

12 = p01
23 = 0 ⇔ p101

123 =

p100
123 = p001

123 = 0 ⇔ (7.31). This completes the proof.

Remark 7.20. [Practical logic and pure logic]. The reader must not confuse the result

(for example, (7.23)⇒(7.25)) in Theorem 7.19 with pure logic (i.e., mathematical logic).

Theorem 7.19 is a consequence of Axiom 1. Note that Theorem 7.19 is due to Theorem

7.13, i.e., the commutativity of C∗-algebra C(Ω). That means the results in Theorem 7.19

can not be expected in quantum systems. In comparison with quantum theory, Theorem

7.19 becomes clearer. For example, in general, the syllogism is meaningless in quantum

systems. This is easily shown as follows. Put V = C5, and A = B(C5). And

e⃗1 =


1
0
0
0
0

 , e⃗2 =


0
1
0
0
0

 , e⃗3 =


0
0
1
0
0

 , e⃗4 =


0
0
0
1
0

 , e⃗5 =


0
0
0
0
1

 ,

and put f⃗4 = e⃗4√
2

+ e⃗5√
2
, f⃗5 = e⃗4√

2
− e⃗5√

2
. Define the three observables O1 ≡ (X1 ≡

{a1, b1, c1}, 2X1 , F1), O2 ≡ (X2 ≡ {a2, b2, c2}, 2X2 , F2) and O3 ≡ (X3 ≡ {a3, b3, c3}, 2X3 , F3)

such that

F1({a1}) = |e⃗1⟩⟨e⃗1|, F1({b1}) = |e⃗2⟩⟨e⃗2| + |e⃗3⟩⟨e⃗3| + |e⃗4⟩⟨e⃗4|, F1({c1}) = |e⃗5⟩⟨e⃗5|,
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7.3. CONSISTENCY AND SYLLOGISM 165

F2({a2}) = |e⃗1⟩⟨e⃗1| + |e⃗2⟩⟨e⃗2|, F2({b2}) = |e⃗3⟩⟨e⃗3|, F2({c2}) = |e⃗4⟩⟨e⃗4| + |e⃗5⟩⟨e⃗5|,

F3({a3}) = |e⃗1⟩⟨e⃗1| + |e⃗2⟩⟨e⃗2| + |e⃗3⟩⟨e⃗3|, F3({b3}) = |f⃗4⟩⟨f⃗4|, F3({c3}) = |f⃗5⟩⟨f⃗5|.

Note that O1 and O2 [resp. O2 and O3] commute. Let O12 = (X1×X2, 2X1×X2 , F1×F2)

be the product observable of O1 and O2. And let O23 = (X2×X3, 2X2×X3 , F2×F3) be

the product observable of O2 and O3. Let ρp be any pure state ( i.e., ρp ∈ Sp(B(C5)∗)).

Then, we have

O
{a1}
1 =⇒

MA(O12,S[ρp])
O

{a2}
2 , O

{a2}
2 =⇒

MA(O23,S[ρp])
O

{a3}
3 .

since we see

ρp
(
(F1×F2)({a1}×({b2, c2}))

)
= 0, ρp

(
(F1×F2)({a2}×({b3, c3}))

)
= 0.

However, it should be noted that we have no product observable of O1, O2 and O3. Thus,

the implication:

O
{a1}
1 =⇒

MA(O13,S[ρp])
O

{a3}
3

is nonsense since O13 can not be defined.

¥

Example 7.21. [Continued from Example 7.4, [41]]. Let Ω, C(Ω), O1 ≡ OSW ≡ (XSW,

2XSW , FSW) and O3 ≡ ORD ≡ (XRD, 2XRD , FRD) be as in Example 7.4. Let O2 ≡ ORP ≡
(XRP, 2

XRP , FRP) be an observable in C(Ω) such that:

XRP = {yRP, nRP},

where “yRP” and “nRP” respectively mean “RIPE” and “NOT RIPE”. Put

Rep[O1] =
[
[FSW({ySW})](ω), [FSW({nSW})](ω)

]
,

Rep[O2] =
[
[FRP({yRP})](ω), [FRP({nRP})](ω)

]
,

Rep[O3] =
[
[FRD({yRD})](ω), [FRD({nRD})](ω)

]
.

For example,
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ω1

nSW

yRP

yRD

ω2

ySW

nRP

yRD

ω3

ySW

yRP

nRD

· · ·

· · ·
· · ·
· · ·

ωN

nSW

nRP

nRD

Consider the following quasi-product observables:

O12 = (XSW×XRP, 2
XSW×XRP , F12 ≡ FSW

O12× FRP)

and

O23 = (XRP×XRD, 2XRP×XRD , F23 ≡ FRP

O23× FRD).

Let δωn ∈ M
p
+1(Ω) for any fixed ωn ∈ Ω. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δω0 ])
O

{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O

{y3}
3 . (7.32)

Then, we see, by Theorem 7.19 [1], that

Rep[O13] =

[
[F13({ySW}×{yRD})](ωn) [F13({ySW}×{nRD})](ωn)
[F13({nSW}×{yRD})](ωn) [F13({nSW}×{nRD})](ωn)

]
(7.33)

=

[
[FSW({ySW})](ωn) 0

[FRD({yRD})](ωn) − [FSW({ySW})](ωn) 1 − [FRD({yRD})](ωn)

]
.

So, when we observe that the tomato ωn is “RED”, we can infer, by the fuzzy inference

MC(Ω)(O13, S[δωn ]) (equivalently, MC(Ω)(O31, S[δωn ])), the probability that the tomato ωn

is “SWEET” is given by

[F13({ySW}×{yRD})](ωn)

[F13({ySW}×{yRD})](ωn) + [F13({nSW}×{yRD})](ωn)
=

[FSW({ySW})](ωn)

[FRD({yRD})](ωn)
. (7.34)

Also, when we observe that the tomato ωn is “SWEET”, we can infer, by the fuzzy

inference MC(Ω)(O13, S[δωn ]), the probability that the tomato ωn is “RED” is given by

[F13({ySW}×{yRD})](ωn)

[F13({ySW}×{yRD})](ωn) + [F13({ySW}×{nRD})](ωn)
=

[FRD({yRD})](ωn)

[FRD({yRD})](ωn)
= 1. (7.35)

Note that (7.32) implies (and is implied by)

“SWEET” =⇒ “RIPE” and “RIPE” =⇒ “RED” . (7.36)
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7.3. CONSISTENCY AND SYLLOGISM 167

(Recall (7.8)). So, it is “reasonable” to reach the conclusion:

“SWEET” =⇒ “RED” , (7.37)

which is implied by the above (7.35).
(
Here we are afraid that the most important fact

may be overlooked. For completeness, note that the conclusion “(7.36) ⇒ (7.37)” is a

consequence of Theorem 7.19 (and therefore, our axiom).
)

However, the result (7.34) is

due to the peculiarity of fuzzy inferences. That is, in spite of the fact (7.36), we get the

conclusion (7.34) that is somewhat like

“RED” =⇒ “SWEET” . (7.38)

Note that the conclusion (7.37) is not valuable in the market. What we want in the

market is the conclusion such as (7.38) (or (7.34)).

¥
Example 7.22. [Continued from Example 7.21, [41]]. Instead of (7.32), assume that

O
{y1}
1 ⇐=

MC(Ω)(O12,S[δωn ])
O

{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δωn ])
O

{y3}
3 . (7.39)

Assume the notation (7.33). When we observe that the tomato ωn is “RED”, we can

infer, by the fuzzy inference MC(Ω)(O13, S[δωn ]), the probability that the tomato ωn is

“SWEET” is given by

Q =
[F13({ySW}×{yRD})](ωn)

[F13({ySW}×{yRD})](ωn) + [F13({nSW}×{yRD})](ωn)
(7.40)

which is, by (7.27), estimated as follows:

max

{
[FRP({yRP})](ωn)

[FRD({yRD})](ωn)
,
[FSW({ySW})] + [FRD({yRD})] − 1

[FRD({yRD})](ωn)

}
≤ Q ≤ min{ [FSW({ySW})](ωn)

[FRD({yRD})](ωn)
, 1}. (7.41)

Note that (7.39) implies (and is implied by)

“RIPE” =⇒ “SWEET” and “RIPE” =⇒ “RED” . (7.42)

And note that the conclusion (7.41) is somewhat like

“RED” =⇒ “SWEET” . (7.43)
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168 CHAPTER 7. PRACTICAL LOGIC

Therefore, this conclusion is peculiar to “fuzziness”.

¥
The following theorem is a generalization of the first part of Theorem 7.19.

Theorem 7.23. [Standard syllogism, cf. [41]]. Assume Notation 7.15. Let δω0 ∈ M
p
+1(Ω).

Assume that

O
{yk}
k =⇒

MC(Ω)(Ok,k+1,S[δω0 ])
O

{yk+1}
k+1 (∀k = 1, 2, ...., |K| − 1), (7.44)

Let OK be any observable as in Notation 7.15, i.e., G = [O12,O23, O34, ..., O|K|−1,|K|] <

OK . Put O1,|K| = OK

∣∣
{1,|K|}. Then, we see that

Rep[O1,|K|]at ω0
=

[
p11

1,|K|(ω0) p10
1,|K|(ω0)

p01
1,|K|(ω0) p00

1,|K|(ω0)

]
=

[
p1

1(ω0) 0
p1
|K|(ω0) − p1

1(ω0) 1 − p1
|K|(ω0)

]
, (7.45)

hence, we see that

O
{y1}
1 =⇒

MC(Ω)(O1,|K|,S[δω0 ])
O

{y|K|}
|K| . (7.46)

Proof. Let OK be any observable such that G = [O12,O23, O34, ...,O|K|−1,|K|] < OK .

Thus, we see that [OK

∣∣
{1,3}, O34, ...,O|K|−1,|K|] < OK

∣∣
K\{2}. Note that (OK

∣∣
{1,3})

∣∣
{m} =

Om, m = 1, 3. Also note, by (7.24), that

Rep[OK

∣∣
{1,3}]at ω0

=

[
p1

1(ω0) 0
p1

3(ω0) − p1
1(ω0) 1 − p1

3(ω0)

]
,

and therefore O
{y1}
1 =⇒

MC(Ω)(OK |{1,3},S[δω0 ])
O

{y3}
3 . Hence, by induction, we see that Rep[O1,|K|]

≡ Rep[OK

∣∣
{1,|K|}] = (7.45) at ω = ω0. This completes the proof.

7.4 Conclusion

It is certain that (pure) logic is merely a kind of rule in mathematics. However, if it

is so, the logic is not guaranteed to be applicable to our world. For instance, (pure) logic

does not assure the truth of the following famous statement:

[♯] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
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7.5. APPENDIX (ZADEH’S FUZZY SETS THEORY) 169

That is, we think that the problem: “Is this [♯] (theoretical) true or not?” is unsolved.

Thus, the purpose of this chapter was to prove the [♯], or more generally, to propose

“practical logic”, i.e., a collection of theorems (whose forms are similar to that of “pure

logic”) in PMT.

Firstly, the symbol “A ⇒ B” (i.e., “implication”) is defined in terms of measurements

(cf. Definition 7.6). And we prove the standard syllogism for classical systems:

“A ⇒ B, B ⇒ C” implies “A ⇒ C”, (7.47)

which is the same as the above (♯). (This (7.47) is not trivial since it does not necessarily

hold in quantum systems.) We can assert, by “Declaration (1.11)” in §1.4, that PMT

guarantees that the above statement [♯] is true.

Several variants may be interesting. For example, under the condition that “A ⇒ B,

B ⇒ C”, we can assert a kind of conclusion such as “C ⇒ A”. That is,

“A ⇒ B, B ⇒ C” implies “C ⇒ A” in some sense. (7.48)

For completeness, “pure logic” and “practical logic” must not be confused. The former is

a basic rule on which mathematics is founded. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic”) in PMT.

7.5 Appendix (Zadeh’s fuzzy sets theory)

7.5.1 What is Zadeh’s fuzzy sets theory?

As mentioned in Chapter 1 (i.e., the footnote below Problem 1.2), one of motivations

of our research is motivated by Zadeh’s fuzzy sets theory. In 1965, L.A. Zadeh proposed

a certain system theory, in which a membership function f : Ω → [0, 1], which is asserted

to represent “fuzziness”, plays an important role. The membership function is considered

as a kind of generalization of a characteristic function. Here, the characteristic function

χ
D

of D ( ⊆ Ω) is defined by χ
D

: Ω → {0, 1} such that:

χ
D
(ω) =

{
1 (ω ∈ D)
0 (ω /∈ D).
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170 CHAPTER 7. PRACTICAL LOGIC

Consider the identification:

“characteristic function χ
D
” ←→ “set D”,

which gives us the question “What is the following [♯]?”

“membership function f” ←→ [♯].

0

1

Ω

f(ω)

[♯] ?D

χ
D
(ω)

The [♯] is called a fuzzy set by Zadeh. Thus we think that Zadeh’s fuzzy sets theory has

two aspects [A1] and [A2] as follows:

Zadeh’s fuzzy sets theory


[A1] : membership functions (analytic aspect),

[A2] : fuzzy sets (logical aspect).
(7.49)

Zadeh’s fuzzy sets theory acquired a lot of believers. In fact, his paper [93] is one of

the most cited papers in all fields of 20th century science. However, his theory seems

“fuzzy” rather than “difficult”. Thus, it is natural that the following problem arises:

[♯1] Is Zadeh’s fuzzy sets theory true or not?

When we examine the problem, we are immediately confronted with the following problem:

[♯2] What is “true or not”? Or, if we want to assert “Zadeh’s fuzzy sets theory is true

[or not]”, what do we say?

And when we study the problems [♯1] and [♯2], we immediately notice the fact that we

have not yet the clear answer to even the question: “Is Fisher’s statistics true or not?”. 3

As mentioned in Chapter 1, our research starts from the above questions [♯1] and [♯2].

And we conclude “Declaration (1.11)” in §1.4 as follows:

• MT is entitled to check all theories in theoretical informatics. In other words, we

can, by using MT, introduce the criterion:“true or not” into theoretical informatics.

That is, MT can be regarded as “the Construction of theoretical informatics”.

3In Chapters 5 and 6, it is proved that Fisher’s statistics is theoretically true.
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7.5. APPENDIX (ZADEH’S FUZZY SETS THEORY) 171

Now, consider an observable (X, 2X , F ) in C(Ω). Note that, for any Ξ ( ⊆ X), F (Ξ) is a

membership function on Ω. Since F (Ξ) ∈ C(Ω), the F (Ξ), of course, has various analytic

aspects. Also, in this chapter we see that the membership function F (Ξ) has various

logical aspects. Thus, someone may conclude that Zadeh’s fuzzy sets theory (i.e., the

analytic aspect [A1] and the logical aspect [A2] in (7.49)) is understood in the framework of

measurement theory, that is, Zadeh’s fuzzy sets theory is true (cf. “Declaration (1.11)” in

§1.4). We may agree with this opinion. In fact, these kinds of aspects [A1] and [A2] can

not be found in the conventional formulation of system theory (cf. (1.2)) such as

“dyn. syst. theor.” =


dx(t)

dt = f(x(t), u1(t), t), x(0) = x0 · · · (state equation),

y(t) = g(x(t), u2(t), t) ( measurement equation).
(7.50)
(=(1.2))

That is because the conventional formulation (7.50) does not possess the concept of

“observable in the sense of Definition 2.7”.

The believers of Zadeh’s fuzzy sets theory say too much (cf. [64]). And thus, we have

no firm answer to the question: “What is the essence of Zadeh’s theory?”. If we can

assume that:

(♯) Zadeh wanted to assert that DST (7.50) and “logic” are closely connected
(
or pre-

cisely, “logic” is one of the aspects of DST (7.50)
)

though the two are, in appearance,

independent,

then we can understand his assertion. That is because in this section we study “logic” in

measurement theory, which is a kind of generalization of the system theory (7.50). This is

our opinion for Zadeh’s theory. Of course, there may be another opinion, that is, someone

may assert that Zadeh said something much more than the (♯). If it is so, we may not

understand his theory in the framework of measurement theory.

Recall the arguments in Chapter 1 (particularly, “Declaration (1.11)” in §1.4, tables

(1.7) and (1.8)). Now, we have only two options, i.e.,

(i) Zadeh’s fuzzy sets theory is characterized as the theory concerning membership

functions in measurement theory.

(ii) Zadeh’s fuzzy sets theory is not characterized in measurement theory. Thus another

fundamental theory (cf. The third mathematical scientific theory in (1.7)) should

be proposed.
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172 CHAPTER 7. PRACTICAL LOGIC

Although there is a possibility that (ii) is reasonable, that is, Zadeh’s fuzzy sets theory may

be understood in another fundamental theory (cf. The third mathematical scientific theory

in (1.7)), we should note that the proposal of another fundamental theory is much more

remarkable than the justification of Zadeh’s fuzzy sets theory. Thus we choose the (i) even

if the essential part of Zadeh’s assertion (e.g., the scientific part asserted in [64]) can not

be characterized in MT. Thus we conclude that Zadeh’s assertion can not be completely

understood in measurement theory, i.e.,

• Zadeh’s assertion is not completely “theoretical true” (cf. Declaration 1.11), though

practical logic somewhat has the property like “fuzzy set”.

This is our present opinion.

7.5.2 Why is Zadeh’s paper cited frequently?

Although we believe that the above argument in §7.5.1 is proper, it does not explain

the reason why Zadeh’s paper is cited frequently. As mentioned before, Zadeh’s paper [93]

is one of the most cited papers of all scientific papers. This is an established fact. This

fact may imply that there is something interesting behind Zadeh’s assertion. Thus, we

think that the question “Why is Zadeh’s paper cited frequently?” is more important than

the question “What is Zadeh’s fuzzy sets theory?”. Thus we shall consider the question:

• Why does the term “fuzzy” look attractive?

We think that the reason is that Zadeh’s spirit is regarded as the antithesis of the myth:

“Science must be exact, clear, strict, etc”. This myth seems to be due to Newtonian

mechanics (and moreover, theoretical physics), which has been located in the center of all

science. That is, we think that

• many people want another science, which is fuzzy, rough, vague, etc.

If it is so, we should recall Table 1.8 (in Chapter 1), which asserts mathematical science

is classified as follows:
theoretical physics (‘TOE’) ..... exact mathematical science

theoretical informatics (measurement theory) ..... fuzzy mathematical science.

(7.51)
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7.5. APPENDIX (ZADEH’S FUZZY SETS THEORY) 173

If it is true, we can understand the reason why the term “fuzzy” was accepted widely.

Thus we do not deny the following opinion:

(♯) “measurement theory” = “fuzzy theory”. (Cf. [42].) Or, the attractive parts of

Zadeh’s assertions are mostly included in measurement theory.

That is because we believe that

(♭) Measurement theory is the very theory that represents the anti-spirit against the

myth: “Science must be exact, clear, strict, etc”.

In fact, the terms

• fuzzy statement (cf. the footnote below Example 2.16), ready-made, useful or not,

subjective, popularity, likes or dislikes, (in “Theoretical informatics of Table (1.8)”)

seem to belong to the category of “fuzziness”. On the other hand, the terms

• precise statement (cf. the footnote below Example 2.16), made to order, empirical

true or not, objective, truth, (in “Theoretical informatics of Table (1.8)”)

obviously belong to the category of “exactness”.
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Chapter 8

Statistical measurements in
C∗-algebraic formulation

As mentioned in the beginning of Chapter 2, measurement theory (MT) can be classified into two
subjects, i.e., “(pure) measurement theory (PMT)” and “statistical measurement theory (SMT)”.
That is,

MT (=“measurement theory”)

 PMT (=“(pure) measurement theory”) in Chapters 2 ∼ 7

SMT (=“statistical measurement theory”) in Chapters 8 ∼
(8.1)

PMT is essential, and it is formulated as follows:

PMT = measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra
. (8.2)

(=(1.4))

Here it should be noted that the state ρp is always assumed to be pure, i.e., ρp ∈ Sp(A∗). In this
chapter we study the statistical measurement for a statistical state, i.e., the measurement in the
case that the state is distributed. The distribution (i.e., a statistical state) is represented by a
mixed state ρm ( ∈ Sm(A∗)). The Statistical MT (i.e., SMT) is formulated as follows:

SMT = statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra , (8.3)

where Proclaim 1 is characterized as follows:

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

(8.4)

Thus, the (8.3) is also rewritten such as

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra . (8.5)

Therefore it should be noted that there is no SMT without PMT. Also, we add “belief measurement
theory” in §8.6 and “principal components analysis” in §8.7.

175
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176CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

8.1 Statistical measurements (C∗-algebraic formula-

tion)

8.1.1 General theory of statistical measurements

Axiom 1 (proposed in §2.4) says that the measurement of an observable O
(
≡ (X, F, F )

)
for the system with the state ρp ( ∈ Sp(A∗)) induces the sample space (X, F, P ( · ) ≡
ρp(F ( · ))). That is, Axiom 1 says symbolically that:

“observable”
(X,F,F ) in A

and “state”
ρp∈Sp(A∗)

=⇒
measurement

“sample space”
(X,F,P (·)≡ρp(F (·))) .

Here it should be noted that the state must be always pure, i.e., ρp ∈ Sp(A∗) in Axiom

1. However we sometimes want to generalize the concept of “state”, i.e., to introduce

“statistical state”, which is represented by a mixed state ρm (∈ Sm(A∗)). That is, we

assert (in Proclaim 1 later) that

[♯] “statistical state” = “mixed state”
(mathematics)

+ “probabilistic interpretation”.

Also, it should be noted that we have already studied “S-states” in Chapter 6, which

is one of the aspects of the statistical state. Although the statistical state has various

aspects, we begin with the following example, which will promote a better understanding

of the concept of “statistical state”.

Example 8.1. [Coin-tossing and urn problem]. There are two urns U1 and U2. The urn

U1 [resp. U2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Under

the following identification (cf. (5.16) in Example 5.8):

U1 ≈ ω1, U2 ≈ ω2,

we regard Ω
(
≡ {ω1, ω2}

)
as the state space. And consider the observable O

(
≡ (X ≡

{w, b}, 2{w,b}, F )
)

in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6. (8.6)

U1 ≈ ω1 U2 ≈ ω2
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 177

Here consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., ω1 or ω2) is chosen by an unfair tossed-coin (Cp,1−p), i.e.,

Head (100p%) → ω1, Tail (100(1 − p)%) → ω2 (0 ≤ p ≤ 1). (8.7)

The chosen urn is denoted by [∗](∈ {ω1, ω2}). Here define the mixed state ν0(∈
Mm

+1(Ω)) such that ν0 = pδω1 + (1 − p)δω2 (i.e., ν0({ω1}) = p, ν0({ω2}) = 1 − p),

which is considered to be “the distribution of [∗]”. Thus we call the ν0 a statistical

state.

(P2) Take one ball, at random, out of the urn chosen by the procedure (P1). That is, we

take the measurement MC(Ω)(O, S[∗]).

Then we have the following question:

(Q) Calculate the probability that a measured value “w” [resp. “b”] is obtained by the

above measurement MC(Ω)(O, S[∗]).

[Answer]. The “measurement” defined in the above (P1) and (P2) is denoted by

MC(Ω)(O, S[∗]([δω1 ; p] ⊕ [δω2 ; 1 − p])). (8.8)

This may be called a “probabilistic measurement”, and the symbol [δω1 ; p] ⊕ [δω2 ; 1 − p]

may be called a “probabilistic state”. Note that:

(i) the probability that [ ∗ ] = δω1 [resp. [ ∗ ] = δω2 ] is given by p [resp. 1 − p].

(ii) If [ ∗ ] = δω1 [resp. if [ ∗ ] = δω2 ], the probability that the measured value obtained

by MC(Ω)(O, S[∗]) is equal to x ( ∈ {w, b}) is, by Axiom 1, given by

M(Ω)

〈
δω1 , F ({x})

〉
C(Ω)

= 0.8 ( if x = w), = 0.2 ( if x = b),[
resp. M(Ω)

〈
δω2 , F ({x})

〉
C(Ω)

= 0.4 ( if x = w), = 0.6 ( if x = b)
]
.

Thus, under the condition (P1), the probability that the measured value obtained by the

measurement MC(Ω)(O, S[∗]) is equal to x ( ∈ {w, b}) is given by

P ({x}) =

∫
Ω

M(Ω)

〈
δω, F ({x})

〉
C(Ω)

ν0(dω) = M(Ω)

〈
ν0, F ({x})

〉
C(Ω)

=

{
0.8p + 0.4(1 − p) ( if x = w),
0.2p + 0.6(1 − p)) ( if x = b).

This is the answer to the above question (Q). Summing up, we see:
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178CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(♯) There is a reason that the “measurement” MC(Ω)(O, S[∗]([δω1 ; p]⊕ [δω2 ; 1−p])) is one

of interpretations of the “statistical measurement” MC(Ω)(O, S[∗](ν0)), (cf. Proclaim

1 (8.10) later). Here the mixed state ν0(∈ Mm
+1(Ω)) is called a “statistical state”,

which represents the distribution of [ ∗ ]. And, the probability that the measured

value x ( ∈ {w, b}) is obtained by the measurement MC(Ω)(O, S[∗](ν0)), is given by

C(Ω)∗

〈
ν0, F ({x})

〉
C(Ω)

(
≡

∫
Ω

C(Ω)∗

〈
δω, F ({x})

〉
C(Ω)

ν0(dω)
)
.

Thus we consider that

S[∗]([δω1 ; p] ⊕ [δω2 ; 1 − p]))
probabilistic form←−−−−−−−−−−−−−−−−−−−−−→
statistical form

S[∗](ν0) (8.9)

That is, the statistical state ν0 is the mixed state with probabilistic interpretation, or, the

mixed state generated by coin-tossing.

Thus, we see

The typical example of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain
ω1 ω2

On the other hand, we recall that

The typical example of MC(Ω)(O, S[∗])

- �[∗]

Pick up a ball from the urn behind the curtain
ω1 ω2

¥
Now, we introduce “statistical measurement MA(O, S[∗](ρ

m) )”. The mixed state

ρm (with the probabilistic interpretation) is called an statistical state. We propose the
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 179

following “Proclaim 1”, which should be read by the hint of the statement (♯) in Example

8.1.

PROCLAIM 1. [The probabilistic interpretation of mixed states, cf.
[44]]. Consider a statistical measurement MA

(
O ≡ (X, F, F ), S[∗](ρ

m)
)

formulated in a C∗-algebra A. Then, the probability that x ( ∈ X), the
measured value obtained by the statistical measurement MA(O, S[∗](ρ

m) ),
belongs to a set Ξ ( ∈ F) is given by

ρm(F (Ξ))
(
≡ A∗

〈
ρm, F (Ξ)

〉
A

)
.

The statistical measurement MA(O, S[∗](ρ
m) ) is sometimes denoted by

MA(O, S(ρm) ). (8.10)

That is, Proclaim 11 asserts that

[♯] “statistical state” = “mixed state”
(mathematics)

+ “probabilistic interpretation”
(such as coin-tossing)

2 (8.11)

Note that the above “Proclaim 1” should be understood as

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

Therefore, the Statistical MT (i.e., SMT) is formulated as follows:

SMT =statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

= PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra.

Therefore, we stress:

• there is no SMT without PMT. (8.12)

Also, for the relation between PMT and SMT, see Remark 8.3 [hybrid measurement

theory] later.

The following definition is the same as Definition 3.1. Here, it should be noted that

“Markov relation among systems (i.e., {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
)” and “sequential

1Proclaim 1 is somewhat methodological. Thus, in [44], “Proclaim 1” was called “Method 1”.
2As seen later (i.e., §8.7), Bertrand’s paradox is due to the confusion between mixed states (mathemat-

ical concept) and statistical states (measurement theoretical concept). In order to avoid this confusion,
it may be recommended to remember that there is always “coin-tossing” behind “statistical state”.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



180CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

observable (i.e., [{O}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

])” are common to both PMT and

SMT. This implies that Axiom 2 is common to PMT and SMT.

Definition 8.2. [General systems in statistical measurements, cf. Definition 3.1]. The

pair S[∗](ρ
m
t0

) ≡ [S(ρm
t0

), {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
] is called a general system with an

initial state S(ρm
t0

) if it satisfies the following conditions (i)∼(iii).

(i) With each t (∈ T ), a C∗-algebra At is associated.

(ii) Let t0 (∈ T ) be the root of T . And, assume that a system S has the state ρm
t0

(∈
Sm(A∗

t0
)) at t0, that is, the initial state is equal to ρp

t0 .

(iii) For every (t1, t2) ∈ T 2
≤, Markov operator Φt1,t2 : At2 → At1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 holds for all (t1, t2), (t2, t3) ∈ T 2
≤.

The family {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

is also called a “Markov relation among systems”.

Let an observable Ot ≡ (Xt, Ft, Ft) in a C∗-algebra At be given for each t ∈ T . The pair

[{O}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤

] is called a “sequential observable”.

¥
Again note that Axiom 2 is common to PMT and SMT. Thus we see,

measurements relation among systems

PMT Axiom 1 (2.37) Axiom 2 (3.26)

SMT Proclaim 1 (8.10) Axiom 2 (3.26)

In what follows, we introduce some examples, which promote a better understanding

of Proclaim 1. That is, readers will see that statistical states are not only generated by

“coin-tossing” but also by several causes, for example, “Schrödinger picture”, “Bayes

theorem”, etc.

Remark 8.3. [(i) Axiom 1 and Proclaim 1, hybrid measurement theory (= “HMT” )].

For example, consider a pure state class Sp(C(Ω1)
∗)) ( ≡ M

p
+1(Ω1)) in Axiom 1 and a

mixed state class Sm(C(Ω2)
∗)) ( ≡ Mm

+1(Ω2)) in Proclaim 1. Then we sometimes consider

the tensor state class Sp(C(Ω1)
∗)) ⊗ Sm(C(Ω2)

∗)), which is defined by{
δω1 ⊗ ρm

1 ∈ Mm
+1(Ω1 × Ω2)

∣∣∣ ω1 ∈ Ω1, ρ
m
2 ∈ Mm

+1(Ω2)
}

.

This is called a “hybrid state class”. In applications, we often devote ourselves to the

hybrid measurement theory (= HMT).
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 181

[(ii) Axiom 1 and Proclaim 1, hybrid measurement theory]. For each µ( ∈ R), consider a

mixed state ρm
µ ( ∈ Mm

+1(R)) such that

ρm
µ (D) =

1√
2πσ2

∫
D

exp[−(ω − µ)2

2σ2
]dω (∀D ∈ BR, Borel field),

where σ is a fixed positive number. Let O ≡ (X, F, F ) be an observable in C0(R). Then,

we have the (statistical) measurement MC0(R)(O, S(ρm
µ )). On the other hand, define the

observable Ô = (X, F, F̂ ) in C0(R) such that:

[F̂ (Ξ)](µ) =
1√

2πσ2

∫
R

[F (Ξ)](ω) exp[−(ω − µ)2

2σ2
]dω (∀µ ∈ R, Ξ ∈ F).

Also note that

C0(R)∗

〈
ρm

µ , F (Ξ)
〉

C0(R)
=

1√
2πσ2

∫
R

[F (Ξ)](ω) exp[−(ω − µ)2

2σ2
]dω

=
C0(R)∗

〈
δµ, F̂ (Ξ)

〉
C0(R)

,

which urges us to consider the following identification:

MC0(R)(O, S(ρm
µ ))

(statistical measurement)

←→ MC0(R)(Ô, S[δµ])
(pure measurement)

.

[(iii): Axiom 1 and Proclaim 1, hybrid measurement theory]. Let Λ1 and Λ2 be com-

pact spaces (or compact index sets). For each λ1( ∈ Λ1), consider a (parameterized)

mixed state ρm
λ1

( ∈ Mm
+1(Ω)). And further, for each λ2( ∈ Λ2), consider a parameter-

ized observable Oλ2 ≡ (X, F, Fλ2) in C(Ω). Then, we have the (statistical) measurement

MC(Ω)(Oλ2 , S(ρm
λ1

)) in C(Ω). Define the observable Ô = (X, F, F̂ ) in C(Λ1 × Λ2) such

that:

[F̂ (Ξ)](λ1, λ2) =
C(Ω)∗

〈
ρm

λ1
, Fλ2(Ξ)

〉
C(Ω)

(∀(λ1, λ2) ∈ Λ1 × Λ2, Ξ ∈ F).

That is, we see

C(Ω)∗

〈
ρm

λ1
, Fλ2(Ξ)

〉
C(Ω)

=
C(Λ1×Λ2)∗

〈
δ(λ1,λ2), F̂ (Ξ)

〉
C(Λ1×Λ2)

,

which urges us to consider the following identification:

MC(Ω)(Oλ2 , S(ρm
λ1

))
(statistical measurement)

←→ MC(Λ1×Λ2)(Ô, S[δ(λ1,λ2)])
(pure measurement)

. (8.13)
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182CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

Such an identification is often used in measurement theory. In this sense, the classification

(8.1) should be considered to be flexible. ¥
Remark 8.4. [Natural mixed state3 and statistical state, Bertrand’s paradox]. For

example, consider the square [0, 1]× [0, 1] ( ⊂ R2). This square has a natural measure m

(which is usually called the Lebesgue measure) such that m([a, b]× [c.d]) = |b− a| · |d− c|
(0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1). Here, it should be noted that m is a mixed

state (i.e., m ∈ Mm
+1([0, 1] × [0, 1])), however, it is not a statistical state. That is, the

natural mixed state is not always a statistical state. We should recall that there is no

statistical state without the probabilistic interpretation (such as coin-tossing). This is

just what Bertrand’s paradox (cf. [35], also see §8.7 Appendix (Bertrand’d paradox))

teaches us. That is because Bertrand’s paradox says that, if “the natural mixed state” is

unreasonably regarded as “statistical state”, we encounter a serious paradox (since a

natural mixed state is not always unique). Also, recall Chapter 4 (Boltzmann’s statistical

mechanics), in which the normalized invariant measure is not regarded as “probability”4

but “normalized staying time”. (Continued to §8.7 Appendix (Bertrand’s paradox))

¥

8.1.2 Examples of statistical measurements

In Example 8.1, we showed “MC(Ω)(O, S[∗]([δω1 ; p]⊕[δω2 ; 1−p]))” as the typical example

of statistical measurement MC(Ω)(O, S[∗](ν0)). In this section, we study the other typical

examples.

The following example (Schrödinger picture) was already studied more precisely in

Chapter 6.

Example 8.5. [(i): Schrödinger picture I]. Let Ψ0,1 : A1 → A0 be a Markov operator.

Let ρp
0 ∈ Sp(A∗

0). That is, we consider the following general system:

[A0]
(pure) stateρp

0

Ψ0,1←− [A1]. (8.14)

Also, consider any observable O1 ≡ (X1,F1, F1) in a C∗-algebra A1. And put Õ0 =

3The “natural mixed state ρ” usually means the “invariant mixed state ρ” for some “natu-
ral“homomorphism Φ : A → A. That is, it holds that Φ∗(ρ) = ρ.

4Such probability may be called “a priori probability”. Thus we consider that the concept of “a priori
probability” is nonsense.
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 183

(X1,F1, Ψ0,1F1). Thus we have the measurement

MA0(Õ0, S[ρp
0]).

Axiom 1 says that the measurement MA0(Õ0, S[ρp
0]) generates the sample space (X1, F1, P )

such that:

P (Ξ1) =
A∗

0

〈
ρp

0, Ψ0,1F1(Ξ1)
〉

A0

(8.15)

=
A∗

1

〈
Ψ∗

0,1ρ
p
0, F1(Ξ1)

〉
A1

(∀Ξ1 ∈ F). (8.16)

This implies that the measurement MA0(Õ0, S[ρp
0]) can be considered to be equal to the

statistical measurement MA1(O1, S(Ψ∗
0,1ρ

p
0)). That is, MA0(Õ0, S[ρp

0]) is the representation

due to the Heisenberg picture, and MA1(O1, S[∗](Ψ
∗
0,1ρ

p
0)) is the representation due to the

Schrödinger picture. Summing up, we have the identification:

[the representation by Heisenberg picture]

MA0(Ψ0,1O1, S[ρp
0])

(meaningful in the sense of Axiom 1)

identification←→
[the representation by Schödinger picture]

MA1(O1, S(Ψ∗
0,1ρ

p
0))

(meaningful in the sense of Proclaim 1)

(8.17)

in which the left-hand side is understood in Axiom 1 and the right-hand side is understood

in Proclaim 1. For completeness, we explain the meaning of the identification (8.17) as

follows: The left-hand side of (8.17) means that

(•1) Taking a measurement MA0(Ψ0,1O1, S[ρp
0]) N-times

(
that is, taking a measurement

MA0(Ψ0,1O1, S[ρp
0]), and taking a measurement MA0(Ψ0,1O1, S[ρp

0]),..., and taking a

measurement MA0(Ψ0,1O1, S[ρp
0])

)
, we obtain measured values x1, x2,...,xN . And

thus we have the sample space (X, F, ρp
0(Ψ0,1F ( · ))) (= (8.15)).

The right-hand side of (8.17) means that

(•2) Taking a statistical measurement MA1(O1, S(Ψ∗
0,1ρ

p
0)) N-times

(
that is, taking a

measurement MA1(O1, S[∗1](Ψ
∗
0,1ρ

p
0)), and taking a measurement MA1(O1, S[∗2](Ψ

∗
0,1ρ

p
0))

,..., and taking a measurement MA1(O1, S[∗N ](Ψ
∗
0,1ρ

p
0))

)
, we obtain measured values

x′
1, x′

2,...,x
′
N . And thus we have the sample space (X, F, (Ψ∗

0,1ρ
p
0)(F ( · ))) (= (8.16)).

Since (8.15) = (8.16), we identify (•1) with (•2).
5

[(ii): Schrödinger picture II]. Let Ψ1,2 : A2 → A1 be a Markov operator. Let ρm
1 (∈

Sm(A∗
1)) be a statistical state. That is, we consider the following general system:

5Strictly speaking. we must say “we regard (•2) as (•1)”. That is because Axiom 2 says that Heisenberg
picture representation is more fundamental than Schrödinger picture representation.

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



184CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

[A1]
statistical stateρm

1

Ψ0,1←− [A2]. (8.18)

Here, let O2 ≡ (X2,F2, F2) be an observable in a C∗-algebra A2. And put Õ1 =

(X2, F2, Ψ1,2F2). Since ρm
1 (∈ Sm(A∗

1)) is a statistical state (i.e., the probabilistic in-

terpretation is added), we have the statistical measurement

MA1(Õ1 ≡ (X2,F2, Ψ1,2F2), S(ρm
1 )), (8.19)

which generates the sample space (X2, F2, P ) such that:

P (Ξ2) =
A∗

1

〈
ρp

1, Ψ0,1F2(Ξ2)
〉

A1

. (8.20)

This is equal to

A∗
2

〈
Ψ∗

0,1ρ
m
1 , F2(Ξ2)

〉
A2

, (8.21)

which implies that the statistical measurement MA1(Õ1, S(ρm
1 )) can be considered to be

equal to the statistical measurement MA2(O2, S(Ψ∗
1,2ρ

m
1 )). That is, MA1(Õ1, S(ρm

1 )) is the

representation due to Heisenberg picture, and MA2(O2, S(Ψ∗
1,2ρ

m
1 )) is the representation

due to Schrödinger picture. Summing up, we have the identification:6

[the representation by Heisenberg picture]

MA1(Ψ1,2O2, S(ρm
1 ))

(meaningful in the sense of Proclaim 1)

identification←→
[the representation by Schödinger picture]

MA2(O2, S(Ψ∗
1,2ρ

m
1 ))

(meaningful in the sense of Proclaim 1)

(8.22)

in which the both sides are understood in Proclaim 1.

¥
The statistical state also appears in Bayes theorem, which was already studied in

Chapter 6.

Example 8.6. [A statistical state in Bayes theorem]. (continued from Example 8.1)

Assume the situation (P1) ∼ (P2) in Example 8.1 (Coin-tossing). That is, consider the

following statistical measurement MC(Ω)(O, S[∗](ν0)):

6Recall Axiom 2, which says that MA1(Ψ1,2O2, S(ρm
1 )) is more fundamental than

MA2(O2, S(Ψ∗
1,2ρ

m
1 )).
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 185

The picture of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain
ω1 ω2

Next, consider the following procedure.

(P3) We find that the ball sampled in (P2) is a white one. That is, by the statistical

measurement MC(Ω)(O, S(ν0)) in (P2), we obtain the measured value w(∈ {w, b}).

(P4) After the above (P3), we further take a “measurement” of an observable O1 ≡
(Y, G, G). And, we know that the measured value belongs to Γ (∈ G).

In what follows we study the above (P3) and (P4). The procedures (P1) ∼ (P4) can be

characterized as the statistical measurement MC(Ω)(O×O1, S(ν0)). The probability that

the measured value (w, y)(∈ {w, b} × Γ) obtained by MC(Ω)(O×O1, S(ν0)) belongs to Γ

is given by 〈
ν0, F ({w}) × G(Γ)

〉
.

Then, under the condition that we know (P3), the probability that the measured value y

( ∈ Y ) is obtained in (P4) is given by the conditional probability

M(Ω)

〈
ν0, F ({w}) × G(Γ)

〉
C(Ω)

M(Ω)

〈
ν0, F ({w})

〉
C(Ω)

(
=

M(Ω)

〈 F ({w}) × ν0

M(Ω)

〈
ν0, F ({w})

〉
C(Ω)

, G(Γ)
〉

C(Ω)

)
. (8.23)

Since O1( ≡ (Y, G, G)) is arbitrary observable in C(Ω), this implies the following state-

reduction:

pretest state “ν0”
before “white” is obtained in (P2)

−→ posttest state “ν1”
after “white” is obtained in (P2)

(
=

F ({w}) × ν0〈
ν0, F ({w})

〉)
. (8.24)

That is because the probability that the measured value obtained by MC(Ω)(O1, S(ν1))

belongs to Γ is given by

M(Ω)

〈
ν1, G(Γ)

〉
C(Ω)

(8.25)
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186CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

and it must hold that (8.23)=(8.25). Here, note that this new mixed state ν1(∈ Mm
+1(Ω))

satisfies

ν1({ω}) =
ν0({ω}) × [F ({w})](ω)

ν0(ω1) × [F ({w})](ω1) + ν0(ω2) × [F ({w})](ω2)
(∀ω ∈ Ω ≡ {ω1, ω2}).

(8.26)

Then, it holds that

ν1({ω1}) =
0.8p

0.8p + 0.4(1 − p)
=

2p

1 + p
,

ν1({ω2}) =
0.4(1 − p)

0.8p + 0.4(1 − p)
=

1 − p

1 + p
. (8.27)

Since

[ • ] the ν1 is the statistical state after the (P3),

the “measurement” in (P4) is represented by the statistical measurement MC(Ω)(O2, S(ν1)),

that is,

The picture of S([δω1 ;
2p

1+p
] ⊕ [δω2 ;

1−p
1+p

]) (≈ S(ν1))

2p
1+p-

1−p
1+p�[ ∗]

ω1 ω2

¥
Example 8.7. [(i): A statistical state in the repeated measurement]. Let ρm ∈ Sm(A∗).

By the Krein-Milman theorem (cf. [92]), we can choose a sequence {ρp
k}N

k=1 in Sp(A∗)

such that:

1

N

N∑
k=1

ρp
k ≈ ρm (in the sense of the weak∗-topology of Sm(A∗)). (8.28)

for a sufficiently large natural number N . Consider an observable O ≡ (X, F, F ) in

A. And consider the measurement M⊗A

(
⊗N

k=1 O ≡ (XN , FN ,
⊗N

k=1 F ), S[⊗N
k=1ρp

k]

)
formulated in the tensor C∗-algebra

⊗N
k=1 A, where ( ⊗N

k=1 F )(Xm−1 × Ξm × XN−m) =

( ⊗m−1
k=1 I) ⊗ F (Ξm) ⊗ ( ⊗N

k=m+1 I) (∀Ξm ∈ F, 1 ≤ ∀m ≤ N). For completeness, note
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 187

the measurement M⊗A

(
⊗N

k=1 O, S[⊗N
k=1ρp

k]

)
is meaningful in the sense of Axiom 1. Let

(x1, x2, ..., xN) be a measured value obtained by the measurement M⊗A

(
⊗N

k=1O, S[⊗N
k=1ρp

k]

)
.

Thus, by Axiom 1, we can “almost surely” expect that

ρm(F (Ξ)) ≈ ♯[{k : xk ∈ Ξ}]
N

(∀Ξ ∈ F) (8.29)

holds for a sufficiently large N , where ♯[B] is the number of the elements of a set B. That

is because the probability that a measured value obtained by MA

(
O, S[ρp

k]

)
belongs to Ξ

( ∈ F) is given by ρp(F (Ξ)). In the above sense (8.29), the mathematical symbol MA

(
O,

S(ρm)
)

(or, MA

(
O, S( 1

N

∑N
k=1 ρp

k)
)
) can be considered as the statistical measurement,

which may be called a “repeated measurement”.

[(ii)]. Let Ω be a finite set, i.e., Ω ≡ {ω1, ω2, ..., ωM}. Let O ≡ (X, F, F ) be an observ-

able in C(Ω). Consider the repeated measurement M⊗NM
n=1C(Ω)( ⊗NM

n=1 O, S[⊗NM
n=1δωmodM [n]

])

(which may be called a cyclic measurement), where modM [n] is the integer such that

n = Mj̇ + modM [n] and 0 ≤ modM [n] ≤ M − 1. Let (x1, x2, ..., xNM) be a mea-

sured value obtained by the cyclic measurement M⊗NM
n=1C(Ω)(⊗NM

n=1 O, S[⊗NM
n=1δωmodM [n]

])
(

=

⊗NM
n=1MC(Ω)(O, S[δωmodM [n]

])
)
. Thus, by Axiom 1, we can “almost surely” expect that

C(Ω)∗

〈δω1 + δω2 + · · · + δωM

M
,F (Ξ)

〉
C(Ω)

≈ ♯[{k : xk ∈ Ξ}]
NM

(∀Ξ ∈ F) (8.30)

holds for a sufficiently large N . In this sense,

• we often use the repeated statistical measurement ⊗N
n=1MC(Ω)(O, S(

δω1+δω2+···+δωM

M
))(

or more precisely, the repeated probabilistic measurement ⊗N
n=1MC(Ω) (O, S[∗](⊕M

m=1

[δωm ; 1/M ])), cf. (8.8)
)

as a substitute for M⊗NM
n=1C(Ω)( ⊗NM

n=1 O, S[⊗NM
n=1δωmodM [n]

]).

That is, in the following table (in the case that Ω = {ω1, ω2}), the measured data

(x1, x2, ..., x2N) and the measured data (y1, y2, ..., y2N) have the same statistical properties

(e.g., average, variance, etc.).
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188CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

measurement · · · · · ·measured

value
| measurement · · · · · ·measured

value

MC(Ω)(O, S[δω1 ]) · · · · · · x1 | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y1

MC(Ω)(O, S[δω2 ]) · · · · · · x2 | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y2

MC(Ω)(O, S[δω1 ]) · · · · · · x3 | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y3

MC(Ω)(O, S[δω2 ]) · · · · · · x4 | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y4

· · · · · · · · · | · · · · · · · · ·

MC(Ω)(O, S[δω1 ]) · · · · · · x2N−1 | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y2N−1

MC(Ω)(O, S[δω1 ]) · · · · · · x2N | MC(Ω)(O, S(
δω1 + δω2

2
)) · · · · · · y2N

¥

8.1.3 Problems (statistical measurements)

Problem 8.8. [Monty Hall problem, cf.[33]]. The Monty Hall problem is as follows (cf.

Problem 5.12, Remark 5.13 and Problem 11.13) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

(C) You know that the probability that behind the k-th door (i.e., “number k”) is

a car is given by pk (k = 1, 2, 3).
(
For example, consider the two cases that

p1 = p2 = p3 = 1/3, and p1 = 3/7, p2 = 1/7, p3 = 3/7.
)

You pick a door, say number 1, and the host, who knows what’s behind the doors,

opens another door, say “number 3”, which has a goat. He says to you, “Do you

want to pick door number 2?” Is it to your advantage to switch your choice of doors?

? ? ?

Door Door Door

Number 1 Number 2 Number 3
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 189

[Answer]. Put Ω = {ω1, ω2, ω3}, where

ω1 · · · · · · the state that the car is behind the door number 1

ω2 · · · · · · the state that the car is behind the door number 2

ω3 · · · · · · the state that the car is behind the door number 3.

Define the observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 7

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0. (8.31)

Define the statistical state ν0 ( ∈ Mm
+1(Ω)) such that:

ν0({ω1}) = p1, ν0({ω2}) = p2, ν0({ω3}) = p3 (8.32)

where p1 + p2 + p3 = 1, 0 ≤ p1, p2, p3 ≤ 1. Thus we have a statistical measurement

MC(Ω)(O, S[∗](ν0)). Note that

(1) : “measured value 1 is obtained” ⇐⇒ the host says “Door (number 1) has a goat”

(probability ←→ 0)

(2) : “measured value 2 is obtained” ⇐⇒ the host says “Door (number 2) has a goat”

(probability ←→ 0.5p1 + 1.0p3)

(3) : “measured value 3 is obtained” ⇐⇒ the host says “Door (number 3) has a goat”

(probability ←→ 0.5p1 + 1.0p2)

Here, assume that

• By the statistical measurement MC(Ω)(O, S[∗](ν0)), you obtain a measured value 3.

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,

the posttest state νpost ( ∈ Mm
+1(Ω)) is given by

νpost =
F ({3}) × ν0〈
ν0, F ({3})

〉 . (8.33)

That is,

νpost({ω1}) =
p1

2
p1

2
+ p2

, νpost({ω2}) =
p2

p1

2
+ p2

, νpost({ω3}) = 0. (8.34)

Thus,

7Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P).
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190CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

• if p1 = p2 = p3 = 1/3, then it holds that νpost({ω1}) = 1/3, νpost({ω2}) = 2/3,

νpost({ω3}) = 0, and thus, you should pick Door (number 2).

• if p1 = 3/7, p2 = 1/7 and p3 = 3/7, then it holds that νpost({ω1}) = 3/5, νpost({ω2}) =

2/5, νpost({ω3}) = 0, and thus, you should not pick Door (number 2).

Also, more generally, we can say that
if νpost({ω1}) ≤ νpost({ω2})(i.e.,p1 ≤ 2p2), then, you should pick Door (number 2)

if νpost({ω1}) ≥ νpost({ω2})(i.e.,p1 ≥ 2p2), then, you should not pick Door (number 2).

¥

Remark 8.9. [P. Erdös]. I learnt the Monty Hall problem in the book [33] (“The Man

Who Loved Only Numbers, The story of Paul Erdös and the search for mathematical

truth”). This problem is famous as the problem in which even P. Erdös made a mistake.

I think that this problem is too profound to understand without measurement theory. In

fact, everyone may confuse the above Problem (P) for p1 = p2 = p3 = 1/3 with Problem

5.12 (i.e., the above problem (P) without the condition (C) ). In fact, in [33] (page 234),

it is written as follows:

(Q) You’re on a game show and you’re given the choice of three doors. Behind one door

is a car, and behind the other two are goats. You choose, say, door 1, and the host,

who knows where the car is, opens another door, behind which is a goat. He now

gives you the choice of sticking with door 1 or switching to the other door? What

should you do?

If you read this description of the Monty Hall problem (in [33]), you may think that the

correct answer should be due to Fisher’s likelihood method, i.e, the answer presented in

Problem 5.12. However, Problem 5.12, Remark 5.13 and Problem 8.8 are not all of the

Monty Hall problem. See Problem 11.13 later (which may be my final answer to the

Monty Hall problem).

¥
Problem 8.10. [The problem of three prisoners].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free

and the other two were to be executed. But he did not know who was the one to be
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8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 191

spared.
(
He knew that the probability that A [resp. B, C] will be set free is equal

to 1/3 [resp. 1/3, 1/3], or more generally, pf
a [resp. pf

b , pf
c ].

)
To the jailer who did

know, A said, “Since two out of the three will be executed, it is certain that either

B or C will be, at least. You will give me no information about my own chances if

you give me the name of one man, B or C, who is going to be executed.” Accepting

this argument after some thinking, the jailer said, “C will be executed.” Thereupon

A felt happier because now either he or C would go free, so his chance had increased

from 1/3 to 1/2. This prisoner’s happiness may or may not be reasonable. What

do you think?

J A B C- -
“C will be executed”

[Answer]. Put Ω = {ωa, ωb, ωc}, where

ωa · · · · · · the state that A will be set free

ωb · · · · · · the state that B will be set free

ωc · · · · · · the state that B will be set free .

Define the observable O ≡ ({xA, xB, xC}, 2{xA,xB ,xC}, F ) in C(Ω) such that

[F ({xA})](ωa) = 0.0, [F ({xB})](ωa) = 0.5, [F ({xC})](ωa) = 0.5, 8

[F ({xA})](ωb) = 0.0, [F ({xB})](ωb) = 0.0, [F ({xC})](ωb) = 1.0,

[F ({xA})](ωc) = 0.0, [F ({xB})](ωc) = 1.0, [F ({xC})](ωc) = 0.0. (8.35)

Define the statistical state ν0 ( ∈ Mm
+1(Ω)) such that:

ν0({ωa}) = pf
a, ν0({ωb}) = pf

b , ν0({ωc}) = pf
c (8.36)

where pf
a + pf

b + pf
c = 1, 0 ≤ pf

a, p
f
b , p

f
c ≤ 1, though it may suffice to assume that pf

a =

pf
b = pf

c = 1/3. Here, note that the following (i) and (ii) are equivalent:

8Strictly speaking, [F ({xB})](ωa) = 0.5 and [F ({xC})](ωa) = 0.5 should be assumed in the problem
(P)
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192CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(i) The jailer said to A “C will be executed”.

(ii) By the statistical measurement MC(Ω)(O, S[∗](ν0)), A obtains a measured value xC

Thus, the posttest state νpost ( ∈ Mm
+1(Ω)) is given by

νpost =
F ({xC}) × ν0〈
ν0, F ({xC})

〉 . (8.37)

That is,

νpost({ωa}) =
pf

a

2

pf
a

2
+ pf

b

, νpost({ωb}) =
pf

b

pf
a

2
+ pf

b

, νpost({ωc}) = 0. (8.38)

Thus,

• if pf
a = pf

b = pf
c = 1/3, it holds that νpost({ωa}) = 1/3, νpost({ωb}) = 2/3,

νpost({ωc}) = 0, and thus, the prisoner’s happiness is not reasonable. That is be-

cause pf
a = 1/3 = νpost({ωa}).

• if pf
a = 3/7, pf

b = 1/7, pf
c = 3/7, it holds that νpost({ωa}) = 3/5, νpost({ωb}) = 2/5,

νpost({ωc}) = 0, and thus, the prisoner’s happiness is reasonable. That is because

pf
a = 3/7 < 3/5 = νpost({ωa}).

• if pf
a = 1/4, pf

b = 1/2, pf
c = 1/4, it holds that νpost({ωa}) = 1/5, νpost({ωb}) = 4/5,

νpost({ωc}) = 0, and thus, the prisoner’s unhappiness is reasonable. That is because

pf
a = 1/3 > 1/5 = νpost({ωa}).

Also, more generally, we can say that
if pf

a ≤ νpost({ωa})(i.e.,pf
a + 2pf

b ≥ 1), the prisoner’s happiness is reasonable

if pf
a ≥ νpost({ωa})(i.e.,pf

a + 2pf
b ≤ 1), the prisoner’s unhappiness is reasonable.

¥
Remark 8.11. [(i).The problem of three prisoners in PMT]. Recall that the Monty Hall

problem is also studied in PMT, that is, Problem 5.12 (Fisher’s method) and Remark

5.13 (The moment method). On the other hand, it should be noted that the problem of

three prisoners can not be solved in PMT.

[(ii): The relation between the Monty Hall problem and the problem of three prisoners].

Since the Monty Hall problem and the problem of three prisoners are similar, we add

something concerning the relation between the two. Consider the (P) (in Problem 8.8)

and the (Q) mentioned below.
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8.2. GENERAL STATISTICAL SYSTEM (EXAMPLE) 193

(Q) (Continued from the (P) in Problem 8.10). There is a woman, who was proposed

to by the three prisoners A, B and C. She listened to the conversation between A

and the jailer. Thus, assume that she has the same information as A has. Then, we

have the following problem:

(♯) Whose proposal should she accept?

[Answer]. For simplicity, consider the case that pf
a = pf

b = pf
c = 1/3. Then we see that

νpost({ωa}) = 1/3, νpost({ωb}) = 2/3, νpost({ωc}) = 0. (8.39)

Thus, she should choose the prisoner B. Here it should be noted that the problem (♯) is

the same as the Monty Hall problem. That is, the problem:

“(P) in Problem 8.10” + “(Q) in the above”

includes both the Monty Hall problem and the problem of three prisoners.

¥

8.2 General statistical system (Example)

As mentioned in the previous section, the Statistical MT (i.e., SMT) is formulated as

follows:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
,

and

SMT = statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra ,

where it should be noted that

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

. (8.40)

Thus we see

SMT =statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

= PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra .
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194CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

That is, Axiom 2 is common to PMT and SMT. This will be explicitly seen in the following

example (= Example 8.12), which should be compared with Example 3.4. Also recalling

Remark 8.3 [hybrid measurement theory (= HMT)], we say that

HMT = hybrid measurement
[Axiom 1 (2.37) and Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra .

(8.41)

Here note that PMT and SMT are respectively regarded as one of the aspects of HMT.

Since Axiom 2 is common to PMT and SMT, it is a matter of course that Example

3.4 (in PMT) and Example 8.12 (in SMT) are almost similar.

Example 8.12. [(Continued from Example 3.4) A simple general statistical system,

Heisenberg picture]. Suppose that a tree (T ≡ {0, 1, ..., 6, 7}, π) has an ordered structure

such that π(1) = π(6) = π(7) = 0, π(2) = π(5) = 1, π(3) = π(4) = 2.
(
See the figure

(8.42).
)

Consider a general system S(ρm
0 ) ≡ [S(ρm

0 ), {At

Φπ(t),t→ Aπ(t)}t∈T\{0}] with the

initial system S(ρm
0 ).

A0

A1

A2

A3

A4

A5A6

A7

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

(8.42)

Also, for each t ∈ {0, 1, ..., 6, 7}, consider an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra

At. Thus, we have a sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]. Now

we want to consider the following “measurement”,

(♯) for a statistical system S(ρm
0 ), take a measurement of “a sequential observable

[{Ot}t∈T , {At

Φπ(t),t→ Aπ(t)}t∈T\{0}]”, i.e., take a measurement of an observable O0 at

0( ∈ T ), and next, take a measurement of an observable O1 at 1( ∈ T ), · · · · · · , and

finally take a measurement of an observable O7 at 7( ∈ T ),

which is symbolized by M({Ot}t∈T , S(ρm
0 )). Note that the M({Ot}t∈T , S(ρm

0 )) is merely

a symbol since only one measurement is permitted (cf. §2.5 Remark(II)). In what follows
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8.3. BAYES THEOREM IN STATISTICAL MT 195

let us describe the above (♯) (= M({Ot}t∈T , S(ρm
0 ))) precisely. Put

Õt = Ot and thus F̃t = Ft (t = 3, 4, 5, 6, 7).

First we construct the quasi-product observable Õ2 in A2 such as

Õ2 = (X2 × X3 × X4, 2
X2×X3×X4 , F̃2) where F̃2 = F2

qp

××××××××× (
qp

×××××××××t=3,4 Φ2,tF̃t),

if it exists. Iteratively, we construct the following:

A0
Φ0,1←−−− A1

Φ1,2←−−− A2

F0

qp

××××××××× Φ0,6F̃6

qp

××××××××× Φ0,7F̃7 F1

qp

××××××××× Φ1,5F̃5y y
F̃0

(F0

qp
×××××××××Φ0,6

eF6

qp
×××××××××Φ0,7

eF7

qp
×××××××××Φ0,1

eF1)

Φ0,1←−−− F̃1

(F1

qp
×××××××××Φ1,5

eF5

qp
×××××××××Φ1,2

eF2)

Φ1,2←−−− F̃2

(F2

qp
×××××××××Φ2,3

eF3

qp
×××××××××Φ2,4

eF4)

.

That is, we get the quasi-product observable Õ1 ≡ (
∏5

t=1 Xt, 2
Q5

t=1 Xt , F̃1) of O1, Φ1,2Õ2

and Φ1,5Õ5, and finally, the quasi-product observable Õ0 ≡ (
∏7

t=0 Xt, 2
Q7

t=0 Xt , F̃0) of O0,

Φ0,1Õ1, Φ0,6Õ6 and Φ0,7Õ7, if it exists. Here, Õ0 is called the realization (or, the Heisen-

berg picture representation) of a sequential observable [{Ot}t∈T , {At

Φπ(t),t→ Aπ(t)}t∈T\{0}].

Then, we have the measurement

MA0(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S(ρm
0 )),

which is called the realization (or, the Heisenberg picture representation) of the symbol

M({Ot}t∈T , S(ρm
0 )).

¥

8.3 Bayes theorem in statistical MT

Now let us review “Bayes operator” (Definition 6.5 in §6.2), which plays an important

role in SMT as well as PMT. Or, we may say that Bayes operator is more natural in STM

than in PMT.

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S[∗] ≡
[S[∗], C(Ωt)

Φπ(t),t→ C(Ωπ(t)) (t ∈ T \ {0})] be a general system with the initial system

S[∗]. And, let an observable Ot ≡ (Xt, Ft, Ft) in a commutative C∗-algebra C(Ωt) be
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196CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

given for each t ∈ T . Let Õ0 ≡ (
∏

t∈T Xt,
⊗

t∈T Ft, F̃0) be as in Theorem 3.7 in the

case At = C(Ωt) (∀t ∈ T ). That is, Õ0 is the Heisenberg picture representation of the

sequential observable [{Ot}t∈T , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}]. Let τ be any element in

T . If a positive bounded linear operator B
(0,τ)
Πt∈T Ξt

: C(Ωτ ) → C(Ω0) satisfies the following

condition (BO), we call {B(0,τ)
Πt∈T Ξt

: Ξt ∈ Xt (∀t ∈ T )} [ resp. B
(0,τ)
Πt∈T Ξt

] a family of Bayes

operators [ resp. a Bayes operator ]:

(BO) for any observable O′
τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ), there exists an observable Ô0 ≡

((
∏

t∈T Xt) × Y, (
⊗

t∈T Ft)
⊗

Gτ , F̂0) in C(Ω0) such that

(i) Ô0 is the Heisenberg picture representation (cf. Theorem 3.7) of [{Ot}t∈T ; C(Ωt)
Φπ(t),t→

C(Ωπ(t)) (t ∈ T \ {0})], where Ot = Ot (if t ̸= τ), = Oτ × O′
τ (if t = τ),

(ii) F̂0((Πt∈T Ξt) × Γτ ) = B
(0,τ)
Πt∈T Ξt

(Gτ (Γτ )) (Ξt ∈ Ft (∀t ∈ T ),∀Γτ ∈ Gτ ),

(iii) F̂0((Πt∈T Ξt)×Yτ ) = F̃0(
∏

t∈T Ξt) = B
(0,τ)
Πt∈T Ξt

(1τ ), (Ξt ∈ Ft (∀t ∈ T )), where 1τ is the

identity in C(Ωτ ).

Also, define R
(0,τ)
Πt∈T Ξt

: Mm
+1(Ω0) → Mm

+1(Ωτ ) such that:

R
(0,τ)
Πt∈T Ξt

(ν) =
[B

(0,τ)
Πt∈T Ξt

]∗(ν)

∥[B(0,τ)
Πt∈T Ξt

]∗(ν)∥M(Ω0)

(∀ν ∈ Mm
+1(Ω0)),

which is called “a normalized dual Bayes operator”.

¥
It is quite important to see that the Bayes operator B

(0,τ)
Πt∈T Ξt

: C(Ωτ ) → C(Ω0)

is described in terms of the Heisenberg picture. This implies that the Bayes opera-

tor B
(0,τ)
Πt∈T Ξt

: C(Ωτ ) → C(Ω0) is common to PMT and SMT. That is, the dual form

R
(0,τ)
Πt∈T Ξt

: Mm
+1(Ω0) → Mm

+1(Ωτ ) can be applicable to both PMT and SMT and PMTPEW

(i.e., subjective Bayesian PMT) mentioned later (in §6.4).

The following theorem is an analogy of Theorem 6.13. This theorem (= Theorem 8.13,

Remark 8.14) is also called “Bayes’ method”.

Theorem 8.13. [Generalized Bayes theorem, Bayes’ method, cf. [46]]. Let (T ≡ {0, 1, ...,
N}, π : T \ {0} → T ) be a tree with the root 0 and let S(ν0) ≡ [S(ν0), C(Ωt)

Φπ(t),t→
C(Ωπ(t)) (t ∈ T \ {0})] be a general system with the initial system S(ν0). And, let an
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8.3. BAYES THEOREM IN STATISTICAL MT 197

observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Then, we

have a statistical measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt,
⊗
t∈T

Ft, F̃0), S(ν0)). (cf. Theorem 3.7).

Assume that the measured value by the statistical measurement MC(Ω)(Õ0, S(ν0)) belongs

to
∏

t∈T Ξt (∈
⊗

t∈T Ft). Let τ be any element in T . Then, we see

(a) “the (statistical) S-state at τ( ∈ T ) after MC(Ω0)(Õ0, S(ν0))” = R
(0,τ)
Πt∈T Ξt

(ν0).

(8.43)

Proof. Since the sequential observable [{Ot}t∈T , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}] is com-

mon to PMT and SMT, Theorem 3.7 is applicable. Also, by the same argument in

Theorem 6.13, the (8.43) immediately follows.

Remark 8.14. [(i): Bayes operator in Remark 5.7, Bayes’ method]. Let O ≡ (X, F, F )

be an observable in C(Ω). For each Ξ ( ∈ F), define the continuous linear operator B
(0,0)
Ξ

(or, BO
Ξ , B

O,(0,0)
Ξ ) : C(Ω) → C(Ω) such that:

B
(0,0)
Ξ (g) = F (Ξ) · g (∀g ∈ C(Ω)),

which is called the Bayes operator (or, simplest Bayes operator). Define the map R
(0,0)
Ξ :

Mm
+1(Ω) → Mm

+1(Ω) (called “normalized Bayes dual operator”) such that:

(B1) R
(0,0)
Ξ (ν) =

[B
(0,0)
Ξ ]∗(ν)

∥[B(0,0)
Ξ ]∗(ν)∥M(Ω)

(∀ν ∈ Mm
+1(Ω)),

that is,

[R
(0,0)
Ξ (ν)](D0) =

∫
D0

[F (Ξ)](ω)ν(dω)∫
Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ∈ BΩ).

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

Mm
+1(Ω) ∋ ν (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (ν) ∈ Mm

+1(Ω). (8.44)

As a particular case of the above, assume that ν = δω0 ( ∈ M
p
+1(Ω)). Then we see that

M
p
+1(Ω) ∋ δω0 (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (δω0) = δω0 ∈ M

p
+1(Ω).

That is, a pure state δω0 is invariant.

[(ii): The conventional Bayes theorem in mathematics]. The above theorem should be

compared with the following conventional Bayes theorem (B2).
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198CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(B2) Let (S, BS, P ) be a probability space. Let {E1, E2, ..., En} be a (measurable) de-

composition of S,
(
i.e., Ek ∈ BS,∪n

k=1Ek = S, Ei ∩ Ek = ∅(if i ̸= k)
)
. Let E ∈ BS.

Then

PE(Ek) =
P (Ek)PEk

(E)

P (E1)PE1(E) + ... + P (En)PEn(E)
,

where PE(Ek) = P (E∩Ek)
P (E)

, PEk
(E) = P (E∩Ek)

P (Ek)
.

The (B2) is, of course, a mathematical theorem. Thus, when we use the (B2), we must

add a certain interpretation to the (B2). In measurement theory, this is automatically

done as follows:

(B1) = (B2) + “measurement theoretical interpretation”.

[(iii): The collapse (reduction) of wave packet in quantum mechanics]. The reduction such

as (8.44) may happen even in quantum mechanics. In fact, it is called “the collapse (re-

duction) of wave packet in quantum mechanics”. Assume that a measured value obtained

by a measurement MC(V )((X, F, F ), S(ρ)) belongs to Ξ ( ∈ F). Then, we may see the

following reduction (i.e., the collapse of wave packet):

Trm
+1(V ) ∋ ρ (= pretest state) 7→ (posttest state =)

F (Ξ)ρF (Ξ)

∥F (Ξ)ρF (Ξ)∥Tr(V )

∈ Trm
+1(V ).

Note that, even in the case that ρ = |u⟩⟨u| ∈ Trp
+1(V ), the above reduction happens

(i.e., not invariant). However, I believe that the collapse of wave packet is due to a non-

standard argument in quantum mechanics, though the collapse may be indispensable for

the intuitive understanding of “quantum Zeno effect (cf. [65])”, etc. That is, I have

an opinion that from the pure theoretical point of view quantum mechanics says nothing

after a measurement. That is because, from the theoretical point of view, we always

devote ourselves to the Heisenberg picture representation and not the Schrödinger picture

representation. And further, it should be noted that the collapse of wave packet in

quantum mechanics is not a direct consequence of MT (i.e., Axioms 1 and 2, Proclaim

1)
(
though the (8.44) (i.e., the classical reduction) is a consequence of Theorem 8.13

in MT
)
. Thus, in this book we are not concerned with the collapse of wave packet in

quantum mechanics.

¥
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8.4. KALMAN FILTER IN NOISE 199

8.4 Kalman filter in noise

As a consequence of Theorem 8.13 (and Theorem 6.13), in this section we reconsider

Kalman filter [51], and formulate “Kalman filter” in SMT, which is proposed in [55].

Consider the conventional Kalman filter in the following system:

+ z−1I C(n) +

ψn,n+1

θ1(n + 1) s(n + 1) s(n) x(n)

θ2(n)

- - - - -

6

¾

6

(Figure (8.45))

where s(n): L-dimensional state vector at time n(= 0, 1, ..., N), x(n): M -dimensional

measured data vector, (ω ∈ Ω). In the framework of dynamical system theory (2.1), s(n)

and x(n) are described by the following equations: for each ω ∈ Ω where (Ω, BΩ, P ) is a

probability space, s(n + 1, ω) = ψn,n+1(s(n, ω)) + θ1(n + 1, ω) : stochastic difference state equation
(n = 0, 1, ..., N − 1).

x(n, ω) = C(n)s(n, ω) + θ2(n, ω) : measurement equation
(8.46)

Here, it is assumed that ψn,n+1, C(n), θ1(n, ·) (and its initial distribution) and θ2(n, ·) are

known where ψn,n+1: K ×K-dimensional transition matrix, θ1(n, ·): L-dimensional input

vector which represents a white noise, C(n): L × K-dimensional measurement matrix,

θ2(n, ·): L-dimensional vector which represents a measurement error. Here, our problem

is as follows:

(♯) Let τ be any integer such that 0 ≤ τ ≤ N . Let Ξk ∈ BR (k = 0, 1, 2, ..., N). Then

infer the state vector s(τ, ω) at time τ from the fact that

(x(0, ω),x(1, ω),x(2, ω), ..., x(N,ω)) ∈ Ξ0 × Ξ1 × Ξ2 × · · · × ΞN .

Also, note the original equation of the stochastic difference equation (8.46) is the following

equation:

s̄(n + 1) = ψn,n+1(s̄(n)) (n = 0, 1, ..., N − 1). (8.47)

The problem (♯) was firstly answered in the framework of dynamical system theory (8.46).

Now, we consider the (♯) in the framework of SMT (8.3).
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200CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

8.4.1 The measurement theoretical formulation of Figure (8.45)

Firstly, we formulate the (8.45) in SMT, (or HMT in Remark 8.3). Assume, for

simplicity, that T (≡ {0, 1, ..., N}) is a tree with a series structure (though this assumption

is not needed). For each t (∈ T ), consider compact Hausdorff spaces St and Θt. Although

it is natural to assume that S0 = S1 = · · · = SN and Θ0 = Θ1 = · · · = ΘN , we can do

well without this assumption. Now, consider the following two Markov relations among

systems: [{Ψt1,t2 : C(St2) → C(St1)}(t1,t2)∈T 2
≤
] and [{Υt1,t2 : C(Θt2) → C(Θt1)}(t1,t2)∈T 2

≤
]

such as

[C(S0)]
Ψ0,1←−−− [C(S1)]

Ψ1,2←−−− · · ·
ΨN−2,N−1←−−−−−− [C(SN−1)]

ΨN−1,N←−−−−− [C(SN)] (8.48)

where the initial state δs0 (∈ M
p
+1(S0)) is assumed to be unknown, and

[C(Θ0)]
Υ0,1←−−− [C(Θ1)]

Υ1,2←−−− · · ·
ΥN−2,N−1←−−−−−− [C(ΘN−1)]

ΥN−1,N←−−−−− [C(ΘN)](
with the known initial state νΘ

0 (∈ Mm
+1(Θ0))

)
. (8.49)

Here, it should be noted that the above (8.48) [resp. (8.49)] is the measurement theoretical

formulation of (8.47) [resp. the θ1 in (8.45)]. Also, note that the (8.48) is equivalent to

[Mm
+1(S0)]

Ψ∗
0,1−−−→ [Mm

+1(S1)]
Ψ∗

1,2−−−→ · · ·
Ψ∗

N−2,N−1−−−−−−→ [Mm
+1(SN−1)]

Ψ∗
N−1,N−−−−−→ [Mm

+1(SN)]

where Ψ∗
n,n+1 : Mm

+1(Sn) → Mm
+1(Sn+1)] is the dual operator of Ψn,n+1 : C(Sn+1) → C(Sn).

Since the (8.48) corresponds to the conventional (8.47), it is natural to assume that the

(8.48) is deterministic, i.e., Ψn,n+1 is homomorphic. Thus, for each n = 0, 1, ..., N − 1,

there exists a continuous map ψn,n+1 : Sn → Sn+1, i.e.,

[S0]
ψ0,1−−−→ [S1]

ψ1,2−−−→ · · ·
ψN−2,N−1−−−−−−→ [SN−1]

ψN−1,N−−−−→ [SN ]

where

fn+1(ψn,n+1(sn)) = (Ψn,n+1(fn+1))(sn) (∀fn+1 ∈ C(Sn+1), ∀sn ∈ Sn).

Next, consider a continuous map λn : Sn × Θn → Sn, that is,

Sn × Θn ∋ (sn, θn) 7→ λn(sn, θn) ∈ Sn (n = 0, 1, ..., N) (8.50)

which should be regarded as the corresponding thing of the left ⊕ in (8.45). The contin-

uous map λn : Sn ×Θn → Sn induces the continuous map Λn : Mm
+1(Sn ×Θn) → Mm

+1(Sn)
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8.4. KALMAN FILTER IN NOISE 201

such that:

(Λn(νS
n ⊗ νΘ

n ))(Bn) = (νS
n ⊗ νΘ

n )(λ−1
n (Bn))

(∀(νS
n ⊗ νΘ

n ) ∈ Mm
+1(Sn × Θn),∀Bn ⊆ Sn : open). (8.51)

Further, define the continuous map Φ̂∗
n,n+1 : Mm

+1(Sn×Θn) → Mm
+1(Sn+1×Θn+1), such

that

Mm
+1(Sn × Θn) ∋ νS

n ⊗ νΘ
n 7→Φ̂∗

n,n+1(ν
S
n ⊗ νΘ

n )

≡[Λn+1(Ψ∗
n,n+1ν

S
n ⊗ Υ∗

n,n+1ν
Θ
n )] ⊗ Υ∗

n,n+1ν
Θ
n ∈ Mm

+1(Sn+1 × Θn+1)

where Υ∗
n,n+1 : Mm

+1(Θn) → Mm
+1(Θn+1) is a dual operator of Υn,n+1 : C(Θn+1) → C(Θn).

That is,

νS
n+1 ⊗ νΘ

n+1

(
≡ Φ̂∗

n,n+1(ν
S
n ⊗ νΘ

n )
)

=[Λn+1(Ψ
∗
n,n+1ν

S
n ⊗ Υ∗

n,n+1ν
Θ
n )] ⊗ Υ∗

n,n+1ν
Θ
n (n = 0, 1, ..., N − 1) (8.52)

which (or, the following (8.53)) corresponds to the state equation (8.46). Thus, we have

the Markov relation [{Φ̂n,n+1 : C(Sn+1 × Θn+1) → C(Sn × Θn)}N−1
n=0 ]:

[C(S0 × Θ0)]
bΦ0,1←−−−−− [C(S1 × Θ1)]

bΦ1,2←−−−−− · · ·
bΦN−2,N−1←−−−−−−−− [C(SN−1 × ΘN−1)]

bΦN−1,N←−−−−−− [C(SN × ΘN )] (8.53)

where Φ̂n,n+1 is the pre-dual operator of Φ̂∗
n,n+1 (i.e., (Φ̂n,n+1)

∗ = Φ̂∗
n,n+1). That is, the

(8.53) is equivalent to

[Mm
+1(S0 × Θ0)]

bΦ∗
0,1−−−−→ [Mm

+1(S1 × Θ1)]
bΦ∗

1,2−−−−→ · · · [Mm
+1(SN−1 × ΘN−1)]

bΦ∗
N−1,N−−−−−→ [Mm

+1(SN × Θ
N

)]

(8.53)′

Next, we consider the measurement theoretical characterization of the measurement

equation (8.46). That is, consider the following Markov relation:

[C(Θ′
0)]

Υ′
0,1←−−− [C(Θ′

1)]
Υ′

1,2←−−− · · ·
Υ′

N−2,N−1←−−−−−− [C(Θ′
N−1)]

Υ′
N−1,N←−−−−− [C(Θ′

N)]

(with the initial state νΘ′
0 (∈ Mm

+1(Θ
′
0))),

which corresponds to the θ2 in (8.46). Also, for each n (∈ T ), consider an observable

On = (Xn, 2
Xn , Fn) in C(Sn×Θ′

n), which corresponds to the measurement equation (8.46).

Note that the observable On = (Xn, 2Xn , Fn) in C(Sn × Θ′
n) can be also regarded as an

observable in C(Sn×Θn×Θ′
n). Thus, we see that the (8.46) corresponds to the following:

[C(S0 × Θ0 × Θ′
0)]

b

bΦ0,1←−−−− [C(S1 × Θ1 × Θ′
1)]

b

bΦ1,2←−−−− · · ·
b

bΦN−1,N←−−−−− [C(SN × ΘN × Θ′
N )]

(X0, 2X0 , F0) (X1, 2X1 , F1) · · · (XN , 2XN , FN )
(8.54)
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202CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

with the initial state δs0 ⊗ νΘ
0 ⊗ νΘ′

0 where
̂̂
Φn,n+1 ≡ Φ̂n,n+1 ⊗ Υ′

n,n+1). Here, note that

νΘ
0 (∈ Mm

+1(Θ0)) and νΘ′
0 (∈ Mm

+1(Θ
′
0)) are known, but δs0 (∈ M

p
+1(S0)) is unknown.

Therefore, we have the correspondence:

(8.46) in DST ↔ (8.54) in SMT (or precisely, HMT, cf. Remark 8.3).

Thus, we can skip to the next section §8.4.2. However, in what follows we add the

concrete form of the family {On = (Xn, 2Xn , Fn)}N
n=0 (in (8.54)), which corresponds to

the measurement equation (8.46) in detail.

Let S′
n and S′′

n be compact spaces. Let C : Sn → S′′
n be a continuous map, which

induces the continuous map ΛC
n : Mm

+1(Sn) → Mm
+1(S

′′
n) such that:

(ΛC
n (νS

n))(A′
n) = νS

n((λC
n )−1(A′

n)) (∀νS
n ∈ Mm

+1(Sn),∀A′
n ⊆ S′′

n : open).

And consider a continuous map λ′
n : S′′

n × Θ′
n → S′

n, which induces the continuous map

Λ′
n : Mm

+1(S
′′
n × Θ′

n) → Mm
+1(S

′
n) such that:

(Λ′
n(νS′′

n ⊗ νΘ′

n ))(B′
n) = (νS′′

n ⊗ νΘ′

n )((λ′
n)−1(B′

n))

(∀(νS′′

n ⊗ νΘ′

n ) ∈ Mm
+1(S

′′
n × Θ′

n), ∀B′
n ⊆ S′

n : open).

For each n (= 0, 1, ..., N), consider an observable O′
n = (Xn, 2

Xn , F ′
n) in C(S′

n), which

may be an (approximate) exact observable (cf. Example 2.20). Thus, for each n (∈ T ),

we can define the observable On = (Xn, 2
Xn , Fn) (in (8.54)) in C(Sn × Θ′

n) such that:

C(Sn×Θ′
n)∗

⟨νS
n ⊗ νΘ′

n , Fn(Ξn)⟩
C(Sn×Θ′

n)
=

C(S′
n)∗

⟨Λ′
n(ΛC

n (νS
n) ⊗ νΘ′

n ), F ′
n(Ξn)⟩

C(S′
n)

(∀(νS
n ⊗ νΘ′

n ) ∈ Mm
+1(Sn × Θ′

n)).

8.4.2 Kalman filter in Noise

For simplicity, put Θ̂n = Θn × Θ′
n and ν

bΘ
0 = νΘ

0 ⊗ νΘ′
0 . And, we rewrite the (8.54) as

follows:

[C(S0 × bΘ0)]
b

bΦ0,1←−−−−− [C(S1 × bΘ1)]
b

bΦ1,2←−−−−− · · ·
b

bΦN−2,N−1←−−−−−−−− [C(SN−1 × bΘN−1)]
b

bΦN−1,N←−−−−−− [C(SN × bΘN )]

(X0, 2X0 , F0) (X1, 2X1 , F1) · · · (XN−1, 2XN−1 , FN−1) (XN , 2XN , FN )

with the initial state δs0 ⊗ ν
bΘ
0 , where ν

bΘ
0 (∈ Mm

+1(Θ̂0)) is known
(
that is, νΘ

0 (∈ Mm
+1(Θ0))

and νΘ′
0 (∈ Mm

+1(Θ
′
0)) are known

)
, but δs0 (∈ M

p
+1(S0)) is unknown.
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8.4. KALMAN FILTER IN NOISE 203

Now, we get the sequential observable [OT ] ≡ [{Ot}t∈T ; {̂̂
Φt1,t2 : C(St2 × Θ̂t2) →

C(St1×Θ̂t1)}(t1,t2)∈T 2
≤
]. Then, we can construct the observable Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈T Xt , F̃0)

in C(S0 × Θ̂0), which is the realization of the sequential observable [OT ], such as

[C(S0 × bΘ0)]
b

bΦ0,1←−−−−− [C(S1 × bΘ1)]
b

bΦ1,2←−−−−− · · ·
b

bΦN−2,N−1←−−−−−−−− [C(SN−1 × bΘN−1)]
b

bΦN−1,N←−−−−−− [C(SN × bΘN )]

F0 F1 · · · FN−1 FN

?

?

y

?

?

y

?

?

y

?

?

y

(F0
qp
××××××××× b

bΦ eF1)

= eF0

b

bΦ0,1←−−−−− (F1
qp
××××××××× b

bΦ eF2)

= eF1

bΦ1,2←−−−−− · · ·
b

bΦN−2,N−1←−−−−−−−− (FN−1
qp
××××××××× b

bΦ eFN )

= eFN−1

b

bΦN−1,N←−−−−−− (FN )

= eFN

(8.55)

(
The existence of the Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈T Xt , F̃0) is assured by Theorem 3.7.
)

Thus, we

can represent the “measurement” M({Ot}t∈T ,S(δs0 ⊗ ν
bΘ
0 )) such as

M({Ot}t∈T ,S(δs0 ⊗ ν
bΘ
0 )) = MC(S0×bΘ0)(Õ0, S(δs0 ⊗ ν

bΘ
0 )).

Here, assume that

(♯) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt), obtained by the measurement

MC(S0×bΘ0)(Õ0, S(δs0 ⊗ ν
bΘ
0 )), belongs to

∏
t∈T Ξt.

Fisher’s maximum likelihood method (cf. Theorem 5.3, Corollary 5.6) says that there is

a reason to infer that the unknown s0 (∈ S0) is determined by

C(S0×bΘ0)
∗ ⟨δs0 ⊗ ν

bΘ
0 , F̃0(

∏
t∈T

Ξt)⟩
C(S0×bΘ0)

= max
s∈S0

C(S0×bΘ0)
∗ ⟨δs ⊗ ν

bΘ
0 , F̃0(

∏
t∈T

Ξt)⟩
C(S0×bΘ0)

.

Let τ ∈ T , and let {B(0,τ)
Πt∈T Ξt

|
∏

t∈T Ξt ∈ 2Πt∈T Xt} be a family of Bayes operators.(
The existence is assured by Theorem 6.6.

)
Then, we see, by Lemma 8.9, that the new

S-state νS×bΘτ
τ,new (∈ Mm

+1(Sτ × Θ̂τ )) is defined by

νS×bΘτ
τ,new = R

(0,τ)
Πt∈T Ξt

(δs0 ⊗ ν
bΘ
0 )

where R
(0,τ)
Πt∈T Ξt

: Mm
+1(S0 × Θ̂0) → Mm

+1(Sτ × Θ̂τ ) is a normalized dual Bayes operator, i.e.,

R
(0,τ)
Πt∈T Ξt

(ν) =
(B

(0,τ)
Πt∈T Ξt

)∗(ν)

∥(B(0,τ)
Πt∈T Ξt

)∗(ν)∥
(∀ν ∈ Mm

+1(S0 × Θ̂0)). Thus there is a reason to think that

the new S-state (in Mm
+1(Sτ )) is equal to νS

τ,new such that:

νSτ
τ,new(Dτ ) ≡ νSτ×bΘτ

τ,new (Dτ × Θ̂τ ) (∀Dτ (⊆ Sτ ) : open set).

Remark 8.15. [Stochastic differential equation] It is important to generalize the stochas-

tic difference state equation in (8.46) to the stochastic differential equation (1.2a). In order

to do it in SMT, we must prepare the W ∗-algebraic formulation of SMT (in Chapter 9).

Thus we do not touch this problem in this book.
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204CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

8.5 Information and entropy

As one of applications (of Bayes theorem), we now study the “entropy” of the mea-

surement. Here we have the following definition.

Definition 8.16. [Information quantity, the entropy of measurement (= fuzzy entropy),

cf. [42]]. Consider a statistical measurement MC(Ω)

(
O ≡ (X, 2X , F ), S(ρ0)

)
in a com-

mutative C∗-algebra C(Ω), where the label set X is assumed to be at most countable,

i.e., X = {x1, x2, ..., xn, ...}. Then, the H(M), the (fuzzy) entropy of MC(Ω)(O, S(ρ0)), is

defined by

H
(
MC(Ω)(O, S(ρ0))

)
=

∞∑
n=1

( ∫
Ω

[F ({xn})](ω)ρ0(dω)

∫
Ω

[F ({xn})](ω)∫
Ω
[F ({xn})](ω)ρ0(dω)

log
[F ({xn})](ω)∫

Ω
[F ({xn})](ω)ρ0(dω)

ρ0(dω)
)

(8.56)

=
∞∑

n=1

·I({xn})

where, P ({xn}) =

∫
Ω

[F ({xn})](ω)ρ0(dω)(
= the probability that a measured value xn is obtained

)

I({xn}) =

∫
Ω

[F ({xn})](ω)∫
Ω
[F ({xn})](ω)ρ0(dω)

log
[F ({xn})](ω)∫

Ω
[F ({xn})](ω)ρ0(dω)

ρ0(dω)

=
1

P ({xn})

∫
Ω

[F ({xn})](ω) log[F ({xn})](ω)ρ0(dω) − log P ({xn})(
= the information quantity when a measured value xn is obtained

)
(8.57)

MC(Ω)

(
O, S(ρ0)

)
is the normalized W ∗-algebraic representation of a C∗-measurement

MC0(Ω)

(
O ≡ (X, P0(X), F ), S(ρ0)

)
, the entropy H

(
MC0(Ω)(O, S(ρ0))

)
is also defined

by H
(
MC(Ω)

(
O, S(ρ0)

))
.

¥
The definition is derived from the following consideration. Assume that we get the

measured value x ( ∈ X) by the statistical measurement MC(Ω)(O, S(ρ0)). Note that its

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



8.5. INFORMATION AND ENTROPY 205

probability P ({x}) is given by P ({x}) = C(Ω)∗

〈
ρ0, F ({x})

〉
C(Ω) =

∫
Ω
[F ({x})](ω) ρ0(dω).

Also, we consider, by (8.44) (or, (5.13)), that the new statistical state ρx ( ∈ Mm
+1(Ω)) is

given by

ρx(D) =

∫
D
[F ({x})](ω)ρ0(dω)∫

Ω
[F ({x})](ω)ρ0(dω)

(∀D ∈ BΩ),

whose information quantity I(x) is of course determined by I({x}) =
∫

Ω
dρx

dρ0
(ω) log dρx

dρ0
ρ0(dω),

where the Radon-Nikodým derivative dρx

dρ0
(ω) is defined by [F ({x})](ω)

R

Ω[F ({x})](ω)ρ0(dω)
. Thus, the av-

erage information quantity, i.e., entropy, is given by

H
(
MC(Ω)(O, S(ρ0))

)
=

∞∑
n=1

P ({xn}) · I({xn}),

which is equal to (8.56). Also it should be noted that the formula (8.56) can easily

calculated as follows:

H(M) =
∞∑

n=1

∫
Ω

[F ({xn})](ω) log[F ({xn})](ω)ρ0(dω) −
∞∑

n=1

P ({xn}) log P ({xn}). (8.58)

Also, if O is crisp, we see that H(M) = −
∑∞

n=1 P ({xn}) log P ({xn}).
Example 8.17. [Urn problem (in Example 8.1)]. There are two urns ω1 and ω2. The

urn ω1 [resp. ω2] contains 8N white and 2N black balls [resp. 4N white and 6N black

balls], where N is a sufficiently large number. We regard Ω
(
≡ {ω1, ω2}

)
as the state

space. And consider the observable O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Here define the statistical state ν0(∈ Mm
+1(Ω)) such that ν0({ω1}) = p, ν0({ω2}) = 1 − p.

And consider a statistical measurement MC(Ω)(O, S[∗](ν0)).

The illustration of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain
ω1 ω2
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206CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

Put

P ({x}) : the probability that a measured value x ( ∈ {w, b}) is obtained

I({x}) : the information quantity that is acquired when we know that

a measured value x ( ∈ {w, b}) is obtained

νx
1 : the posttest state after a measured value x ( ∈ {w, b}) is obtained

Then,

P ({w}) = 0.8p + 0.4(1 − p), P ({b}) = 0.2p + 0.6(1 − p),

I({w}) =
0.8p log 0.8 + 0.4(1 − p) log 0.4

0.8p + 0.4(1 − p)
− log(0.8p + 0.4(1 − p)),

I({b}) =
0.2p log 0.2 + 0.6(1 − p) log 0.6

0.2p + 0.6(1 − p)
− log(0.2p + 0.6(1 − p)),

νw
1 ({ω1}) =

0.8p

0.8p + 0.4(1 − p)
, νw

1 ({ω2}) =
0.4(1 − p)

0.8p + 0.4(1 − p)
,

νb
1({ω1}) =

0.2p

0.2p + 0.6(1 − p)
, νb

1({ω2}) =
0.6(1 − p)

0.2p + 0.6(1 − p)
.

Then, we see, by (8.58), that

H(MC(Ω)(O, S[∗](ν0)))

=[F ({w})](ω1) log[F ({w})](ω1)p + [F ({w})](ω2) log[F ({w})](ω2)(1 − p)

+ [F ({b})](ω1) log[F ({b})](ω1)p + [F ({b})](ω2) log[F ({b})](ω2)(1 − p)

− P ({w}) log P ({w}) − P ({b}) log P ({b})

=0.8(log 0.8)p + 0.4(log 0.4)(1 − p) + 0.2(log 0.2)p + 0.6(log 0.6)(1 − p)

− (0.8p + 0.4(1 − p)) log(0.8p + 0.4(1 − p)) − (0.2p + 0.6(1 − p)) log(0.2p + 0.6(1 − p)).

Assume that p = 1/2. Then, we see that

H(MC(Ω)(O, S[∗](ν0))) = 0.6 − 0.3 log2 3 = 0.123 · · · (bit).

¥
Example 8.18. [Fuzzy information (fast or not fast), cf. [42]]. Let Ω ≡ {ω1, ω2, ..., ω100}
be a set of pupils in some school. Let Ob ≡ (X = {yb, nb}, 2X , b

(·)) be the crisp C∗-

observable in the commutative C∗-algebra C(Ω) such that b{yb}(ωn) = 0 (n is odd), = 1
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8.5. INFORMATION AND ENTROPY 207

(n is even), and b{nb}(ωn) = 1 − b{yb}(ωn). Also, let Of ≡ (Y = {yf , nf}, 2Y , f
(·)) be

the C∗-observable in C∗-algebra C(Ω) such that f{yf}(ωn) = (n − 1)/99 (∀ωn ∈ Ω) and

f{nf}(ωn) = 1 − f{yf}(ωn). Let ρ0 ∈ Mm
+1(Ω), for example, assume that ρ0 = νu, i.e., the

equal weight on Ω, namely, νu({ωn}) = 1/100 (∀n). Thus we have two measurements

MC(Ω)(Ob, S(νu)) and MC(Ω)(Of , S(νu)).

0

1

Ω
100

f{yf}
f{nf}

Then, we see, by (8.58), that

H
(
MC(Ω)(Ob, S(νu))

)
= −∥b{yb}∥L1(Ω,νu) log ∥b{yb}∥L1(Ω,νu) − ∥b{nb}∥L1(Ω,νu) log ∥b{nb}∥L1(Ω,νu)

= −1

2
log

1

2
− 1

2
log

1

2
= log2 2 = 1 (bit), (8.59)

and

H
(
MC(Ω)(Of , S(νu))

)
=

∫
Ω

f{yf}(ω) log f{yf}(ω)νu(dω) +

∫
Ω

f{nf}(ω) log f{nf}(ω)νu(dω)

− ∥f{yf}∥L1(Ω,νu) log ∥f{yf}∥L1(Ω,νu) − ∥f{nf}∥L1(Ω,νu) log ∥f{nf}∥L1(Ω,νu) (8.60)

≈ 2

∫ 1

0

λ log2 λdλ + 1 = − 1

2 loge 2
+ 1 = 0.278 · · · (bit). (8.61)

For example, assume that the symbol “yb” [resp. “nb”] in X is interpreted by “boy”

[resp. “girl”]. And “yf” [resp. “nf”] in Y is interpreted by “fast runner” [resp. “not

fast runner”]. When we guess the pure state (∗) of the system S ( = S(∗)(νu)) in the

above situation, the (8.60) and (8.61) say that the crisp information “boy or girl” is more

efficient than the fuzzy information “fast or not fast”.

¥

Remark 8.19. [Fuzzy information theory]. “Shannon’s entropy” is usually defined

as follows (cf. [79]). Let (Ω,B, P ) be a probability space. Let D = {D1, D2, ...} be
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208CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

the countable decomposition of Ω. Then, the entropy H(D) of D is defined by H(D) =

−
∑∞

n=1 P (Dn) log P (Dn). Note that Definition 8.16 is the natural extension of Shannon’s

entropy if we regard the observable O as a “fuzzy decomposition”(cf. the formula (2.30)).

¥

8.6 Belief measurement theory (=BMT)

In this section we study “belief measurement theory (=BMT)”, which is considered

to be closely related to “subjective Bayesian statistics”.9

Firstly let us consider the following problem:

(P ) For example, consider a measurement MC(Ω)(O ≡ (X, 2X , F ), S[∗]) formulated in

C(Ω), where Ω = {ω1, ω2}, and further, assume that we have no information about

the [∗]. How do we represent “having no information about the [∗]” mathematically?

Or, how do we infer the statistical state?

We prepare three answers to the problem (P ) in this book. That is, we consider three

kinds of “having no information about the [∗]” (or, “having no belief whether [∗] = ω1 or

[∗] = ω2 ) as follows:

(A1) Iterative likelihood function method in PMT. See MC(Ω)(O, S[∗]((kI))lq) in §5.5.

(A2) The principle of equal probability (= “PEP”). As seen later (i.e., Theorem 11.12),

this is essentially equivalent to the hypothesis that the [ ∗ ] is chosen by a fair

coin-tossing (e.g., p = 0.5 in (8.7)). That is, it suffices to consider the statistical

measurement MC(Ω)(O, S[∗](νu)), where νu({ω1}) = νu({ω2}) = 1/2.

(A3) The principle of equal weight(=“PEW” =Bayes’ postulate). See §8.6.2 later. This

method will be called “belief measurement theory” (or, “BMT”).

9This is not sure since my understanding of the subjective Bayesian statistics (cf. [21]) is not sufficient.
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8.6. BELIEF MEASUREMENT THEORY (=BMT) 209

Thus we may have the following classification (and correspondence):

MT



PMT= measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

←→ (A1)

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

←→ (A2)

BMT = PMT
(Axioms 1 and 2)

+ “belief weight”
(the principle of equal weight)

←→ (A3)

(8.62)

8.6.1 The general argument about BMT

In §8.1∼§8.5, we studied SMT (i.e., Proclaim 1 (= the probabilistic interpretation of

“mixed state”) + Axiom 2), in which “mixed state” has the probabilistic interpretation.

In this section, we propose another interpretation of “mixed state”, which may be called

“belief interpretation”. That is, we want to assert:

ρm ∈ Sm(A∗)
(mixed state)

· · ·


“probabilistic interpretation”

[Proclaim 1 (8.10)]

→ “SMT”
in §8.1∼8.5

“belief interpretation”
[the principle of equal weight (8.72)]

→ “BMT”
in this §8.6

(8.63)

The purpose of this section is, of course, to propose “belief measurement theory” (or,

“BMT”).

We begin with a simplest example as follows. Consider the statistical measurement

MC(Ω)(O ≡ ({w, b}, 2{w,b}, F ), S[∗](ν0)). Here

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6,

and, ν0({ω1}) = 1/4 and ν0({ω1}) = 3/4. Recall that this measurement is symbolically

described as follows.

1/4
-

3/4
�[∗]

Pick up a ball from the urn behind the curtain
U1(≈ ω1) U2(≈ ω2)

Figure(8.64)
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210CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

By a hint of the Figure (8.64), we can introduce “BMT” as follows. Assume that there

are 100 people. And moreover assume that10{
25 people (in 100 people) believe that [∗] = U1

75 people (in 100 people) believe that [∗] = U2

That is, we have the following picture (instead of Figure (8.64)):

25 people believe that [∗] = U1. 75 people believe that [∗] = U2.

- �[∗]

Pick up a ball from the urn behind the curtain
U1(≈ ω1) U2(≈ ω2)

Figure(8.65)

This is just the “belief measurement”, which is denoted by MC(Ω)(O, S[∗]((ν0))bw). Also,

the ν0 is called a belief weight (or, approval rate, conviction degree ).11

We add the following remark:

(R1) Note that the [∗] (in MC(Ω)(O, S[∗]((ν0))bw) ) is assumed to be unknown. Thus,

the triplet
(
X, 2X , M(Ω)

〈
ν, F (·)

〉
C(Ω)

)
is a merely mathematical symbol and not

a sample space. In other words, it is nonsense to consider the probability that

the measured value obtained by MC(Ω)(O ≡ (X, 2X , F ), S[∗]((ν))bw) belongs to Ξ(∈
2X). That is, Proclaim 1(8.10) does not hold for a belief measurement MC(Ω)(O ≡
(X, 2X , F ), S[∗]((ν))bw), or equivalently, a belief measurement has no sample space.

This (R1) is clear. That is because the argument mentioned in Example 8.1 is invalid

for a belief measurement, since ν ( in MC(Ω)(O, S[∗]((ν))bw) ) is a belief weight and not a

statistical state.

However (i.e., in spite of the fact that Proclaim 1(8.10) is invalid), we have the following

theorem:

Theorem 8.20. (Bayes theorem for belief measurements). Assume that we know that

a measured value obtained by a belief measurement MC(Ω)(O ≡ (X, F, F ), S[∗]((ν))bw)

10Recall “parimutuel betting” , which is very applicable. For example, we may consider the
“probability” that life exists on Mars.

11Thus, outsiders may think that MC(Ω)(O, S[∗]((ν0))bw) and MC(Ω)(O, S[∗]) are the same. That is
because the number of the believers is not related to the measurement itself.
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8.6. BELIEF MEASUREMENT THEORY (=BMT) 211

belongs to Ξ (∈ F). Then, we have the “Bayes theorem” such that

Mm
+1(Ω) ∋ ν(= priori belief weight) 7→ (posterior belief weight =)R

(0,0)
Ξ (ν) ∈ Mm

+1(Ω). (8.66)

where

[R
(0,0)
Ξ (ν)](D0) =

∫
D0

[F (Ξ)](ω)ν(dω)∫
Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ⊆ Ω; Borel set ). (8.67)

Proof. It suffices to prove a simple case since the proof of the general case is similar.

For example, consider the following figure, which is essentially the same as Figure (8.65).

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

Pick up a ball from the urn behind the curtain
U1(≈ ω1) U2(≈ ω2)

Assume that a “white ball ” is picked in the above picture. Then, we see:

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

which is equivalent to the following figure:
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212CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

40 % people believe that [∗] = U1. 60 % people believe that [∗] = U2.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

Thus we see that Bayes theorem holds for belief measurements. That is because Theorem

8.20 (Bayes theorem for belief measurements) says:

Mm
+1(Ω) ∋ ν0(= priori belief weight) 7→ (posterior belief weight =)R

(0,0)
Ξ (ν0) ∈ Mm

+1(Ω). (8.68)

where

[R
(0,0)
{w} (ν0)]({ω}) =

∫
{ω}[F ({w})](ω)ν0(dω)∫
Ω
[F ({w})](ω)ν0(dω)

=


8
10

× 1
4

8
10

× 1
4
+ 4

10
× 3

4

= 40
100

(if ω = ω1)

4
10

× 3
4

8
10

× 1
4
+ 4

10
× 3

4

= 60
100

(if ω = ω2)

(8.69)

Although this proof is easy, it should be noted that this is different from the proof of

Bayes theorem for a statistical measurement. That is because Proclaim 1 (8.20) can not

be used in the proof of Theorem 8.26.

Remark 8.21. (Extensive interpretation in theoretical informatics). Seeing Figure

(8.65), some may think that the belief weight ν (in MC(Ω)(O ≡ (X, F, F ), S[∗]((ν))bw)

represents the only “public opinion”. However, this is wrong. Recall the spirit of the-

oretical informatics (in the footnote below the statement (1.12) in Chapter 1), i.e.,

“extensive interpretation”. Thus, we consider that the belief weight ν (in MC(Ω)(O ≡
(X, F, F ), S[∗]((ν))bw) often represents “personal belief”.

¥

8.6.2 The principle of equal weight

As mentioned in the previous section (i.e., §8.6.1) we have the following notation:
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8.6. BELIEF MEASUREMENT THEORY (=BMT) 213

Notation 8.22. [MC(Ω)

(
O, S[∗]((ν))bw

)
]. The symbol MC(Ω)

(
O, S[∗]((ν))

bw

)
, (ν ∈

Mm
+1(Ω)), is assumed to represent the measurement MC(Ω)

(
O ≡ (X, F, F ), S[∗]

)
un-

der the hypothesis that the belief weight of the system S[∗] is ν. And it is called a belief

measurement.

¥
Now let us explain “Bayes postulate” (= “the principle of equal weight”). Assume

that Ω is finite (i.e., Ω = {ω1, ω2, ..., ωN}). Then, there is a reason to think that the mixed

state νu ( ∈ Mm
+1(Ω)) defined by

νu(D) =
♯[D]

N
(∀D ⊆ Ω) (8.70)

represents “the loosest belief” or “knowing nothing about S[∗]”. (The νu is called the

“equal weight”. Cf. Remark 8.23 later). If Ω is infinite, we have no firm opinion.12 Thus

in this section we always assume that Ω is finite.

We add the following remark.

Remark 8.23. [Mathematical properties of equal weight νu, [42]]. Let Ω ≡ {ω1, ω2, ..., ωN}
be a finite set with the discrete topology. Let ρm

0 be arbitrary belief weight (i.e., ρm
0

∈ Mm
+1(Ω)). Then, define the entropy H(ρm

0 ) of the ρm
0 by

H
(
ρm

0

)
= −

N∑
n=1

ρm
0 ({ωn}) log ρm

0 ({ωn}).

Here, it is well known that

(i) sup
{

H
(
ρm

0

)
: ρm

0 ∈ Mm
+1(Ω)

}
= log N , (8.71)

(ii) “ρm
0 ({ωn}) = 1/N(∀n)” ⇐⇒ “H(ρm

0 ) = log N”.

(iii) Let Tav : C(Ω) → C be the average functional on C(Ω), i.e., a linear positive

functional such that:

(a) Tav(1) = 1

(b) Tav(f) = Tav(f ◦ ϕ) (∀f ∈ C(Ω),∀ bijection ϕ : Ω → Ω)

where (f ◦ ϕ)(ω) = f(ϕ(ω)).

12For example, we may consider as follows: Let Ω be not finite. Let SΩ be a subset of {Φ | Φ : C(Ω) →
C(Ω) is a Markov operator }. Assume that the SΩ has the unique invariant state νu ( ∈ Mm

+1(Ω)), that
is, Φ∗νu = νu (∀Φ ∈ SΩ). And further assume that νu(U) > 0 (∀U( ⊆ Ω, open ). Then, we may say that
the νu represents “no belief weight (concerning SΩ)” or “completely shuffled weight”. Also, see [47].
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214CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(iv) Tav is uniquely determined such as Tav(f) =
∫
Ω

f(ω)νu(dω)
(
≡

PN
n=1 f(ωn)

N

)
(∀f ∈

C(Ω)).

¥

Therefore, we can assert:

The principle of equal weight (= “PEW” = Bayes’ postulate).
[The belief interpretation of mixed states]. Consider a system S[∗] for-
mulated in C(Ω) where the state space Ω (≡ {ω1, ω2, ..., ωN}) is a finite
set. The belief weight is represented by a mixed state ν (∈ Mm

+1(Ω)). In

particular, the equal weight νu (≡ 1
N

∑N
n=1 δωn

∈ Mm
+1(Ω)) represents “the

loosest belief”. (8.72)

Thus BMT is summarized as follows.

[BMT1 ] the equal weight νu ( ∈ Mm
+1(Ω)) represents “the most loosest belief”.

[BMT2 ] After we get the measured value x by a belief measurement MC(Ω) (O ≡ (X, 2X , F ),

S[∗]((ρ
m
0 ))

bw
), the new belief weight of the system S[∗] is changed to ρm

new ( ∈ Mm
+1(Ω))

such that ρm
new (B) =

R

B [F ({x})](ω)ρm
0 (dω)

R

Ω[F ({x})](ω)ρm
0 (dω)

(∀B ∈ BΩ, Borel field).

Define the map [R
(0,0)
{x} ] : Mm

+1(Ω) → Mm
+1(Ω) such that:

[R
(0,0)
{x} ](ρm) =

∫
D0

[F ({x})](ω)ν(dω)∫
Ω
[F ({x})](ω)ν(dω)

(∀D0 ⊆ Ω; Borel set ). (8.73)

Then, we can symbolically describe it as follows:

[BMT] =


[BMT1] the loosest belief weight ←→ νu( ∈ Mm

+1(Ω))

[BMT2] S[∗]((ρ))bw

MC(Ω)
`

O, S[∗]((ρ))bw
´

−−−−−−−−−−−→
x is obtained

S[∗](([R
(0,0)
{x} ](ρ)))bw,

(8.74)

which should be compared with the characterization (5.80) of “Iterative likelihood function

method”.

Example 8.24. [= Example 5.24 (the urn problem)]. There are two urns ω1 and ω2.

The urn ω1 [resp. ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls].
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8.6. BELIEF MEASUREMENT THEORY (=BMT) 215

50% people believe that [∗] = U1. 50% people believe that [∗] = U2.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

Figure(8.75)

Assume that they can not be distinguished in appearance.

• Choose one urn from the two. (8.76)

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball”.

(Q1) Do you believe which the chosen urn is, ω1 or ω2?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Do you believe which the chosen urn is, ω1 or ω2?

And further,

(Q3) Also, study the case that the urn is chosen by a fair coin-tossing in (8.76).

[Answers]. In what follows this problem is studied in BMT. Put Ω = {ω1, ω2}. O =

({w, b}, 2{w,b}, F ) where [F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4,

[F ({b})](ω2) = 0.6. The PEW (8.72) says that the loosest belief is represented by νu

(i.e., νu({ω1}) = νu({ω2}) = 1/2)]. Thus we have the belief measurement MC(Ω)(O,

S[∗]((νu))
bw

).

(A1). Thus, consider MC(Ω)(O, S[∗]((νu))
bw

). Since the measured value “w” was obtained,

the new belief weight ρm
new

ρm
new({ω1})

(
=

∫
{ω1}[F ({w})](ω)νu(dω)∫

Ω
[F ({w})](ω)νu(dω)

)
=

0.8 × 1
2

0.8 × 1
2

+ 0.4 × 1
2

=
2

3
, ρm

new({ω2}) =
1

3
.
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216CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(A2). Next, consider the measurement MC(Ω)(O, S[∗] (( ρm
new ))

bw
). Since the measured

value “b” was obtained, the new belief weight ρm
new2 is represented by

ρm
new2({ω1})

(
=

∫
{ω1}[F ({b})](ω)ρm

new(dω)∫
Ω
[F ({b})](ω)ρm

new(dω)

)
=

0.2 × 2
3

0.2 × 2
3

+ 0.6 × 1
3

=
2

5
,

ρm
new({ω2})

(
=

∫
{ω2}[F ({b})](ω)ρm

new(dω)∫
Ω
[F ({b})](ω)ρm

new(dω)

)
=

0.6 × 1
3

0.2 × 2
3

+ 0.6 × 1
3

=
3

5
.

(A3) Also, when the urn is chosen by a fair coin-tossing, the above ρm
new and ρm

new2 acquire

the probabilistic interpretation. That is, ρm
new and ρm

new2 are regarded as statistical

states.

[Remark]. In order to make a belief measurement MC(Ω)(O, S[∗]((νu))bw
) change a statisti-

cal measurement MC(Ω)(O, S[∗]( νu )), we have two methods. One is the fair coin-tossing

method as mentioned in the above (A3) ( and (Q3)). Another will be proposed as SMTPEP

in §11.4, i.e., “the principle of equal probability”. Also, note that Theorem 11.12 says that

the two methods are equivalent.

¥

8.6.3 Is BMT necessary?

Now we have the following classification:

MT



PMT= measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

BMT = PMT
(Axioms 1 and 2)

+ “belief weight”
(the principle of equal weight)

(8.77)

However, we must consider and answer the following question:

(Q) Is BMT necessary?

In fact, some may think that

(A) BMT is not necessary. It suffices to substitute SMT for BMT carefully. In theoretical

informatics, the “economical” should come before the “exact”.
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8.6. BELIEF MEASUREMENT THEORY (=BMT) 217

I may agree with them. However, it should be remarked that

(R) It is clear that we can not use SMT carefully without the understanding of the

relation between SMT and BMT (i.e., without the understanding of the contents in

§8.1 ∼ 8.6.2). Especially, note that Proclaim 1 (8.10) is not valid in BMT.

If this (R) is admitted, I agree to the above opinion (A). Thus, I recommend readers to

use BMT at least until becoming accustomed to BMT. Also, it should be noted that there

is a great confusion in the conventional statistics.

Remark 8.25. [The term: “subjectivity”]. Since the term “subjectivity” is frequently

used in statistics, we must be careful for the usage of “subjectivity”. For example, consider

the following phrase:

• the probability that tomorrow is fine. (8.78)

The above term:“probability” is usually called a “subjective probability”. However, the

“probability” in (8.78) is the same as the “probability” in the following problem (which

is due to Newtonian mechanics, and thus, deterministic). In spite of the deterministic

system, we have the following question:

x

-v⃗

“Calculate the probability that the ball surmounts the mountain M.” (8.79)

That is, the case (a) or (b)?

Ball
(b)(a) M

bumpy

where the initial condition x(position) and v⃗(velocity) are values with errors, and also,

the differential equation is not completely known. However, it should be noted that this

problem is usual in engineering. Thus, if this is subjective (or, if a dearth of information

implies “subjective”), we consider that almost every problem in engineering is subjective.13

13Recall the argument in Chapter 1. That is, in theoretical physics we must be in the objective standing
point. On the other hand, in theoretical informatics (and its applications) we are, more or less, in the
subjective standing point. Recall the engineer’s spirit “Use everything available”. Thus we may ask the
excellent bookmaker about the problem (8.79). However, it should be noted that the bookmaker may
calculate the “subjective probability in the sense of BMT (or, parimutuel betting among general people)”.
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218CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

There is a reason to consider that the probaility in the problem (8.79) can be regarded

as the “subjective probability in the sense of parimutuel betting among a certain set

of specialists”. However, it is so, every probability may be regarded as the subjective

probability. Thus, in this book, the term: “subjective probability” is used in the case

that it is regarded as the probability in the sense of parimutuel betting.

¥

Remark 8.26. [Differential geometry and operator algebra, cf. Table (1.8a)(4)]. In

mathematics, differential geometry is flexible, but the theory of operator algebras (i.e,

C∗-algebra and W ∗-algebra) somewhat lacks adaptability. Thus, in MT14, we can not

prepare so many ready-made theories. For example, we have two ready-made theories

(i.e., BMT and SMTPEP (cf. §11.4)). This fact (i.e., few ready-made theories can be

proposed) is just what we want. That is because to choose one from too many ready-

made theories is essentially the same as to create a made-to-order theory. On the other

hand, in order to create a made-to-order theory in theoretical physics, the flexibility of

differential geometry is essential.

¥

8.7 Appendix (Bertrand’s paradox)

As mentioned in Remark 8.4, a natural mixed state is not always a ststistical state.

In fact we see, in §8.6, that the no informational weight νu (∈ Mm
+1(Ω), where Ω is finite)

defnied by (8.70) can not be unconditionally regarded as the statistical state.15 (As seen

later (in §11.4), the term “unconditionally” is important.) In this section, we study

Bertrand’s paradox, which promote our understanding of the relation between a natural

mixed state and a ststistical state.

8.7.1 Review (Bertrand’s paradox)

Here, let us review the usual argument about Bertrand’s paradox (cf. [35]). Consider

14Although Fisher information is closely related to Riemann manifold (in differential geometry, cf [5],
[24]), it is not the axiom of MT but a kind of method.

15The νu is invariant concerning any bijection ϕ on Ω, i.e., ϕ(νu) = νu. In this sense, it is natural.
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8.7. APPENDIX (BERTRAND’S PARADOX) 219

the following problem:

(P1) Given a circle with the radius 1. Suppose a chord of the circle is chosen at random.

What is the probability that the chord is longer than
√

3 (i.e., the side of an inscribed

equilateral triangle)?

The problem has apparently several solutions as follows:

A

(Fig.1) (Fig.2)

[First Solution (Fig.1)]. The “random endpoints” method: Choose a point A on the

circumference and rotate the triangle so that the point is at one vertex. Choose another

point on the circle and draw the chord joining it to the first point. For points on the

arc between the endpoints of the side opposite the first point, the chord is longer than a

side of the triangle. The length of the arc is one third of the circumference of the circle,

therefore the probability a random chord is longer than a side of the inscribed triangle is

one third.

[Second Solution (Fig.2)]. The “random radius” method: Choose a radius of the circle and

rotate the triangle so a side is perpendicular to the radius. Choose a point on the radius

and construct the chord whose midpoint is the chosen point. The chord is longer than

a side of the triangle if the chosen point is nearer the center of the circle than the point

where the side of the triangle intersects the radius. Since the side of the triangle bisects

the radius, it is equally probable that the chosen point is nearer or farther. Therefore the

probability a random chord is longer than a side of the inscribed triangle is one half.

8.7.2 Bertrand’s paradox in measurement theory

We assert that
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220CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

(♯) If Bertrand’s paradox is a paradox (i.e., if the argument in §8.7.1 is considered to

be strange), it is due to the confusion between statistical states and mixed states

(cf. (8.11)).

In what follows, we shall explain it. Consider the following problem:

(P2) Given a circle with the radius 1. Define the state space Ω by the set composed of

all chords of this circle. Then, find a natural mixed state ρ ( ∈ Mm
+1(Ω)).

The reader will find that the (P2) is essentially the same as the problem (P1) in §8.7.1.

Thus, the above problem has also apparently several solutions as follows:

(Fig.0)

Represent a chord l
by a natural coordinate!

l

α θ

r
β

(Fig.2′)(Fig.1′)

l(α,β) l(r,θ)

[First Solution (Fig.1′)]. See Fig.0 (Represent a chord by a natural coordinate!). In

Fig.1′, we see that the chord l is represented by a point (α, β) in the rectangle R1 ≡
{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2(radian)}. That is, we have the following identification:

Ω ∋ l(α,β) ←→ (α, β) ∈ R1.

Under the identification, we get the natural mixed state ρ1 ( ∈ Mm
+1(Ω) ≈ Mm

+1(R1)) such
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8.7. APPENDIX (BERTRAND’S PARADOX) 221

that ρ1(A) = Area[A]

Area[R1]
= Area[A]

π2 (∀A ∈ BR1), where “Area” = “Lebesgue measure”.

Therefore, we see

ρ1({l(α,β) ∈ Ω | ”the length of l(α,β)” ≥
√

3})

=
Area[{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/6}]
Area[{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2}]

=
2π × (π/6)

2π × (π/2)
=

1

3
. (8.80)

[Second Solution (Fig.2′)]. See Fig.0 (Represent a chord by a natural coordinates). In

Fig.2′, we see that the chord l is represented by a point (r, θ) in the rectangle R2 ≡
{(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. That is, we have the following identification:

Ω ∋ l(r,θ) ←→ (r, θ) ∈ R2.

Under the identification, we get the natural mixed state ρ2 ( ∈ Mm
+1(Ω) ≈ Mm

+1(R2)) such

that ρ2(A) = Area[A]

Area[R2]
= Area[A]

2π
(∀A ∈ BR2). Therefore, we see

ρ2({l(α,β) ∈ Ω | ”the length of l(r,θ)” ≥
√

3})

=
Area[{(r, θ) | 0 ≤ r ≤ 1/2, 0 ≤ θ ≤ 2π}]
Area[{(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}]

=
1

2
. (8.81)

Since the above argument is related to “mixed state” and not “statistical state”, we

have no paradox in the above arguments. That is, if Bertrand’s paradox is a paradox

(in §8.7.1), it is due to the confusion between mixed states (mathematical concept) and

statistical states (measurement theoretical concept).

Some may assert that:

• it suffices to test (8.80) or (8.81) experimentally.

However, it is not true. For completeness, we add the following remark.

Remark 8.27. [Mixed state and statistical state]. In the above arguments, note that ρ1

( ∈ Mm
+1(Ω)) and ρ2 ( ∈ Mm

+1(Ω)) are mixed states and not statistical states. In order to

regard a mixed state ρ1 ( ∈ Mm
+1(Ω)) as a statistical state, we must add the probabilistic

interpretation to the mixed state ρ1. This is, for example, done as follows:

(R1) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 1”, “ball

2”, ...,“ball 100” ). Pick out one ball from the urn A. Assume that the ball is “ball
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222CHAPTER 8. STATISTICAL MEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

m”. Next, pick out one ball from the urn B. Assume that the ball is “ball n”.

Define (α, β) in the rectangle R1 such that:

α =
2πm

100
, β =

πn

200
.

Then, if (α, β) is chosen according to the above rule (R1), the mixed state ρ1 ( ∈ Mm
+1(Ω))

acquires the probabilistic interpretation. And thus, it can be regarded as a statistical state.

In fact, if we take an exact measurement, we see that the probability that the length of

the chord is longer than
√

3 is given by 1/3. Of course, by a similar way, we can add

the probabilistic interpretation to the ρ2 (in the second solution). That is, it suffices to

choose a chord as follows.

(R2) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 1”, “ball

2”, ...,“ball 100” ). Pick out one ball from the urn A. Assume that the ball is “ball

m”. Next, pick out one ball from the urn B. Assume that the ball is “ball n”.

Define (r, θ) in the rectangle R1 such that:

r =
m

100
, θ =

2πn

200
.

¥
Summing up, we conclude as follows. Consider the following problem:

(P1)
′ Given a circle with the radius 1. And choose a chord. Find the probability that the

chord chosen is longer than
√

3 (i.e., the side of an inscribed equilateral triangle).

Then, we see:

(A1) If we know that the chord was chosen by the rule (R1) in Remark 8.27, we can

conclude that the probability that the chord chosen be longer than
√

3 is 1/3.

(A2) If we know that the chord was chosen by the rule (R2) in Remark 8.27, we can

conclude that the probability that the chord chosen be longer than
√

3 is 1/2.

(A3) If we know that the chord was chosen by the physical experiment (conducted in

[49]), we may conclude that the probability that the chord chosen be longer than
√

3 is about 1/2 (cf. [49]).

(A4) etc.
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8.7. APPENDIX (BERTRAND’S PARADOX) 223

We consider that something like a (physical) coin-tossing (such as Brownian motion,

radioactive atom, etc.) is hidden behind the physical experiment (in (A3)). Thus, we

again stress that

• A “coin-tossing” is always hidden behind a statistical state. Or there is no statistical

state without a “coin-tossing” (or, “dice-throwing”, “urn problem”).

Also, it should be noted that we are in theoretical informatics and not in theoretical

physics.
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Chapter 9

Statistical measurements in
W ∗-algebraic formulation

The Statistical MT (= SMT) has two kinds of formulations. One is SMTC∗
(i.e., the C∗−algebraic

formulation of SMT), which was introduced in the previous chapter, that is,

SMTC∗
= statistical measurement

[Proclaim 1 (8.10)]
+ the relation among systems

[Axiom 2 (3.26)]
in C∗-algebra. (9.1)

(=(8.2))

In this chapter we introduce another formulation of SMT (i.e., SMTW∗
), that is,

SMTW∗
= statistical measurement

[ProclaimW∗
1 (9.9)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

in W ∗-algebra, (9.2)

which is called the W ∗−algebraic formulation of SMT. Of course, “SMTC∗
” and “SMTW∗

” are
essentially the same. The difference between the two is that of the mathematical tools (i.e.,
C∗-algebra and W ∗-algebra). Thus, “SMTW∗

” should be understood by an analogy of “SMTC∗
”.

Although the C∗-algebraic formulation is most fundamental, the W ∗-algebraic formulation is rather
handy from the mathematical point of view.

9.1 Statistical measurements (W ∗-algebraic formula-

tion)

The Statistical MT (= SMT) has two kinds of formulations. One is the C∗−algebraic

formulation of SMT (= SMTC∗
), which was introduced in the previous chapter. In order

to develop “Statistical MT”, in this chapter we introduce the W ∗-algebraic formulation of

Statistical MT (= SMTW ∗
).1 Here, it should be noted that “SMTC∗

” and “SMTW ∗
” are

1Of course, the (pure) measurement theory (= PMT) has also two kinds of formulations, i.e., PMTC∗

and PMTW∗
. However, the commutative PMTW∗

has a demerit such that a pure state can not be
represented in the commutative PMTW∗

in general. (cf. the statement (9.3)). Thus, we usually focus
on SMTW∗

and not PMTW∗
. However, it should be noted that as far as quantum mechanics, PMTW∗

is
superior to PMTC∗

. Cf. §9.3.

225
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226CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

essentially the same. The difference between the two is that of the mathematical tools

(i.e., C∗-algebra and W ∗-algebra).

The C∗-algebraic formulation stated in the previous chapter is, of course, most fun-

damental. However, from the mathematical (or technical) point of view, the topology of

a C∗-algebra A is somewhat too strong. Note that any C∗-algebra A can be imbedded

into B(V ), the algebra composed of all bounded linear operators on a Hilbert space V

(cf. Theorem 2.4 (the GNS-construction in [50, 76, 82])). Thus, using the imbedding:

A ⊆ B(V ), we may start from the weak∗-closure A (of A) in B(V ). This A is called a W ∗-

algebra. This method (i.e., to formulate measurement theory in terms of W ∗-algebras) is

called the W ∗-algebraic formulation. Though this method is somewhat methodological,

it is rather handy from the mathematical point of view.
(
For example, this will be seen

in Theorem 10.1 in Chapter 10.
)

Let N be a W ∗-algebra, that is,

[♯1] N is a weak∗ closed subalgebra of a certain B(V ).

It is well known (see, for example, [76]) that this is equivalent to

[♯2] N is a C∗-algebra with the pre-dual Banach space N∗ (i.e., N = (N∗)
∗).

Also, it is well known that the uniqueness of the pre-dual Banach space N∗ is assured.

However, we may sometimes call the pair (N,N∗) a W ∗-algebra.

An element F in N is called self-adjoint if it holds that F = F ∗. A self-adjoint element

F in N is called positive (and denoted by F ≥ 0) if there exists an element F0 in N such

that F = F ∗
0 F0 where F ∗

0 is the adjoint element of F0. Also, a positive element F is called

a projection if F = F 2 holds.

Now we can define the normal state-class Sn(N∗) such as

Sn(N∗) ≡ {ρn ∈ N∗ : ∥ρn∥N∗ = 1 and ρn ≥ 0 (i.e., ρn(T ∗T ) ≥ 0 for all T ∈ N)}.

The element ρn (in Sn(N∗)) is called a normal state (or, density state). The linear

functional ρn(T ) is sometimes denoted by
〈
ρn, T

〉
, or precisely,

N∗

〈
ρn, T

〉
N
. Also, note

that

• a W ∗-algebra N has a lot of projections,

that is, the set of all finite linear combinations of projections is dense in N in the weak∗

topology σ(N; N∗). Also, note that
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9.1. STATISTICAL MEASUREMENTS (W ∗-ALGEBRAIC FORMULATION) 227

• N has always the identity IN.

Example 9.1. [(i): Commutative W ∗-algebras ; L∞(Ω, µ))]. Let (Ω, BΩ, µ) be a measure

space. For any 1 ≤ p ≤ ∞, define Lp(Ω, µ)
(

≡ Lp(Ω, BΩ, µ)
)

= {f : f is a complex

valued measurable function such that ∥f∥Lp ≡ [
∫

Ω
|f(ω)|pµ(dω)]1/p < ∞ }.

(
Here, of

course, ∥f∥L∞ = ess.sup {|f(ω)| : ω ∈ Ω}.
)

Then, the N ≡ L∞(Ω, µ) is a commutative

W ∗-algebra with the pre-dual Banach space N∗ = L1(Ω, µ). We see, of course, that

Sn(N∗) = L1
+1(Ω, µ) ≡ {ρn ∈ L1(Ω, µ) : ρn ≥ 0,

∫
Ω

ρn(ω)µ(dω) = 1, i.e., ρn is a density

function on Ω }. Also, it is well known that any commutative W ∗-algebra N is represented

by some L∞(Ω, µ). It should be noted that

• a “pure state” can not be generally represented in terms of the commutative

W ∗-algebra L∞(Ω, µ), (9.3)

since we see2 that δω0 (i.e., a point measure at ω0 ( ∈ Ω)) does not necessarily belong to

L1(Ω, µ). Summing up (and recalling Example 2.2), we see,

commutative C∗-algebra commutative W ∗-algebra

concrete form C(Ω) L∞(Ω; µ)
dual space M(Ω) ( = C(Ω)∗) not important
pre-dual space nothing L1(Ω; µ) ( = L∞(Ω; µ)∗)
pure state δω0 ∈ M

p
+1(Ω) ≈ Ω (no representation in general)

mixed (normal) state ν ∈ Mm
+1(Ω) ρ ∈ L1

+1(Ω, µ)
characteristics3 topological approach measure theoretical approach

[(ii): The case that Ω is countable or finite]. Of course, the above table is in the case

that Ω is general. In the case that Ω ≡ {ω1, ω2, ..., ωn} is finite, we can easily see that

“commutative C∗-algebra” = “commutative W ∗-algebra”, that is, we see the following

identifications:

C({ω1, ω2, ..., ωn}) ≈ Cn(cf . the formula (2.15)) ≈ L∞({ω1, ω2, ..., ωn}, µ) (9.4)

where µ is a measure such that µ({ωk}) > 0 (∀k = 1, 2, ..., n). Next consider the case that

Ω ≡ {ω1, ω2, ..., ωk, ...} is countable infinite. The commutative W ∗-algebra N is defined by

2In this sense the W ∗-algebraic formulation is fit to SMT rather than PMT. However note our spirit
(8.12) : “There is no SMT without PMT”. Thus we think that PMT (i.e., the concept of “pure state”)
is not only hidden in the C∗-algebraic formulation of SMT but also in the W ∗-algebraic formulation of
SMT.

3The Ω in C(Ω) is a topological space. On the other hand, the Ω in L∞(Ω; µ) is a measure space. Cf.
Remark 9.14 later.
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228CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

L∞(Ω, µ), where µ({ωk}) > 0 (∀k = 1, 2, ...). In this case, a pure state ρωk
(k = 1, 2, ...),

is defined by ρωk
(ω) = 1

µ({ωk})
(if ω = ωk), = 0 (if ω ̸= ωk).

¥

Example 9.2. [Non-commutative W ∗-algebras; B(V )]. When N = B(V ), we see

that N∗ = Tr(V ) (cf. Example 2.3) and Sn(N∗) = Trm
+1(V ) ≡ {ρn ∈ Tr(V ) : ρn ≥

0, ∥ρn∥
Tr(V )

= 1}. Also, note that
Tr(V )

〈
ρn, T

〉
B(V )

= tr[ρn·T ]V . Here, tr[A]V ≡
∑

λ∈Λ⟨eλ, Aeλ⟩V
where {eλ|λ ∈ Λ} is a complete orthonormal basis in V . Also, it is well known that the

value tr[A]V is independent of the choice of a complete orthonormal basis {eλ|λ ∈ Λ} in

V . Further, any ρn ( ∈ Trm
+1(V )) is represented by ρn =

∑
λ∈λ αλ|eλ⟩⟨eλ| (in the trace

norm ∥ · ∥Tr(V )) for some complete orthonormal basis {eλ|λ ∈ Λ} in V and some sequence

{aλ}λ∈Λ of non-negative numbers such that
∑

λ∈Λ aλ = 1. Also it should be noted that

any |v⟩⟨v|, (∥v∥ = 1), is just a pure state4. Summing up (and recalling Example 2.3), we

see,

non-commutative C∗-algebra non-commutative W ∗-algebra

concrete form C(V ) B(V )
dual space Tr(V ) ( = C(V )∗) not important
pre-dual space nothing Tr(V ) ( = B(V )∗)
pure state |v⟩⟨v| ∈ Trp

+1(V ) |v⟩⟨v| ∈ Trp
+1(V )

mixed (normal) state mixed state: ρm ∈ Trm
+1(V ) normal state: ρn ∈ Trm

+1(V )

(9.5)

¥
The following definition is the W ∗-algebraic form of Definition 2.7 (C∗-observables).

Definition 9.3. [W ∗-observables]. Let N be a W ∗-algebra. A W ∗-observable ( or in

short, observable, fuzzy observable) O ≡ (X, F, F ) in N is defined such that it satisfies

that

(i) [ σ-field ]. (X, F) is a measurable space, that is, F ( ⊆ 2X) is a σ-field on X, i.e., it

satisfies that

∅ ∈ F, Ξk ∈ F (k = 1, 2, ...) =⇒ ∪∞
k=1Ξk ∈ F, Ξ ∈ F =⇒ Ξc ∈ F,

4This fact (i.e., a pure state can be represented in terms of W ∗-algebra B(V )) is remarkable. Thus,
The W ∗-algebra B(V ) has a power to describe quantum PMT as well as quantum SMT. Cf. §9.4.
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9.1. STATISTICAL MEASUREMENTS (W ∗-ALGEBRAIC FORMULATION) 229

(ii) for every Ξ ∈ F, F (Ξ) is a positive element in N (i.e., 0 ≤ F (Ξ) ∈ N) such that

F (∅) = 0 and F (X) = IN, where 0 is the 0-element and IN is the identity element

in N, and,

(iii) [ countably additivity ]. For any countable decomposition {Ξ1, Ξ2, ..., Ξj, ...} of Ξ,(
i.e., Ξ, Ξj ∈ F,∪∞

j=1Ξj = Ξ, Ξj ∩ Ξi = ∅( if j ̸= i)
)
, it holds that

F (Ξ) =
∞∑

j=1

F (Ξj)

where the series is convergent in the sense of the weak∗-topology σ(N; N∗) in N.

If F (Ξ) is a projection for every Ξ ( ∈ F), a W ∗-observable (X, F, F ) in N is called a crisp

W ∗-observable in N. Also, a crisp observable O ≡ (R,BR, F ) (or, (Rn,BRn , F )) in N is

called a quantity (or, Rn-valued quantity) in W ∗-algebra N.

¥

Now we show several W ∗-observables (in Example 9.4 ∼ 9.7).

Example 9.4. [Crisp W ∗-observables in L∞(Ω, µ)]. (i). As a typical crisp W ∗-observable

in L∞(Ω, µ), the exact observable OEXA ≡ (Ω,BΩ, χ
(·)) is frequently used where χ

Ξ
is the

characteristic function of Ξ ( ∈ BΩ)
(
i.e., χ

Ξ
(ω) = 1(ω ∈ Ξ), = 0 (otherwise)

)
. This

observable is finest in L∞(Ω, µ), i.e., it includes all projections.

(ii). Consider the commutative W ∗-algebra L∞(Ω, µ). Let a : Ω → R be a measurable

function. Then, we can define the crisp W ∗-observable Oa = (R, BR, F ) in L∞(Ω, µ)

such that [F (Ξ)](ω) = χa−1(Ξ)(ω) (∀Ξ ∈ BR,∀ω ∈ Ω). Note that we can identify the

real-valued measurable function a( · ) with the Oa. That is, we see

a : Ω → R

(real valued measurable function on Ω)

←→ (R, BR, F )

(crisp observable)

in L∞(Ω, µ)
.

That is because it holds that [F (( −∞, λ))](ω) = 0 (if λ < a(ω)), = 1 (if λ ≥ a(ω)), and

therefore, the a(ω) is determined by the equality a(ω) =
∫
R

λδa(ω)(dλ) =
∫
R

λ[F (dλ)](ω)

(a.e. µ). A real-valued measurable function on Ω is called a (classical ) quantity in

L∞(Ω, µ) (though it is not always a bounded function).

¥

Example 9.5. [Gaussian W ∗-observable]. Define the W ∗-observable O ≡ (R, BR, F(·))

in N ≡ L∞(R, dω) such that:
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F σ
Ξ (ω) =

1√
2πσ2

∫
Ξ

e−
(u−ω)2

2σ2 du (∀ω ∈ R, ∀Ξ ∈ BR). (σ2: variance).

This is, of course, the W ∗-algebraic form of the Gaussian C∗-observable O ≡ (R,Bbd
R , F(·))

(cf. Example 2.17). Note that the BR in O is a σ-field, and the Bbd
R in O is a σ-ring.

¥
Remark 9.6. [The vagueness of a crisp observable]. Let ν be a probability measure

on an index set Θ. For each θ ( ∈ Θ), consider a crisp observable Oθ ≡ (X, F, Eθ) in

W ∗-algebra N. Define the observable O ≡ (X, F, F ) in W ∗-algebra N such that:

F (Ξ) =

∫
Θ

Eθ(Ξ)ν(dθ) (∀Ξ ∈ F)

which is not crisp but fuzzy in general. Thus we think that

(F) “fuzzy observable“⇐⇒ “To understand a dearth of information concerning a crisp

observable by a fuzzy observable”.

This is one of the aspects of “fuzzy observable”. When we want to stress this statistical

aspect, the “observable” is often called a “fuzzy observable” (or, “random observable”).

This will be again discussed in §11.4.

¥
Example 9.7. [(i): Crisp W ∗-observables in quantum B(V )]. Here, consider the quan-

tum version of the (ii) in Example 9.4. Let A be a self-adjoint operator (not necessarily

bounded) on a Hilbert space V . Recall the spectral representation: A =
∫
R

λEA(dλ).

Here, the spectral measure OA ≡ (R,BR, EA) is of course the crisp W ∗-observable in

B(V ). Conversely, any crisp W ∗-observable (R,BR, F ) in B(V ) determines a unique

self-adjoint operator AF on V such that AF =
∫
R

λF (dλ). Therefore, we have the identi-

fication:

A

(self-adjoint operator on V )

←→OA = (R,BR, F )

(crisp observable)

in B(V )
(
i.e., A =

∫
R

λF (dλ)
)

.

A self-adjoint operator A on a Hilbert space V is called a (unbounded ) quantity in B(V )

(though A is not always a bounded linear operator).

[(ii): Position quantity, momentum quantity]. Put V ≡ L2(R; dq)), and define the

(unbounded) self-adjoint operator Q [resp. P ], which is called the position quantity [resp.

momentum quantity ], such that:

(Qψ)(q) = q · ψ(q),
[

resp. (Pψ)(q) = −i
~dψ(q)

dq

]
.
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9.1. STATISTICAL MEASUREMENTS (W ∗-ALGEBRAIC FORMULATION) 231

By the following spectral representations,

Q =

∫
R

λEQ(dλ) and P =

∫
R

λEP (dλ),

we see the following identifications:

Q

(self-adjoint operator on V )

←→OQ = (R,BR, EQ)

(crisp observable)

in B(V )

and

P

(self-adjoint operator on V )

←→OP = (R,BR, EP )

(crisp observable)

in B(V )
.

Here note that

[EQ(Ξ)ψ](q) = χΞ(q) · ψ(q) (∀ψ ∈ L2(R),∀Ξ ∈ BR, q ∈ R)

and

EP (Ξ)ψ = F∗(χΞ · (Fψ)) (∀ψ ∈ L2(R), ∀Ξ ∈ BR, q ∈ R),

where the Fourier transform F : L2(R, dx) → L2(R, dy) is defined by

(Fψ)(y) =

√
~
2π

∫
R

ψ(x)e−i~xydx.

Note that both the position observable and momentum observable, which are most im-

portant in quantum mechanics, can not be defined in the C∗-algebraic formulation.

[(iii): Glauber-Sudarshan representation]. Consider ψ0 ( ∈ V ≡ L2(R; dq)) such that

∥ψ0∥L2(R) = 1 and

⟨ψ0, Pψ0⟩V = 0, ⟨ψ0, Qψ0⟩V = 0.

If we define ϕx,y(q) = eixyψ0(q − x), then an elementary computation shows that

⟨Pϕx,y, ϕx,y⟩L2(R) = y, ⟨Qϕx,y, ϕx,y⟩L2(R) = x. (9.6)

Here we can define the W ∗-observable (R2, BR2 , G) in B(L2(R; dq)) such that:

G(Ξ) =

∫∫
Ξ

|ϕx,y⟩⟨ϕx,y|dxdy (∀Ξ ∈ BR2).

This observable is essential in semi-classical mechanics (cf. [34]).

¥
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The following theorem is the W ∗-algebraic form of Theorem 2.13. Since W ∗-algebra

N has a lot of projections, it is much more useful than Theorem 2.13.

Theorem 9.8. [The W ∗-algebraic form of Theorem 2.13, cf. [42]]. Let N be a W ∗-

algebra. Let O1 ≡ (X1, F1, F1) and O2 ≡ (X2,F2, F2) be W ∗-observables in N such that

at least one of them is crisp.
(
So, without loss of generality, we assume that O2 is crisp

)
.

Then, the following statements are equivalent:

(i) There exists a quasi-product observable O12 ≡ (X1 × X2, F1×F2, F1

qp

××××××××× F2) with

marginal observables O1 and O2.

(ii) O1 and O2 commute, that is, F1(Ξ1)F2(Ξ2) = F2(Ξ2)F1(Ξ1) (∀Ξ1 ∈ F1,∀Ξ2 ∈ F2).

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of O12 is guaranteed.

(So, we can write that O12 = (X1 × X2, F1×F2, F1×F2) = O1×O2.)

Proof. The proof is essentially the same as that of Theorem 2.13.

The purpose of this chapter is to propose the W ∗-algebraic formulation of SMT, that

is,

SMTW ∗
= statistical measurement

[ProclaimW∗
1 (9.9)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

in W ∗-algebra .

(9.7)
(=(9.2))

In order to do it, we must recall the C∗-algebraic formulation of SMT, that is,

SMTC∗
= statistical measurement

[Proclaim 1 (8.10)]
+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra .

(9.8)
(=(9.1))

As mentioned before, we want to understand SMTW ∗
by an analogy of SMTC∗

. Here, it

should be recalled that

• [Proclaim 1 (8.10), (The probabilistic interpretation of mixed states)]. Consider a

statistical measurement MA

(
O ≡ (X, F, F ), S(ρm)

)
formulated in a C∗-algebra A.

Then, the probability that x ( ∈ X), the measured value obtained by the statistical

measurement MA(O, S(ρm) ), belongs to a set Ξ ( ∈ F) is given by

ρm(F (Ξ))
(
≡ A∗

〈
ρm, F (Ξ)

〉
A

)
.
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9.1. STATISTICAL MEASUREMENTS (W ∗-ALGEBRAIC FORMULATION) 233

By an analogy of Proclaim 1, we can propose Proclaim
W∗

1 as follows: Cf [44].

PROCLAIM
W∗

1. [Statistical measurements in the W ∗-algebraic formu-
lation]. Consider a statistical measurement MN(O ≡ (X, F, F ), S(ρn))
formulated in a W ∗-algebra N. The probability that x ( ∈ X),
the measured value obtained by the statistical measurement MN(O ≡
(X, F, F ), S(ρn)), belongs to Ξ ( ∈ F) is given by

ρn(F (Ξ))
(
≡ N∗

〈
ρn, F (Ξ)

〉
N

)
. (9.9)

This will be easily read by the above [Proclaim 1] and the following [TABLE (Statistical

measurement theory)].

Statistical measurement theory (9.10)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[C∗-algebraic formulation] ←→ [W ∗-algebraic formulation]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Proclaim 1 (8.10) ←→ ProclaimW ∗

1 (9.9)

Sm(A∗) ∋ ρm ←→ ρn ∈ Sn(N∗)

C∗-observable O ≡ (X, F, F ) ←→ W ∗-observable O ≡ (X, F, F )

MA(O ≡ (X, F, F ), S(ρm)) ←→ MN(O ≡ (X, F, F ), S(ρn))

Remark 9.9. [The W ∗-algebraic formulation of PMT]. Though the commutative PMTW ∗

has a demerit such that a pure state can not be represented in the commutative PMTW ∗
in

general (cf. the statement (9.3)), a pure state can be represented in the non-commutative

PMTW ∗
(i.e., in B(V ), cf. Example 9.2). Thus, it is worthwhile mentioning the following

AxiomW ∗
1 (9.11). If N = B(V ) or N = L∞(Ω, µ) (where Ω is finite or countable infinite),

the concept “pure state” is valid (cf. (9.4) and (9.5)). Thus, in this case, we can propose

“AxiomW ∗
1 (9.11)” (i.e., the W ∗-algebraic formulation of Axiom 1) as follows:
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234CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

AXIOMW ∗
1. [The W ∗-algebraic formulation of Axiom 1]. Consider a measurement

MN

(
O ≡ (X, F, F ), S[ρp]

)
formulated in a W ∗-algebra N, where ρp is a pure state. Assume

that the measured value x ( ∈ X) is obtained by the measurement MN

(
O, S[ρp]

)
. Then,

the probability that the x ( ∈ X) belongs to a set Ξ ( ∈ F) is given by ρp(F (Ξ))
(
≡

N∗

〈
ρp, F (Ξ)

〉
N

)
. (9.11)

.

¥

In the following example, we see that the C∗-algebraic formulation and the W ∗-

algebraic formulation are essentially the same.

Example 9.10. [(i): The review of Example 8.1] . There are two urns ω1 and ω2.

The urn ω1 [resp. ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black

balls]. We regard Ω
(
≡ {ω1, ω2}

)
as the state space. And consider the observable

O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

ω1 ω2

Here consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., ω1 or ω2) is chosen by an unfair tossed-coin (Cp,1−p), i.e.,

Head (100p%) → ω1, Tail (100(1 − p)%) → ω2 (0 ≤ p ≤ 1).

The chosen urn is denoted by [∗](∈ {ω1, ω2}). Note, for completeness, that we do

not know whether [∗] is ω1 or ω2. Here define the mixed state ν0(∈ Mm
+1(Ω)) such

that ν0({ω1}) = p, ν0({ω2}) = 1 − p, which is considered to be “the distribution of

[∗]”.

(P2) Take one ball, at random, out of the urn chosen by the procedure (P1).
(
That is,

we take the measurement MC(Ω)(O, S[∗]).
)
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9.1. STATISTICAL MEASUREMENTS (W ∗-ALGEBRAIC FORMULATION) 235

[(ii): Continued from the above (i): C∗-algebraic formulation]. As seen in Example 8.1,

• “(P1) + (P2)” is notated by MC(Ω)(O ≡ (X, 2X , F ), S(ν0)).

Of course, we see

• the probability that the measured value x ( ∈ {w, b}) is obtained by the measure-

ment MC(Ω)(O, S[∗](ν0)), is given by

C(Ω)∗

〈
ν0, F ({x})

〉
C(Ω)

(
≡

∫
Ω

C(Ω)∗

〈
δω, F ({x})

〉
C(Ω)

ν0(dω)
)

=

{
0.8p + 0.4(1 − p) ( if x = w),
0.2p + 0.6(1 − p)) ( if x = b).

(9.12)

[(iii): Continued from the above (i): W ∗-algebraic formulation]. Define the measure µ on

Ω, for example, such that

µ({ω1}) = µ({ω2}) = 1.

Thus we have the commutative W ∗-algebra L∞(Ω, µ). And consider the observable O
(
≡

(X ≡ {w, b}, 2{w,b}, F )
)

in L∞(Ω, µ) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Also define the normal state ρn ( ∈ L1
+1(Ω, µ)) such that5

ρn(ω1) = p, ρn(ω2) = 1 − p.

Then, we have the W ∗-measurement ML∞(Ω,µ)(O, S(ρn)) in L∞(Ω, µ). Of course, we see,

• the probability that the measured value x ( ∈ {w, b}) is obtained by the measure-

ment ML∞(Ω,µ)(O, S(ρn)), is given by

L1(Ω,µ)

〈
ρn, F ({x})

〉
L∞(Ω,µ)

(
≡

∫
Ω

[F ({x})](ω)ρn(ω)µ(dω)
)

=

{
0.8p + 0.4(1 − p) ( if x = w),
0.2p + 0.6(1 − p)) ( if x = b).

(9.13)

5Note that µ is arbitrary (cf. the formula (9.4)). If µ({ω1}) = 1/3 and µ({ω2}) = 2, it suffices to
define that ρn(ω1) = 3p and ρn(ω1) = (1 − p)/2.
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236CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

Thus we see that MC(Ω)(O, S[∗](ν0)) and ML∞(Ω,µ)(O, S(ρn)) are essentially the same (cf.

(9.12) and (9.13)).

Also, we see:

The illustration of ML∞(Ω,µ)(O, S(ρn))

p
-

1-p
�[ ∗]

Pick up a ball from the urn behind the curtain
ω1 ω2

¥

9.2 The relation among systems (ProclaimW ∗
2 in SMTW ∗

)

We mentioned “statistical measurement” [ProclaimW ∗
1 (9.9)] in the previous sec-

tion. Thus in this section, we devote ourselves to the “relation among systems (i.e.,

ProclaimW ∗
2)” in the W ∗-algebraic formulation of SMT 6. That is, we want to propose

SMTW ∗
= statistical measurement

[ProclaimW∗
1 (9.9)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

in W ∗-algebra N .

(9.14)
(=(9.2))

Let N1 and N2 with weak∗-topologies σ(N1, (N1)∗) and σ(N2, (N2)∗) respectively. A

continuous linear operator Ψ1,2 : N2 → N1 is called a Markov operator, if it satisfies that

(i) Ψ1,2(F2) ≥ 0 for any positive element F2 in N2,

(ii) Ψ1,2(I2) = I1, where Ik is the identity in Nk (k = 1, 2).

Here note that, for any observable (X, F, F2) in N2, the (X, F, Ψ1,2F2) is an observable

in N1, which is denoted by Ψ12O2. For example, it is easy to see that, for any countable

decomposition {Ξj}∞j=1 of Ξ, (Ξj, Ξ ∈ F),

6If N = B(V ) or N = L∞(Ω, µ) (where Ω is finite), the concept “pure state” is valid (cf. (9.4) and
(9.5)). Thus, in the case, we can propose “PMTW∗

” (i.e., the W ∗-algebraic formulation of PMT) as
follows:

PMTW∗
= statistical measurement

[AxiomW∗
1 (9.11)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

in W ∗-algebra N .
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[Ψ1,2F2](Ξ) = (w∗)- lim
n→∞

Ψ1,2(F2( ∪n
j=1 Ξj)) = (w∗)- lim

n→∞
Ψ1,2(

n∑
j=1

F2(Ξj))

=(w∗)- lim
n→∞

n∑
j=1

[Ψ1,2(F2)](Ξj).

Also, a Markov operator Ψ1,2 : N2 → N1 is called a homomorphism (or precisely, W ∗-

homomorphism), if it satisfies that

(i) Ψ1,2(F2)Ψ1,2(G2) = Ψ1,2(F2G2) for any F2 and G2 in N2,

(ii) (Ψ1,2(F2))
∗ = Ψ1,2(F

∗
2 ) for any F2 in N2.

Then the following mathematical result is well known.

(a) (Ψ1,2)∗(S
n((N1)∗)) ⊆ Sn((N2)∗).

Let (Ψ1,2)∗ : (N1)∗ → (N2)∗ be the pre-dual operator7 of a Markov operator Ψ1,2 : N2 →
N1, that is, it holds that

(N1)∗

〈
ρn

1 , Ψ1.2F2

〉
N1

=
(N2)∗

〈
(Ψ1.2)∗ρ

n
1 , F2

〉
N2

(∀ρn
1 ∈ (N1)∗,∀F2 ∈ N2). (9.15)

Suppose that N1 and N2 are commutative W ∗-algebras, i.e., N1 = L∞(Ω1, µ1) and N2 =

L∞(Ω2, µ2). Then, under the identification that Sn(N∗
1) = L1

+1(Ω1, µ1) and Sn((N2)∗) =

L1
+1(Ω2, µ2) (cf. Example 9.2), the above (a) implies that the pre-dual operator (Ψ1,2)∗

of a Markov operator Ψ12 can be identified with a transition probability rule M(ω1, B2),

(ω1 ∈ Ω1, B2 ∈ BΩ2), such that:∫
B2

[(Φ12)∗(ρ
n
1 )](ω2)µ2(dω2) =

∫
Ω1

M(ω1, B2)ρ
n
1 (ω1)µ1(dω1) (∀ρn

1 ∈ L1
+1(Ω1, µ1), ∀B2 ∈ BΩ2).

Also, it is well known that, a Markov operator Ψ1,2 : L∞(Ω2, µ2) → L∞(Ω1, µ1) is homo-

morphic, if and only if there exists a measurable map ψ1,2 from Ω1 into Ω2 such that:

(Ψ1,2f2)(ω1) = f2(ψ1,2(ω1)) (almost all µ1) (9.16)

for all f2 ∈ L∞(Ω2, µ2).

7The symbol ∗ is used in the three following ways (1) ∼ (v) in this book. (i) involution operator (e.g.,
F ∗), (ii) dual operator (e.g., Ψ∗), (iii) dual space (e.g., A∗), (iv) pre-dual operator (e.g., Ψ∗), (v) pre-dual
space (e.g., N∗).
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Let (T,≤) be a tree-like partial ordered set, i.e., a partial ordered set such that “t1 ≤ t3

and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. Put T 2
≤ = {(t1, t2) ∈ T 2 : t1 ≤ t2}. An element

t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T ) holds. Note that the sub-tree Tt0 ≡ {t ∈ T | t ≥ t0}
has the root t0. Thus we always assume that the tree-like ordered set (T,≤) has a root.

We assume that T is not always finite.
(
In the next Chapter 10, T is always assumed to

be infinite.
)

Definition 9.11. [General systems]. The pair S(ρn
t0
) ≡ [S(ρn

t0
), {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2

≤
]

is called a general system with an initial state S(ρn
t0
) if it satisfies the following conditions

(i)∼(iii).

(i) With each t (∈ T ), a W ∗-algebra Nt is associated.

(ii) Let t0 (∈ T ) be the root of T . And, assume that a system S has the normal state

ρn
t0

(∈ Sn((Nt0)∗)) at t0, that is, the initial state is equal to ρn
t0
.

(iii) For every (t1, t2) ∈ T 2
≤, Markov operator Φt1,t2 : Nt2 → Nt1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 holds for all (t1, t2), (t2, t3) ∈ T 2
≤.

The family {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

is also called a “Markov relation among systems”.

Let an observable Ot ≡ (Xt, 2
Xt , Ft) in a W ∗-algebra Nt be given for each t ∈ T . The

pair [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

] is called a “sequential observable”, which is

denoted by [OT ], i.e., [OT ] ≡ [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

].

¥
Before we explain ProclaimW ∗

2, we prepare some notations. For simplicity, assume

that T is finite, or a finite subtree of a whole tree. Let T ( = {0, 1, ..., N}) be a tree

with the root 0. Define the parent map π : T \ {0} → T such that π(t) = max{s ∈
T : s < t}. It is clear that the tree (T ≡ {0, 1, ..., N},≤ ) can be identified with the

pair (T ≡ {0, 1, ..., N}, π : T \ {0} → T ). Also, note that, for any t ∈ T \ {0}, there

uniquely exists a natural number h(t) (called the height of t ) such that πh(t)(t) = 0.

Here, π2(t) = π(π(t)), π3(t) = π(π2(t)), etc. Thus, the general system S(ρn
0 ) ≡ [S(ρn

0 ),

{Ψt1,t2 : Nt2 → Nt1}(t1,t2)∈{0,1,...,N}2

≤
] is sometimes represented by [S(ρn

0 ), Nt
Ψπ(t),t

→ Nπ(t) (

t ∈ {0, 1, ..., N} \ {0})]. Also, we define the Φ0,τ : Nτ → N0 such that Φ0,τ = Ψ0,τ , that is,

Φ0,τ = Ψ0,πh(τ)−1(τ)Ψπh(τ)−1(τ)),πh(τ)−2(τ) · · ·Ψπ2(τ),π(τ)Ψπ(τ),τ . (9.17)
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Let Ot ≡ (Xt, Ft, Ft) be an observable in Nt (∀t ∈ T ). The “measurement” of {Ot : t ∈ T}
for the S(ρn

t0
) is symbolically described by M({Ot}t∈T , S(ρn

t0
)). The Markov relation

{Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2
≤

is also denoted by {Nt

Φπ(t),t→ Nπ(t)}t∈T\{0}

Example 9.12. [A simple general system. Compared to Examples 3.4 and 8.12]. Suppose

that a tree (T ≡ {0, 1, ..., 6, 7}, π) has an ordered structure such that π(1) = π(6) = π(7) =

0, π(2) = π(5) = 1, π(3) = π(4) = 2.
(
See the figure (9.18).

)
Consider a general system

S(ρn
0 ) ≡ [S(ρn

0 ), {Nt

Φπ(t),t→ Nπ(t)}t∈T\{0}] with the initial system S(ρn
0 ).

N0

N1

N2

N3

N4

N5N6

N7

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

(9.18)

Also, for each t ∈ {0, 1, ..., 6, 7}, consider an observable Ot ≡ (Xt, 2
Xt , Ft) in a W ∗-algebra

Nt. Thus, we have a sequential observable [{Ot}t∈T , {Φt,π(t) : Nt → Nπ(t)}t∈T\{0} ]. Now

we want to consider the following “measurement”,

(♯) for a system S((ρn
0 )) where ρn

0 ∈ Sn((N0)∗), take a measurement of “a sequential

observable [OT ] ≡ [{Ot}t∈T , {Nt

Φπ(t),t→ Nπ(t)}t∈T\{0}]”, i.e., take a measurement of

an observable O0 at 0( ∈ T ), and next, take a measurement of an observable O1 at

1( ∈ T ), · · · · · · , and finally take a measurement of an observable O7 at 7( ∈ T ),

which is symbolized by M({Ot}t∈T , S(ρn
0 )). Note that the M({Ot}t∈T , S(ρn

0 )) is merely a

symbol since only one measurement is permitted (cf. §2.5 Remark (II)). In what follows

let us describe the above (♯) (= M({Ot}t∈T , S(ρn
0 ))) precisely. Put

Õt = Ot and thus F̃t = Ft (t = 3, 4, 5, 6, 7).

First we construct the quasi-product observable Õ2 in N2 such as

Õ2 = (X2 × X3 × X4, 2
X2×X3×X4 , F̃2) where F̃2 = F2

qp

××××××××× (
qp

×××××××××t=3,4 Φ2,tF̃t), (9.19)
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240CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

if it exists. Iteratively, we construct the following:

N0
Φ0,1←−−− N1

Φ1,2←−−− N2

F0

qp

××××××××× Φ0,6F̃6

qp

××××××××× Φ0,7F̃7 F1

qp

××××××××× Φ1,5F̃5y y
F̃0

(F0

qp
×××××××××Φ0,6

eF6

qp
×××××××××Φ0,7

eF7

qp
×××××××××Φ0,1

eF1)

Φ0,1←−−− F̃1

(F1

qp
×××××××××Φ1,5

eF5

qp
×××××××××Φ1,2

eF2)

Φ1,2←−−− F̃2

(F2

qp
×××××××××Φ2,3

eF3

qp
×××××××××Φ2,4

eF4)

.

(9.20)

That is, we get the quasi-product observable Õ1 ≡ (
∏5

t=1 Xt, 2
Q5

t=1 Xt , F̃1) of O1, Φ1,2Õ2

and Φ1,5Õ5, and finally, the quasi-product observable Õ0 ≡ (
∏7

t=0 Xt, 2
Q7

t=0 Xt , F̃0) of

O0, Φ0,1Õ1, Φ0,6Õ6 and Φ0,7Õ7, if it exists. Here, Õ0 is called the realization (or, the

Heisenberg picture representation) of a sequential observable [OT ] ≡ [{Ot}t∈T , {Nt

Φπ(t),t→
Nπ(t)}t∈T\{0}]. Then, we have the measurement

MN0(Õ0 ≡ (
∏
t∈T

Xt, 2
Q

t∈T Xt , F̃0), S(ρn
0 )), (9.21)

which is called the realization (or, the Heisenberg picture representation) of the symbol

M({Ot}t∈T ,S(ρn
0 )).

¥
Examining Example 9.12, we have the following arguments. Let (T ≡ {0, 1, ..., N}, π :

T \{0} → T ) be a tree with root 0 and let S(ρn
0 ) ≡ [S(ρn

0 ), Nt

Φπ(t),t→ Nπ(t) (t ∈ T \{0})] be

a general system with the initial system S(ρn
0 ). And, let an observable Ot ≡ (Xt, Ft, Ft)

in a W ∗-algebra Nt be given for each t ∈ T . For each s ( ∈ T ), define the observable

Õs ≡ (
∏

t∈Ts
Xt,

∏
t∈Ts

Ft, F̃s) in Ns such that:

Õs =

{
Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s}) Φπ(t),tÕt) (if s ∈ π(T ))
(9.22)

if possible. Then, if an observable Õ0 (i.e., the Heisenberg picture representation of the

sequential observable [OT ] ≡ [{Ot}t∈T , {Φt,π(t) : Nt → Nπ(t)}t∈T\{0} ]) in N0 exists (such

as in Example 9.12), we have the measurement

MN0(Õ0 ≡ (
∏
t∈T

Xt,
∏
t∈T

Ft, F̃0), S(ρn
0 )),

which is called the Heisenberg picture representation of the symbol M({Ot}t∈T ,S(ρn
0 )).

Summing up the essential part of the above argument, we can propose the following

axiom, which corresponds to “the rule of the relation among systems” in SMTW ∗
.
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PROCLAIMW ∗
2. [The Markov relation among systems, the Heisenberg

picture] The relation among systems is represented by a Markov relation
{Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2

≤
. Let Ot ( ≡ (Xt,Ft, F )) be an observable

in Nt for each t ( ∈ T ). If the procedure (9.22) is possible, a sequential
observable [OT ] ≡ [{Ot}t∈T , {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2

≤
] can be realized

as the observable Õ0 ≡ (
∏

t∈T Xt,
∏

t∈T Ft, F̃0) in N0. (9.23)

Also, we must add the following statement:

• Let S(ρn
t0
) ≡ [S(ρn

t0
), {Φt1,t2 : Nt2 → Nt1}(t1,t2)∈T 2

≤
] be a general system with an initial

state ρn
t0

(∈ Sn((Nt0)∗)). And then, a measurement represented by the symbol

M({Ot}t∈T ,S(ρn
t0
)) can be realized by MN0(Õ0 ≡ (

∏
t∈T Xt,

∏
t∈T Ft, F̃0), S(ρn

0 )), if

Õ0 exists.

which explains the relation between ProclaimW ∗
1 and ProclaimW ∗

2.

Remark 9.13. [How to read Proclaim
W∗

2]. For completeness, we mention how to read

ProclaimW ∗
2 as follows: Recall Axiom 2 (3.26), that is,

• [Axiom 2. (The Markov relation among systems, the Heisenberg picture)] The rela-

tion among systems is represented by a Markov relation {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
.

Let Ot ( ≡ (Xt,Ft, F )) be an observable in At for each t ( ∈ T ). If the proce-

dure (3.25) is possible, a sequential observable [OT ] ≡ [{Ot}t∈T , {Φt1,t2 : At2 →
At1}(t1,t2)∈T 2

≤
] can be realized as the observable Õ0 ≡ (

∏
t∈T Xt,

∏
t∈T Ft, F̃0) in A0.

Using this and the following correspondence, we can easily read the above Proclaim
W∗

2.
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Statistical measurement theory (9.24)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[SMTC∗

(C∗-algebraic formulation)] ←→ [SMTW ∗
(W ∗-algebraic formulation)]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Proclaim 1 (8.10) ←→ ProclaimW ∗

1 (9.11)

Sm(A∗) ∋ ρm ←→ ρn ∈ Sn(N∗)

C∗-observable O ≡ (X, F, F ) ←→ W ∗-observable O ≡ (X, F, F )

MA(O ≡ (X, F, F ), S(ρm)) ←→ MN(O ≡ (X, F, F ), S(ρn))

Axiom 2 (3.26) ←→ Proclaim
W∗

2 (9.23)

general systemS(ρm)(
=[S(ρm),{Ψt1,t2 :At2→At1}(t1,t2)∈T2

≤
]

) ←→ general systemS(ρn)(
=[S(ρn),{Ψt1,t2 :Nt2→Nt1}(t1,t2)∈T2

≤
]

)
sequential observable[OT ](

=[{Ot}t∈T ,{Ψt1,t2 :At2→At1}(t1,t2)∈T2
≤

]

) ←→ sequential observable[OT ](
=[{Ot}t∈T ,{Ψt1,t2 :Nt2→Nt1}(t1,t2)∈T2

≤
]

)
M({Ot}t∈T ,S(ρm)) ←→ M({Ot}t∈T ,S(ρn))

Remark 9.14. [The C∗-algebraic and the W ∗-algebraic formulations]. Now we have two

formulations of SMT, i.e., the C∗-algebraic formulation and the W ∗-algebraic formulation.

Recall that any commutative C∗-algebra [resp. commutative W ∗-algebra] is represented

by some C(Ω) [resp. L∞(Ω, µ)]. Thus, we can say that the C∗-algebraic formulation

and the W ∗-algebraic formulation are respectively topological and measure theoretical.

Therefore, from the mathematical point of view, the W ∗-algebraic formulation is handy

for us to deal with “limit” or “convergence”. For example, this will be seen in Theorem

10.1 (the W ∗-algebraic generalization of Kolmogorov’s extension theorem).8

¥

The following theorem is essentially the same as Theorem 3.7.

Theorem 9.15. [The measurability of a general system; Compared to Theorem 3.7].

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S(ρn
0 ) ≡ [S(ρn

0 ),

Nt

Φπ(t),t→ Nπ(t) (t ∈ T \ {0})] be a general system with the initial system S(ρn
0 ). And, let

an observable Ot ≡ (Xt, Ft, Ft) in a C∗-algebra Nt be given for each t ∈ T . For each s

8If readers have some knowledge of Riemann integral (defined in terms of topology) and Lebesgue
integral (defined in terms of measure, cf. [29]), they can easily understand the mathematical handiness
of “measure theoretical approach”.
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( ∈ T ), define the observable Õs ≡ (
∏

t∈Ts
Xt,

∏
t∈Ts

Ft, F̃s) in Ns such that:

Õs =

{
Os (if s ∈ T \ π(T ))

Os

qp

×××××××××(
qp

×××××××××t∈π−1({s}) Φπ(t),tÕt) (if s ∈ π(T ))

if possible. Then, if an observable Õ0 (i.e., the Heisenberg picture representation of the

sequential observable [{Ot}t∈T , {Φt,π(t) : Nt → Nπ(t)}t∈T\{0} ]) in N0 exists, we have the

measurement

MN0(Õ0 ≡ (
∏
t∈T

Xt,
∏
t∈T

Ft, F̃0), S(ρn
0 )), (9.25)

which is called the Heisenberg picture representation of the symbol M({Ot}t∈T ,Sρn
t0
)).

If the system is classical, i.e., Nt ≡ L∞(Ω, µ) (∀t ∈ T ), then the measurement always

exists, while the uniqueness is not always guaranteed. Also, it should be noted that,

for each s( ∈ T ), it holds that Φπ(s),sF̃s(
∏

t∈Ts
Ξt) = F̃π(s)((Πt∈Tπ(s)\TsXt) × (

∏
t∈Ts

Ξt))

(∀Ξt ∈ Ft (∀t ∈ T )).

Proof. The proof is the same as that of Theorem 3.7.

Remark 9.16. [Summing up]. In Chapters 2 ∼ 8, we studied the C∗-algebraic formula-

tion such that

MTC∗


PMTC∗

= measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

(In Chap. 2∼7)

SMTC∗
= statistical measurement

[Proclaim 1 (8.10)]
+ the relation among systems

[Axiom 2 (3.26)]

(In Chap. 8)

In this chapter, we study the W ∗-algebraic formulation as follows:

MTW ∗


PMTW ∗

= measurement
[AxiomW∗

1 (9.11)]
+ the relation among systems

[ProclaimW∗
2 (9.23)]

(in N)

SMTW ∗
= statistical measurement

[ProclaimW∗
1 (9.9)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

(in N)

(9.26)

Here we add the remarks as follows:

(i) MTC∗
is fundamental,

(ii) MTW ∗
should be understood by an analogy of MTC∗

. Cf. Table (9.24).

(iii) From the mathematical point of view, SMTW ∗
is more handy than SMTC∗

. (Cf.

Remark 9.14).
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(iv) When N = B(V ) or N = L∞(Ω, µ) (where Ω is finite or countable infinite), PMTW ∗

is meaningful (cf. Example 9.1).

(v) Most results in MTC∗
hold in MTW ∗

. However, we omit “Fisher’s maximum like-

lihood method” and “Generalized Bayes theorem”, etc. in MTW ∗
since the proofs

are the same.

¥

9.3 Quantum mechanics in B(L2(R))

9.3.1 Schrödinger equation and Heisenberg kinetic equation

Recall the C∗-algebraic formulation (in C(L2(R))) of quantum mechanics (cf. §3.1).

However, as far as quantum mechanics, the W ∗-algebraic formulation (in B(L2(R))) is

more handy than the C∗-algebraic formulation (in C(L2(R))). (Cf. [71].) Thus, in this

section, we explain the W ∗-algebraic formulation of quantum mechanics (cf. §3.1). though

it is similar to the C∗-algebraic formulation of quantum mechanics,

We begin with the classical mechanics. For simplicity, consider the one dimensional

case, i.e., Rq = {q | q ∈ R}. Thus q(t), −∞ < t < ∞, means the particle’s position at

time t, and thus, p(t) ( ≡ mdq(t)
dt

) means the particle’s momentum at time t. Let R2
q,p

( ≡ {(q, p) | q, p ∈ R} be a phase space. Define a Hamiltonian H : R2
q,p → R such that:

H(q, p) =
p2

2m
(=kinetic energy) + V (q)(=potential energy). (9.27)

Thus we see

E
(total energy)

= H(q, p) =
p2

2m
(kinetic energy)

+ V (q)
(potential energy)

. (9.28)

Put H = L2(Rq, dq), i.e., the Hilbert space composed of all L2-functions on Rq. And put

N = B(L2(Rq, dq)). Applying the quantumization:

E 7→ i~
∂

∂t
, p 7→ −i~

∂

∂q
, q 7→ q (9.29)

to the (9.27), we obtain the Schrödinger equation:

i~
∂

∂t
= H(q,−i~

∂

∂q
) = − ~2∂2

2m∂q2
+ V (q) (9.30)
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9.3. QUANTUM MECHANICS IN B(L2(R)) 245

or, precisely

i~
∂

∂t
ψ(q, t) = − ~2∂2

2m∂q2
ψ(q, t) + V (q)ψ(q, t). (9.31)

This solution is formally written by

ψ(q, t) = e−
i
~ H(q,−i~ ∂

∂q
)tψ(q, 0). (9.32)

Put U(t) = e−
i
~ H(q,−i~ ∂

∂q
)t, and ψ(·, t) = ψt. Then, we see,

ψt = U(t)ψ0. (9.33)

Thus, the time-evolution of the state |ψt⟩⟨ψt| is represented by

|ψt⟩⟨ψt| = (Φ0
t )∗

(
|ψ0⟩⟨ψ0|

)
= |U(t)ψ0⟩⟨U(t)ψ0|

Let O0 = (X, F, F0) be a W ∗-observable in B(H). Then, the time-evolution of the

observable Ot = (X, F, Ft) is represented by

(X, F, Ft) = (X, F, U(t)F0U(t)∗) = (X, F, Φ0
t F0). (9.34)

Also, it should be note that it holds that

dFt

dt
= FtH − HFt, (9.35)

which is the Heisenberg kinetic equation. Put Ψt1,t2 = Φ0
t2−t1

, And let ρ be any element

in Trm
+1(H), i.e, a normal state. Then, we get the general statistical system [S(ρ), {Ψt1,t2 :

B(H) → B(H)}t1≤t2 ]. Also, let ρu be any element in Trp
+1(H), i.e, ρu = |u⟩⟨u|, a pure

state. Then, we get the general system [S[ρu], {Ψt1,t2 : B(H) → B(H)}t1≤t2 ].

Although the two formulations (i.e., the W ∗-algebraic formulation (in B(L2(R))) and

the C∗-algebraic formulation (in C(L2(R))) are similar, it should be noted that the position

observable and the momentum observable can not be represented in the C∗-algebraic

formulation but the W ∗-algebraic formulation (cf. Example 9.7).

9.3.2 A simplest example of Schrödinger equation

Consider a particle with the mass m in the box (i.e., the closed interval [0, 2]) in the

one dimensional space R. The motion of this particle (i.e., the wave function of the

particle) is represented by the following Schrödinger equation

i~
∂

∂t
ψ(q, t) = − ~2∂2

2m∂q2
ψ(q, t) + V0(q)ψ(q, t).
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246CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

where

V0(q) =

{
0 (0 ≤ q ≤ 2)
∞ ( otherwise )

q
R

ψ(q, t)

V0(q)
∞

-

0 2

Put

ϕ(q, t) = T (t)X(q) (0 ≤ q ≤ 2).

And consider the following equation:

i~
∂

∂t
ϕ(q, t) = − ~2∂2

2m∂q2
ϕ(q, t).

Then, we see

iT ′(t)

T (t)
= − X ′′(q)

2mX(q)
= K(= constant ).

Then,

ϕ(q, t) = T (t)X(q) = C3 exp(iKt)
(
C1 exp(i

√
2mK/~ q) + C2 exp( − i

√
2mK/~ q).

)
Since X(0) = X(2) = 0 (perfectly elastic collision), putting K = n2π2~

8m
, we see

ϕ(q, t) = T (t)X(q) = C3 exp(
in2π2~t

8m
) sin(nπq/2) (n = 1, 2, ...).

Assume the initial condition:

ψ(q, 0) = c1 sin(πq/2) + c2 sin(2πq/2) + c3 sin(3πq/2) + · · · .

where
∫
R
|ψ(q, 0)|2dq = 1. Then we see

ψ(q, t)

=c1 exp(
iπ2~t

8m
) sin(πq/2) + c2 exp(

i4π2~t

8m
) sin(2πq/2) + c3 exp(

i9π2~t

8m
) sin(3πq/2) + · · · .
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9.3. QUANTUM MECHANICS IN B(L2(R)) 247

9.3.3 The de Broglie paradox

Consider the same situation in §9.3.2, i.e., a particle with the mass m in the box (i.e.,

the closed interval [0, 2]) in the one dimensional space R.

R

ψ(q, t)

V0(q)
∞

-

0 2

Now let us partition the box [0, 2]] into [0, 1]] and [1, 2]. That is, we change V0(q) to

V1(q), where

V1(q) =


0 (0 ≤ q < 1)
∞ (q = 1)
0 (1 < q ≤ 2)
∞ ( otherwise )

ψ1(q, t)0 1

ψ2(q, t)

V1(q)
∞

-

1 2

Next, we carry the box [0, 1]
[
resp. the box [1, 2]

]
to New York (or, the earth)

[
resp.

Tokyo (or, the polar star)
]
.
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248CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

New York

0 1

ψ1(q, t1)

ψ2(q, t1)

Tokyo

1 2

Note that the probability that we find the particle in the box [0, 1]
[
resp. the box [1, 2]

]
is given by

∫
R
|ψ1(q, t1)|2dq

[
resp.

∫
R
|ψ2(q, t1)|2dq

]
. Here, we open the box [0, 1] at New

York. And assume that we find the particle in the box [0, 1]. Then, quantum mechanics

says that at the moment the wave function ψ2 vanishes.

New York

0 1

“Vanish”

Tokyo

1 2

Note that New York
[
resp. Tokyo

]
may be the earth

[
resp. the polar star

]
. Thus, the

above argument implies that there is something faster than light. This is called “the de

Broglie paradox” (cf. §2.9.1, [78]).

9.4 The method of moments

9.4.1 The moment method

In this book we mainly devoted ourselves to Fisher’s maximum likelihood method (cf.

Corollary 5.6) in (pure) measurements, and Bayes’ method (Cf. Theorem 6.6 and Theorem

8.13) in statistical measurements. In this section we study “the method of moments” (or,

the moment method ) in measurements theory (particularly, repeated measurements, cf.
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9.4. THE METHOD OF MOMENTS 249

Definition 2.27).

In what follows, we shall review “the method of moments” (cf. Definition 2.27).

Let MA

(
O ≡ (X, F, F ), S[ρp

0]

)
be a (pure) measurement, which may be constructed

as in (8.13) of Remark 8.3. Assume the ρp
0 (in MA

(
O, S[ρp

0]

)
) is unknown. And fur-

ther, we get the sample space (X, F, ν0) from the measured value x̂ (= (x1, x2, ...,

xT ) ∈ XT ) obtained by the repeated measurement ⊗T
t=1MA

(
O ≡ (X, F, F ), S[ρp

0]

) (
=

M⊗A(
⊗T

t=1 O, S[⊗T
t=1ρp

0])
)
. That is, ν0 = 1

T

∑T
t=1 δxt

(
i.e., ν0(Ξ) = ♯[{k:xt∈Ξ}]

T

)
. Theorem

2.25 says that that ρp(F (Ξ)) ≈ ν0(Ξ) (∀Ξ ∈ F) if T is sufficiently large. Therefore,

• [Generalized moment method]; there is a very reason to infer the unknown ρp
0 ( ∈

Sp(A∗)) such that:

∆(ν0, ρ
p
0(F ( · )) ) = min

ρp∈Sp(A∗)
∆(ν0, ρ

p(F ( · )) ), (9.36)

where ∆ is a certain semi-distance on Mm
+1(X).

This method is called “generalized moment method” or “moment method”.

Note that the “semi-distance ∆ on Mm
+1(X)” is not always unique. In this sense, the

moment method is somewhat artificial. If X is a finite set, it is usual to define the distance

∆ on Mm
+1(X) such that:

∆(ν1, ν2) =
∑
x∈X

|ν1({x}) − ν2({x})| (∀ν1, ν2 ∈ Mm
+1(X)). (9.37)

More generally, assume that X is an infinite set (and moreover, a metric space). Let

fl : X → R, l = 1, 2, ..., L, be a continuous function on X. Then, the semi-distance

∆{fl}L
l=1

on Mm
+1(X) is defined by

∆{fl}L
l=1

(ν1, ν2) =
L∑

l=1

∣∣∣ ∫
X

fl(x)(ν1(dx) − ν2(dx))
∣∣∣ (∀ν1, ν2 ∈ Mm

+1(X)). (9.38)

The above argument is quite general. We usually use the following moment method.

Remark 9.17. [The simple case of (9.36)]. The minimization problem (9.36) may be

somewhat troublesome. Thus, we often want to solve the equation ∆(ν0, ρ
p
0(F ( · )) ) = 0

(i.e., the case of “minρp∈Sp(A∗) ∆(ν0, ρ
p(F ( · )) ) = 0” ). That is, our concern is to solve

the following equation:

L∑
l=1

∣∣∣ ∫
X

fl(x)ν0(dx) −
∫

X

fl(x)ρp
0(F (dx))

∣∣∣ = 0.
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250CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

Or, equivalently, 

∫
X

f1(x)ν0(dx) =
∫

X
f1(x)ρp

0(F (dx))∫
X

f2(x)ν0(dx) =
∫

X
f2(x)ρp

0(F (dx))

.....∫
X

fL(x)ν0(dx) =
∫

X
fL(x)ρp

0(F (dx)).

(9.39)

This is usually called the method of moments.

¥

9.4.2 Example 1 [Normal distribution (= Gaussian distribu-
tion)]

Let ρµ,σ be the Gaussian state in the commutative W ∗-algebra L∞(R, dω) such that:

ρµ,σ(ω) =
1√

2πσ2
exp[−(ω − µ)2

2σ2
] (∀ω ∈ R),

where the average µ and the variance σ2 are assumed to be unknown. Let OEXA ≡
(R,BR, χ

(·)) be the exact observable in L∞(R, dω) (cf. Example 9.4 (i)).

-
ω( = x)

ρ̄µ,σ(ω) = 1√
2πσ2

e−
(ω−µ)2

2σ2

σ σ

µ x̃1x̃2 x̃3 x̃4x̃5 x̃6

Consider the statistical measurement ML∞(R,dω) (OEXA, S(ρµ,σ)), which may be identified

with the (pure) measurement MC0(R×R+) (OG ≡ (R,BR, G), S[δ(µ,σ)]) in C0(R×R+) (cf.

Remark 8.3 (hybrid measurements)), where OG is defined by i.e.,

[G(Ξ)](µ, σ) =
1√

2πσ2

∫
Ξ

exp[−(x − µ)2

2σ2
]dx (∀Ξ ∈ BR, ∀(µ, σ) ∈ R × R+). (9.40)

Assume that we take the measurement ML∞(R,dω) (OEXA, S(ρµ,σ)) T times, that is, we take

the measurement ML∞(RT ,⊗T
t=1dω) (⊗T

t=1OEXA, S(⊗T
t=1 ρµ,σ)), which may be identified with
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9.4. THE METHOD OF MOMENTS 251

the (pure) measurement ⊗T
t=1MC0((R×R+)) (OG ≡ (R,BR, G), S[δ(µ,σ)])

(
i.e., MC0((R×R+)T )

(⊗T
t=1OG ≡ (RT ,BRT ,⊗T

t=1G), S[⊗T
t=1δ(µ,σ)]

) in C0((R × R+)T ) (cf. Remark 8.3)
)
. Again

note that the average µ and variance σ2 are assumed to be unknown. Here, we have the

following problem:

(P) Under the assumption that the measured value (x̃1, x̃2, ..., x̃T ) ( ∈ RT ) is

obtained by the measurement ⊗T
t=1MC0((R×R+)) (OG ≡ (R,BR, G), S[δ(µ,σ)]),

infer the unknown average µ and variance σ2. (9.41)

[(i): Answer (Moment method)]. The problem (P) says that we have the sample

space (R, BR, ν0) such that:

ν0 =
1

T

∑
t∈T

δx̃t

(
∈ Mm

+1(R)
)
. (9.42)

Thus, it suffices to solve the following equation:

∆{f1,f2}(ν0, [G( · )](µ0, σ0) ) = 0, (9.43)

where fk : R → R is usually defined by f1(x) = x and f2(x) = x2. That is, seeing (9.39),

we have to solve 
(1).

∫
R

xν0(dx) =
∫
R

x[G(dx)](µ0, σ0)

(2).
∫
R

x2ν0(dx) =
∫
R

x2[G(dx)](µ0, σ0).
(9.44)

The above (1) clearly implies that

µ0 =
x̃1 + x̃2 + · · · + x̃T

T

(
≡ AT say,

)
(9.45)

Also, calculating (2)- (1)×(1), we get that

σ0 =

√
(x̃1 − AT )2 + (x̃2 − AT )2 + · · · + (x̃T − AT )2

T
. (9.46)

This is the answer by the moment method.

[(ii): Answer (Fisher’s maximum likelihood method)].

Next, we present the answer by Fisher’s likelihood method. Note that the observable

⊗T
t=1OG = (RT ,Bbd

RT , ⊗T
t=1G ≡ Ĝ) in C0((R × R+)T ) is represented by

[Ĝ(Ξ1 × · · · × ΞT )](µ1, σ1, µ2, σ2, · · · , µT , σT ) = ΠT
t=1[G(Ξt)](µt, σt).
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252CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

Assume the condition in the above (P ), and further add that

Ξϵ
t = [x̃t − ϵ, x̃t + ϵ], (for sufficiently small positive ϵ).

Since we take the (pure) measurement MC0((R×R+)T ) (⊗T
t=1OG ≡ (RT ,BRT ,⊗T

t=1G),

S[⊗T
t=1δ(µ,σ)]

) in C0((R × R+)T ), we see

“maximum problem” : max
(µ,σ)∈R×R+

[Ĝ(Ξϵ
1 × · · · × Ξϵ

T )](µ, σ, µ, σ, · · · , µ, σ)

⇐⇒“maximum problem” : max
(µ,σ)∈R×R+

1

σT
exp

[
−

T∑
t=1

(x̃t − µ)2

2σ2

]
(since ϵ is small)

(9.47)

⇐⇒


(i) µ = x̃1+x̃2+···+x̃T

T
( ← ∂

∂µ
(9.47) = 0)

(ii) σ2 = (x̃1−µ)2+(x̃2−µ)2+···+(x̃T−µ)2

T
( ← ∂

∂σ
(9.47) = 0)

(where µ is defined by in the above (i)) .

(9.48)

Thus, Fisher’s maximum likelihood method says that there is a reason to infer that

µ =
x̃1 + x̃2 + · · · + x̃T

T
≡ AT , σ =

√
(x̃1 − AT )2 + (x̃2 − AT )2 + · · · + (x̃T − AT )2

T
.

(9.49)

This is the answer by Fisher’s likelihood method

9.4.3 Example 2 (measurement error model in SMT)

Put Ω0 = Ω1 = R, Θ = R2 and define the map ψ(θ0,θ1) : Ω0( ≡ R) → Ω1( ≡ R) such

that:

ψ(θ0,θ1)(ω) = θ1ω + θ0 (∀ω ∈ Ω0( ≡ R), ∀(θ0, θ1) ∈ Θ ≡ R2). (9.50)

Also, put (X, F, F ) = (R, Bbd
R , Gσ1) in C0(Ω0) and (Y, G, G) = (R,Bbd

R , Gσ2) in C0(Ω1)

(cf. Example 2.17 (Gaussian observable)), that is,

[Gσi(Ξ)](ω) =
1√
2πσi

∫
Ξ

exp[ − (x − ω)2

2σ2
i

]dx (∀Ξ ∈ Bbd
R , ∀ω ∈ R, i = 1, 2).

Define the product observable Õ
(θ0,θ1)
(σ1,σ2) = (X ×Y, F×G, H

(θ0,θ1)
(σ1,σ2) ≡ Gσ1×××××××××Ψ(θ0,θ1) Gσ2) such

that:

[H
(θ0,θ1)
(σ1,σ2)(Ξ × Γ)](ω)

=
1

(2π)2/2σ1σ2

∫
Ω0

∫
Ξ×Γ

exp[−(x − ω)2

2σ2
1

− (y − (θ1ω + θ0))
2

2σ2
2

]dxdydω (9.51)
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9.4. THE METHOD OF MOMENTS 253

(∀Ξ,∀Γ ∈ Bbd
R , ∀ω ∈ Ω0 ≡ R),

where θ0, θ1 and σ2 are assumed to be unknown, but σ1 is known.

Let νµ,σ3 be the Gaussian state in Mm
+1(Ω0) such that:

νµ,σ3(D) =
1√

2πσ3

∫
D

exp[−(ω − µ)2

2σ2
3

]dω (∀D ∈ BΩ0), (9.52)

where the average µ and the variance (σ3)
2 are assumed to be unknown.

Here we have the measurement MC0(Ω0) (Õ
(θ0,θ1)
(σ1,σ2), S(ρµ,σ3

)). Define the observable Ô

= (X × Y, F × G, Ĥ) in C0(Θ × ((R+)3 × R)9 such that:

[Ĥ(Ξ × Γ)](θ0, θ1, σ1, σ2, σ3, µ) = M(Ω0)

〈
νµ,σ3 , H

(θ0,θ1)
(σ1,σ2)(Ξ × Γ)

〉
C0(Ω0)

=
1

(2π)3/2σ1σ2σ3

∫
Ω0

∫
Ξ×Γ

exp[−(x − ω)2

2σ2
1

− (y − (θ1ω + θ0))
2

2σ2
2

− (ω − µ)2

2σ2
3

]dxdydω

(9.53)

(∀Ξ,∀Γ ∈ Bbd
R , ∀ω ∈ Ω0 ≡ R).

Thus we have the identification:

MC0(Ω0)(Õ
(θ0,θ1)
(σ1,σ2), S(νµ,σ3)) ←→ MC0(Θ×((R+)3×R)(Ô, S[δ(θ0,θ1,σ1,σ2,σ3,µ)]).

Thus, we have the sample space (R2,Bbd
R2 , ν(θ0,θ1,σ1,σ2,σ3,µ)) such that:

ν(θ0,θ1,σ1,σ2,σ3,µ)(Ξ × Γ) = [Ĥ(Ξ × Γ)](θ0, θ1, σ1, σ2, σ3, µ) (∀Ξ,∀Γ ∈ BR). (9.54)

Here, we have the following problem:

(P) Assume that we take the measurement MC0(Θ×((R+)3×R)(Ô, S[δ(θ0,θ1,σ1,σ2,σ3,µ)]) T -

times, and get the measured value (x̃1, ỹ1, x̃2, ỹ2, ..., x̃T , ỹT ) ( ∈ R2T ). Here it is

assumed that θ0, θ1, σ2, σ3 and µ are unknown (but σ1 is known). Then, infer θ0 and

θ1 (and moreover σ2, σ3 and µ) from the measured value (x̃1, ỹ1, x̃2, ỹ2, ..., x̃T , ỹT )

( ∈ R2T ) and the known σ1. (9.55)

[(i): Answer (Moment method)].

9If Θ × (R+)3 × R is required to be compact, it suffices to consider [−L,L]2 × [(1/L), L]3 × [−L, L]
(for sufficiently large L) instead of Θ × (R+)3 × R.
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Under the notation in the problem (P), put

AX̃
T =

x̃1 + x̃2 + · · · + x̃T

T
, AỸ

T =
ỹ1 + ỹ2 + · · · + ỹT

T
, (9.56)

V
X̃X̃

T =
(x̃1 − AX̃

T )2 + (x̃1 − AX̃
T )2 + · · · + (x̃T − AX̃

T )2

T
, (9.57)

V
Ỹ Ỹ

T =
(ỹ1 − AX̃

T )2 + (ỹ1 − AX̃
T )2 + · · · + (ỹT − AX̃

T )2

T
, (9.58)

V
X̃Ỹ

T =
(x̃1 − AX̃

T )(ỹ1 − AX̃
T ) + (x̃2 − AX̃

T )(ỹ2 − AX̃
T ) + · · · + (x̃T − AX̃

T )(ỹT − AX̃
T )

T
.

(9.59)

Recall (9.54), and put

µX = µ, σuu = σ1, σee = σ2, σXX = σ3, µY =

∫
R

y[Ĥ(R × dy)]. (9.60)

Then we see that

AỸ
T =

∫
R

y[Ĥ(R × dy)]( ≡ µY ) = θ0 + θ1µX , AX̃
T =

∫
R

x[Ĥ(dx × R)] = µX , (9.61)

and

V
Ỹ Ỹ

T =

∫
R

(y − µY )2[Ĥ(R × dy)] = θ2
1σ

2
XX + σ2

ee, (9.62)

V
X̃Ỹ

T =

∫
R

(x − µX)2[Ĥ(dx × R)] = θ1σ
2
XX , (9.63)

V
X̃X̃

T =

∫
R2

(x − µX)(y − µY )[Ĥ(dx × dy)] = σ2
XX + σ2

uu, (9.64)

which is easily solved. Thus, the moment method says that there is a reason to infer that

θ1 = (V
X̃X̃

T − σ2
1)

−1V
X̃Ỹ

T , θ0 = AỸ
T − (V

X̃X̃

T − σ2
1)

−1AX̃
T V

X̃Ỹ

T . (9.65)

[(ii): Answer (Fisher’s maximum likelihood method)].

Next, we shall answer the problem (P) by Fisher’s likelihood method. Put, for suffi-

ciently small positive ϵ,

Ξϵ
t = [x̃t − ϵ, x̃t + ϵ], Γϵ

t = [ỹt − ϵ, ỹt + ϵ] (t = 1, 2, · · · , T ). (9.66)

The probability that the measured value (x̃1, ỹ1, x̃2, ỹ2, ..., x̃T , ỹT ) ( ∈ R2T ) belongs to

ΠT
t=1(Ξ

ϵ
t × Γϵ

t) is given by

ΠT
t=1

[
[Ĥ(Ξϵ

t × Γϵ
t)](θ0, θ1, σ1, σ2, σ3, µ)

]
. (9.67)
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9.5. PRINCIPAL COMPONENTS ANALYSIS IN MT 255

Since ϵ is sufficiently small, we see, for some fixed σ1, that

max
(θ0,θ1,σ2,σ3,µ)∈Θ×(R+)2×R

ΠT
t=1[Ĥ(Ξϵ

t × Γϵ
t)](θ0, θ1, σ1, σ2, σ3, µ)

⇐⇒ max
(θ0,θ1,σ2,σ3,µ)∈Θ×(R+)2×R

ΠT
t=1[

1

(2π)3/2σ1σ2σ3

∫
Ω0(≡R)

e
[− (x̃t−ω)2

2σ2
1

− (ỹt−(θ1ω+θ0))2

2σ2
2

− (ω−µ)2

2σ2
3

]
dω].

(9.68)

Thus, Fisher’s maximum likelihood method says that it suffices to find the (θ0, θ1, σ2, σ3, µ)

such that:

ΠT
t=1[

1

(2π)3/2σ1σ2σ3

∫
R

e
[− (x̃t−ω)2

2σ2
1

− (ỹt−(θ1ω+θ0))2

2σ2
2

− (ω−µ)2

2σ2
3

]
dω]

= max
(θ0,θ1,σ2,σ3,µ)∈Θ×(R+)2×R

ΠT
t=1[

1

(2π)3/2σ1σ2σ3

∫
R

e
[− (x̃t−ω)2

2σ2
1

− (ỹt−(θ1ω+θ0))2

2σ2
2

− (ω−µ)2

2σ2
3

]
dω]. (9.69)

However, it may be difficult to solve it analytically. Thus, the numerical computation

may be recommended.

Remark 9.18. Comparing (9.65) and (9.69), readers may consider that the moment

method is simple and powerful. However, it should be noted that the moment method is

somewhat artificial since the semi-distance is not unique. Summing up, we see,

Inference Example
(pure) measurement Fisher’s likelihood method Examples 5.8 and 5.9

(Theorem 5.3, Corollary 5.6) Regression analysis (6.7), (6.48)
statistical measurement Bayes’ method Example 8.6

(Theorem 8.13, Remark 8.14) Generalized Bayes theorem (Theorem 8.13)
repeated measurement moment method (Definition 2.27) Normal distribution (§9.4.2)
(product sample space) See §9.4.1 measurement error model (§9.4.3)

(9.70)

¥

9.5 Principal components analysis in MT

Our present purpose is to study “principal components analysis” in the framework of

MT.

Consider the following two cases [I] and [II]:

[I: Homomorphic type]. Let Ω be a compact space. For each k ( = 1, 2, ..., K), consider a

continuous map fk : Ω → R. For example, we may consider that

(♯) the Ω ( = {ω1, ω2, ..., ωN} represents the class of students in some high school. And

further, assume that
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256CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

(a) fh(ωn) · · · the student ωn’s height

(b) fw(ωn) · · · the student ωn’s weight

ω

fh(ω)

fw(ω)

Ω

0 100 200

0 100 200

[II: Markov type]. Let Ω be a compact space. For each k ( = 1, 2, ..., K), consider a map

Φ∗
k : Ω → Mm

+1(R) in the C∗-algebraic formulation
(
or, Φ∗

k : Ω → L1
+1(R; dm) in the

W ∗-algebraic formulation
)
. For example, we may consider that

(♯) the Ω ( ≡ {ω1, ω2, ..., ωN}) represents the set of students in some high school. And

further, assume that

(a) Φ∗
P (ωn) · · · the student ωn’s scholastic ability of physics (or, the distribution

of the student ωn’s marks (e.g., deviation values) in physics)

(b) Φ∗
C(ωn) · · · the student ωn’s scholastic ability of chemistry (or, the distribution

of the student ωn’s marks (e.g., deviation values) in chemistry)

ω

Φ∗
P (ω)

Φ∗
C(ω)

Ω

0 50 100

0 50 100

Here consider the following problem:

(P) What kind of relation among the height and weight in [I] (or, the scores of physics

and chemistry in [II]) of the students of the high school can we find?

This problem (P) is usually studied by “principal components analysis”. Thus, in

what follows, we shall study it in the framework of PMTW ∗
(though it can be also studied
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9.5. PRINCIPAL COMPONENTS ANALYSIS IN MT 257

in PMTC∗
since a cyclic measurement is also formulated in PMTC∗

). Clearly the homo-

morphic type [I] is the special case of the Markov type [II]. Thus, from here, we devote

ourselves to the Markov type [II].

Let Ω be a finite set, i.e., Ω = {ω1, ω2, ..., ωN}, which is assumed to have the counting

measure νc, that is, νc(A) = ♯[A] (∀A ⊆ Ω). For each k ( = 1, 2, ..., K), consider a

Markov operator Φk : L∞(R,m) → L∞(Ω, νc), where m is the Lebesgue measure on R.

Let O ≡ (R, BR, EEXA) be the exact observable in L∞(R,m). Define the observable Ô ≡
(RK , BRK ,×K

k=1 ΦkEEXA) in L∞(Ω, νc) such that

[
K

×
k=1

ΦkEEXA](Ξ1 × Ξ2 × · · · × ΞK) =
K

×
k=1

ΦkEEXA(Ξk) (Ξ1 × Ξ2 × · · · × ΞK ∈ BRK )

which is realization of the sequential observable [{O}K
k=1, {Φk : L∞(R,m) → L∞(Ω, νc)}K

k=1].

Thus we have the cyclic measurement ⊗NL
j=1ML∞(Ω,νc)(Ô, S(ρ̄ωmodN [j]

)), where ρ̄ωs ∈ L1
+1(Ω, νc),

(s = 1, 2, ..., N), is defined by ρ̄ωs(ω) = 1 (if ω = ωs), = 0 (if ω ̸= ωs).

Assume that, by the cyclic measurement ⊗NL
j=1ML∞(Ω,νc)(Ô, S(ρ̄ωmodN [j]

))
(
or, the re-

peated measurement ⊗LN
j=1ML∞(Ω,νc)(Ô, S(1/N)), cf. Example 8.7 (ii)

)
, we get a mea-

sured value (x1, x2, ..., xNL), where

x1 = (x1
1, x

2
1, ..., x

K
1 ),

x2 = (x1
2, x

2
2, ..., x

K
2 ),

...
xN = (x1

N , x2
N , ..., xK

N )
xN+1 = (x1

N+1, x
2
N+1, ..., x

K
N+1)

...
x2N = (x1

2N , x2
2N , ..., xK

2N)
...

x3N = (x1
3N , x2

3N , ..., xK
3N)

...
xLN = (x1

NL, x2
NL, ..., xK

NL)



(9.71)

Here, note that it holds:

lim
L→∞

♯[{j ∈ {1, 2, ..., NL} : xj ∈ Ξ1 × Ξ2 × · · · × ΞK}]
NL

=

∫
Ω

[×K
k=1 ΦkEEXA(Ξk)](ω)

N
νc(dω) (∀Ξ1 × Ξ2 × · · · × ΞK ∈ BRK )

Put

(µ1, µ2, ..., µK) =
(∑NL

j=1 x1
j

NL
,

∑NL
j=1 x2

j

NL
, · · · ,

∑NL
j=1 xK

j

NL

)
(9.72)
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258CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

and put

Cpq =

∑NL
j=1(x

j
p − µp)(x

j
q − µq)

NL − 1
(9.73)

(
For simplicity, here we are not concerned with the normalization, though it is reasonable.

)
Then, we have the correlation matrix C such that:

C =
[
Cpq

]
1≤p,q≤K

=


C11 C12 . . . C1K

C21 C22 . . . C2K
...

...
. . .

...
CK1 CK2 . . . CKK

 , (9.74)

which is represented by

C = PΛP ∗

where Λ is a diagonal matrix such that:

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λK

 (λ1 ≥ λ2 ≥ ... ≥ 0)

and P is the orthonormal matrix such that:

P =
[
e⃗1, e⃗2, ..., e⃗K

]
=


e11 e12 . . . e1K

e21 e22 . . . e2K
...

...
. . .

...
eK1 eK2 . . . eKK

 , e⃗k =


e1k

e1k
...

e1k

 ,

where

⟨e⃗k, e⃗k′⟩RK =

{
1 ( if k = k′)
0 ( if k ̸= k′)

.

Here, e⃗k is called the k-th principal component. Also, The k-contribution ratio is defined

by λk
PK

i=1 λi
.

Remark 9.19. [(i): Several interpretations of principal components analysis]. Principal

components analysis (i.e., {(e⃗k, λk)}K
k=1) has several interpretations, which are important.

For example, the following figure is frequently stated in usual books of statistics.
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9.5. PRINCIPAL COMPONENTS ANALYSIS IN MT 259

R

R

1

M

λ1

λ2

e⃗1

e⃗2

-

6

x1

x2

x3 x6 x5

x4

However, we are not concerned with it, because what we want to say here is the following

(ii).

[(ii): Markov type and homomorphic type]. Note that the data (9.71) is obtained by the

exact measurement. Thus the
√

Cpp is not the error. In the case of Markov type, the

following calculation is wrong. However, if Φk : L∞(R,m) → L∞(Ω, νc) is homomorphic,

and if the observable Ô has the form such as (RK .BRK ,×K
k=1 ΦkG

σk) in L∞(Ω, νc) where

Gσk
Ξ (µ) =

1√
2πσ2

k

∫
Ξ

e
− (u−µ)2

2σ2
k du (∀µ ∈ R ≡ R, ∀Ξ ∈ BR). (σ2

k: variance),

(cf. Example 9.5 and Example 2.17), then the following calculation should be recom-

mended: Put

x̄1 =
(∑L−1

l=0 x1
1+lN

L
,

∑L−1
l=0 x2

1+lN

L
, · · · ,

∑L−1
l=0 xK

1+lN

L

)
,

x̄2 =
(∑L−1

l=0 x1
2+lN

L
,

∑L−1
l=0 x2

2+lN

L
, · · · ,

∑L−1
l=0 xK

2+lN

L

)
,

...

x̄N =
(∑L−1

l=0 x1
N+lN

L
,

∑L−1
l=0 x2

N+lN

L
, · · · ,

∑L−1
l=0 xK

N+lN

L

)
.

Put

(µ̄1, µ̄2, ..., µ̄K) =
(∑N

j=1 x̄1
j

N
,

∑N
j=1 x̄2

j

N
, · · · ,

∑N
j=1 x̄K

j

N

)
, (9.75)

and put

C̄pq =

∑N
j=1(x̄

j
p − µ̄p)(x̄

j
q − µ̄q)

N
. (9.76)
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260CHAPTER 9. STATISTICAL MEASUREMENTS IN W ∗-ALGEBRAIC FORMULATION

Then, we have the correlation matrix C̄ such that:

C̄ =
[
C̄pq

]
1≤p,q≤K

=


C̄11 C̄12 . . . C̄1K

C̄21 C̄22 . . . C̄2K
...

...
. . .

...
C̄K1 C̄K2 . . . C̄KK

 .

Thus, by a similar way, we can get the k-th principal component and the k-contribution

ratio, etc.

Note that it holds:

(9.74) =


C11 C12 . . . C1K

C21 C22 . . . C2K
...

...
. . .

...
CK1 CK2 . . . CKK

 =


C̄11 + (σ1)

2 C̄12 . . . C̄1K

C̄21 C̄22 + (σ2)
2 . . . C̄2K

...
...

. . .
...

C̄K1 C̄K2 . . . C̄KK + (σK)2



=(9.77) +


(σ1)

2 0 . . . 0
0 (σ2)

2 . . . 0
...

...
. . .

...
0 0 . . . (σK)2


though the situations are different.

¥
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Chapter 10

Newtonian mechanics in
measurement Theory

In the previous chapter, we propose the W ∗−algebraic formulation of SMT:

SMTW∗
= statistical measurement

[ProclaimW∗
1 (9.9)]

+ the relation among systems
[ProclaimW∗

2 (9.23)]

in W ∗-algebra . (10.1)

As mentioned in Remark 1.1 (b), in this book, “Newtonian mechanics” in MT is called the “clas-
sical system theory (or dynamical system theory)”. In this sense, we will study “Newtonian
mechanics” in SMTW∗

. We first introduce “the W ∗-algebraic generalization of Kolmogorov’s ex-
tension theorem”. This theorem is essential to MT just like Kolmogorov’s extension theorem is
so in his probability theory. Using this theorem, we can define “particle’s trajectory” by “the
sequence of measured values”. And further we prove:

(i) the existence of “particle’s trajectory” in Newtonian mechanics,

(ii) the existence of Brownian motion.

Thus, we can understand the difference between the concepts of “particle’s trajectory” and “state’s
evolution” in both classical and quantum mechanics. Throughout this chapter, readers will see
that, from the mathematical point of view, the W ∗−algebraic formulation is more handy than the
C∗−algebraic formulation.

10.1 Kolmogorov’s extension theorem in W ∗-algebra

In this section we study “Kolmogorov’s extension theorem” in the (W ∗-algebraic) Sta-

tistical MT. It is generally said that Kolmogorov’s extension theorem is most fundamental

in Kolmogorov’s probability theory. That is because this theorem assures the existence

of a probability space (i.e., sample space). On the other hand, our theorem (= Theorem

10.1, i.e., the W ∗-algebraic generalization of Kolmogorov’s extension theorem) assures

261
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262 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

the existence of a measurement (or, observable). Recall the our spirit
(
see Remark (in

§2.3(I))
)
:

(♯) there is no probability without measurements.

Thus, in measurement theory, the concept of “measurement” is more fundamental than

that of “sample space”. Therefore, this theorem (i.e., the W ∗-algebraic generalization

of Kolmogorov’s extension theorem) is very important in MT. That is, this theorem (=

Theorem 10.1) is essential to MT just like Kolmogorov’s extension theorem is so in his

probability theory. Using this theorem, we can define “particle’s trajectory” by “the

sequence of measured values”. And further we prove:

(i) the existence of “particle’s trajectory” in Newtonian mechanics,

(ii) the existence of Brownian motion.

Thus, we can understand the difference between the concepts of “particle’s trajectory” and

“state’s evolution” in both classical and quantum mechanics.

Let Λ̂ be an index set. For each λ ∈ Λ̂, consider a set Xλ. For any subsets Λ1 ⊆ Λ2( ⊆
Λ̂), πΛ1,Λ2 is the natural projection such that:

πΛ1,Λ2 : ×
λ∈Λ2

Xλ −→ ×
λ∈Λ1

Xλ.

Especially, put πΛ = πΛ,bΛ. For each λ ∈ Λ̂, consider a W ∗-observable (Xλ, Fλ, Fλ) in

W ∗-algebra N. Note that the quasi-product observable O ≡ (×λ∈bΛXλ, ×λ∈bΛFλ, F
bΛ) of

{ (Xλ,Fλ, Fλ) | λ ∈ Λ̂ } is characterized as the observable such that:

F
bΛ(π−1

{λ}(Ξλ)) = Fλ(Ξλ) (∀Ξλ ∈ Fλ,∀λ ∈ Λ̂), (10.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed

in general. The following theorem says something about the existence and uniqueness of

the quasi-product observable.

Theorem 10.1. [W ∗-algebraic generalization of Kolmogorov’s extension theorem, cf.

[43]]. For each λ ∈ Λ̂, consider a Borel measurable space (Xλ,Fλ), where Xλ is a separable

complete metric space. Define the set P0(Λ̂) such as P0(Λ̂) ≡ {Λ ⊆ Λ̂ | Λ is finite }.
Assume that the family of the W ∗-observables

{
OΛ ≡ ( ×λ∈Λ Xλ, ×λ∈Λ Fλ, FΛ ) | Λ ∈

P0(Λ̂)
}

in a W ∗-algebra N satisfies the following “W ∗-algebraic consistency condition”:
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10.1. KOLMOGOROV’S EXTENSION THEOREM IN W ∗-ALGEBRA 263

• for any Λ1, Λ2 ∈ P0(Λ̂) such that Λ1 ⊆ Λ2,

FΛ2

(
π−1

Λ1,Λ2
(ΞΛ1)

)
= FΛ1

(
ΞΛ1

)
(∀ΞΛ1 ∈ ×

λ∈Λ1

Fλ). (10.3)

Then, there uniquely exists the W ∗-observable Õ
bΛ ≡

(×λ∈bΛ Xλ, ×λ∈bΛ Fλ, F̃
bΛ

)
in N such

that:

F̃
bΛ

(
π−1

Λ (ΞΛ)
)

= FΛ

(
ΞΛ

)
(∀ΞΛ ∈ ×

λ∈Λ
Fλ, ∀Λ ∈ P0(Λ̂)). (10.4)

Proof. Let ρ be any normal state, i.e., ρ ∈ Sn(N∗). Then, the ρ(FΛ( ·)) is a probability

measure on the product measurable space (×λ∈Λ Xλ, ×λ∈Λ Fλ) for all Λ ∈ P0(Λ̂).
(
If

N = L∞(Ω, µ), the existence is assured.
)

It is clear that the family { (×λ∈Λ Xλ,×λ∈Λ Fλ,

ρ(FΛ( · ))) | Λ ∈ P0(Λ̂) } satisfies the “usual consistency condition” in Kolmogorov’s

probability theory. Therefore, by Kolmogorov’s extension theorem[56], there uniquely

exists a probability measure P ρ
bΛ

on the product measurable space
( ×λ∈bΛ Xλ, ×λ∈bΛ Fλ

)
such that:

P ρ
bΛ

(
π−1

Λ (ΞΛ)
)

= ρ(FΛ(ΞΛ)) (∀ΞΛ ∈ ×
λ∈Λ

Fλ, ∀Λ ∈ P0(Λ̂)). (10.5)

Define the subfield ×♯

λ∈bΛ
Fλ of ×λ∈bΛ Fλ such that:

♯

×
λ∈bΛ

Fλ = {π−1
Λ (ΞΛ) | ΞΛ ∈ ×

λ∈Λ
Fλ, Λ ∈ P0(Λ̂)}. (10.6)

Then, we see, by (10.5), that there uniquely exists the countably additive function F ♯
bΛ

:

×♯

λ∈bΛ
Fλ → N (in the sense of weak∗-topology σ(N,N∗)) such that:

P ρ
bΛ

(
Ξ♯

bΛ

)
= ρ(F ♯

bΛ

(
Ξ♯

bΛ
)
)

(∀Ξ♯
bΛ
∈

♯

×
λ∈bΛ

Fλ). (10.7)

Define the map F̃
bΛ : ×λ∈bΛ Fλ → N such that:

F̃
bΛ

(
Ξ

bΛ

)
= inf

{Ξ♯,k
bΛ

}∞k=1∈Q(Ξ
bΛ
)

∞∑
k=1

F ♯
bΛ

(
Ξ♯,k

bΛ
), (10.8)

where Q(Ξ
bΛ) ≡

{
{Ξ♯,k

bΛ
}∞k=1 | Ξ

bΛ ⊆ ∪∞
k=1Ξ

♯,k
bΛ

, Ξ♯,k
bΛ

∈ ×♯

λ∈bΛ
Fλ

}
(∀Ξ

bΛ ∈ ×λ∈bΛ Fλ). It

clearly holds that

F̃
bΛ

(
Γ1

bΛ
∪ Γ2

bΛ

)
≤ F̃

bΛ

(
Γ1

bΛ

)
+ F̃

bΛ

(
Γ2

bΛ

)
(∀Γ1

bΛ
, Γ2

bΛ
∈ ×

λ∈bΛ

Fλ).
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264 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

Also, we see that, for any Ξ
bΛ in ×λ∈bΛ Fλ,

P ρ
bΛ

(
Ξ

bΛ) = inf
{Ξ♯,k

bΛ
}∞k=1∈Q(Ξ

bΛ
)

∞∑
k=1

P ρ
bΛ

(
Ξ♯,k

bΛ
) (by Caratheodory theorem, cf. [29])

= inf
{Ξ♯,k

bΛ
}∞k=1∈Q(Ξ

bΛ
)

∞∑
k=1

ρ(F ♯
bΛ

(
Ξ♯,k

bΛ

)
) (by (10.7))

≥ ρ
(

inf
{Ξ♯,k

bΛ
}∞k=1∈Q(Ξ

bΛ
)

∞∑
k=1

F ♯
bΛ

(
Ξ♯,k

bΛ

))
(by the property of N)

= ρ(F̃
bΛ

(
Ξ

bΛ

)
) (by (10.8)).

Similarly we see that P ρ
bΛ

(
Ξc

bΛ
) ≥ ρ(F̃

bΛ

(
Ξc

bΛ

)
) where Ξc

bΛ
= (×λ∈bΛ Xλ) \ Ξ

bΛ. Thus we see,

by (10.9), that

1 = P ρ
bΛ

(
Ξ

bΛ) + P ρ
bΛ

(
Ξc

bΛ
) ≥ ρ(F̃

bΛ

(
Ξ

bΛ

)
) + ρ(F̃

bΛ

(
Ξc

bΛ

)
) ≥ ρ(F̃

bΛ

( ×
λ∈bΛ

Xλ

)
) = 1.

This implies that P ρ
bΛ

(
Ξ

bΛ) = ρ(F̃
bΛ

(
Ξ

bΛ

)
). Thus we see that

ρ
(
F̃

bΛ

(
π−1

Λ (ΞΛ)
))

= P ρ
bΛ

(
π−1

Λ (ΞΛ)
)

= ρ
(
FΛ

(
ΞΛ

))
(∀ΞΛ ∈ ×

λ∈Λ
Fλ, ∀Λ ∈ P0(Λ̂)),

which implies (10.4). This completes the proof.

10.2 The definition of “trajectories”

Now we shall propose the definition of the “trajectories” in SMTW ∗
. Let S(ρ0) ≡

[S(ρ0), {Ψt1,t2 : N → N}(t1,t2)∈R2
≤
] be a W ∗-general system with an initial system S(ρ0).

Let O ≡ (X, F, F ) be a crisp observable in N. For each time t ∈ R
+ ≡ {t ∈ R | t ≥ 0},

consider a W ∗-observable Ot ≡ (Xt, Ft, Ft) in N such that:

• (Xt,Ft, Ft) = (X, F, F ) for all t ∈ R
+
. (10.9)

Let us represent the “measurement M({Ot}t∈R
+ , S(ρ0))” in what follows. Let Λ ∈ P0(R

+
)(

≡ {Λ0 ∈ 2R
+

: Λ0 is finite }
)
, that is, Λ = {t1, t2, ..., tn} where 0 ≤ t1 < t2 < · · · < tn.

Then, we can uniquely define the observable OΛ ≡ (XΛ,FΛ, FΛ) at time 0 such that:

FΛ(Ξt1 ×Ξt2 × · · ·×Ξtn) = Ψ0,t1

(
F (Ξt1) · · ·Ψtn−2,tn−1

(
F (Ξtn−1)

(
Ψtn−1,tnF (Ξtn)

))
· · ·

)
,

(10.10)
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10.2. THE DEFINITION OF “TRAJECTORIES” 265

though the existence of OΛ is not always guaranteed except for the classical cases.
(
For

the uniqueness, recall Theorem 9.8.
)

Assume that the observable OΛ exists for any

Λ ∈ P0(R
+
). It is clear that the family { OΛ | Λ ∈ P0(R

+
) } satisfies the consistency

condition (10.3). Thus, by Theorem 10.1 we have the observable Õ
R

+ ≡ (XR
+

, FR
+

, F̃
R

+)

in N, which is called a trajectory observable (concerning O ≡ (X, F, F )). Therefore, we

get the Heisenberg picture representation MN(Õ
R

+ , S(ρ0)) of M({Ot}t∈R
+ , S(ρ0) ).

Now we can propose the following definition, which is our main assertion in this

chapter.

Definition 10.2. [Trajectory (= particle’s trajectory)]. Assume the above notations.

The measured value obtained by the measurement MN(Õ
R

+ , S(ρ0)) is called a trajectory

(concerning O ≡ (X, F, F ) ) of the W ∗-general system S(ρ0) ≡ [S(ρ0), {Ψt1,t2 : N →
N}(t1,t2)∈R2

≤
].

¥
The difference of “particle’s trajectory” and “state’s evolution” is clear in Definition

10.2. That is,
“state’s evolution” · · · (Ψ0,t)∗ρ0, (0 ≤ t < ∞),

“particle’s trajectory” · · · the measured value of MN(Õ
R

+ , S(ρ0)).

(10.11)

Note that in quantum mechanics, the existence of Õ
R

+ is not usually guaranteed, and

thus, the concept of “particle’s trajectory” is meaningless in general (cf. [37, 40]).

Recall DST(1.2a), that is,

“dyn. syst. theor.” =


dx(t)

dt
= g(x(t), u1(t), t), x(0) = x0 · · · (state equation) ,

y(t) = f(x(t), u2(t), t) ( measurement equation).

(10.12)
(=(1.2a))

In order to compare (10.11) and (10.12), we add the following remark.

Remark 10.3. [(i): The case that u2 = 0 in (10.12)] (The generalization of Definition

10.2). The condition (10.9) can be easily generalized as follows:

• (Xt,Ft, Ft) is crisp for all t ∈ R
+
. (10.13)

Under the condition, by a similar way of (10.10) we can easily define a trajectory (concerning

{(Xt,Ft, Ft) | t ∈ R
+}) of the W ∗-general system S(ρ0) ≡ [S(ρ0), {Ψt1,t2 : N →
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266 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

N}(t1,t2)∈R2
≤
]. Here, consider classical cases, i.e., N = L∞(Ω, µ). And, for each t ∈ R

+
,

consider a measurable function ft : Ω → Rm, which can be identified with a crisp ob-

servable (Rm,BRm , Ft), (cf. (ii) in Example 9.4). Thus, by Theorem 10.1 we have the

observable Õ
R

+ ≡ ((Rm)R
+

, (BRm)R
+

, F̃
R

+) in N, which is called a trajectory observ-

able (concerning { Ot ≡ (Rm,BRm , Ft) | t ∈ R
+}. Thus we can also define a trajectory

(concerning {ft | t ∈ R
+}) of the W ∗-dynamical system S(ρ0) as the trajectory concerning

{ (Rm,BRm , Ft) | t ∈ R
+}

[(ii): The case that u2 ̸= 0 in (10.12)] (The generalization of Definition 10.2). The

condition (10.13) can be easily generalized as follows:

• (Xt, Ft, Ft) is not always crisp for all t ∈ R
+
. (10.14)

By a similar way as in the above (i), we have the observable Õ
R

+ ≡ (×
t∈R

+ Xt,×t∈R
+ Ft,

F̃
R

+) in N ( = L∞(Ω; µ)), which is called a trajectory observable (concerning { Ot ≡
(Xt,Ft, Ft) | t ∈ R

+}).

¥

10.3 Trajectories and Newtonian mechanics

In the previous section, we proposed Definition 10.2, in which the concept of “par-

ticle’s trajectory” is characterized as a measured value of the measurement. Thus, our

concern in this section is to show that the “particle’s trajectory” is represented by the

Newton equation. If it is true, we can completely understand “Newtonian mechanics” in

measurement theory.

First we review Liouville’s equation. Put N = L∞(Rs
q×Rs

p,m
2s) and N∗ = L1(Rs

q×Rs
p,

m2s), where Rs
q×Rs

p ≡ { (q, p) = (q1, q2, · · · , qs, p1, p2, · · · , ps) | qj, pj ∈ R, j =

1, 2, · · · , s } and (Rs
q×Rs

p, B(Rs
q×Rs

p),m
2s) is the 2s-dimensional Lebesgue measure

space. Liouville’s equation with an initial density function ρ0 is as follows:

∂ρt(q, p)

∂t
=

s∑
j=1

(∂H(q, p, t)

∂qj

∂ρt(q, p)

∂pj

− ∂H(q, p, t)

∂pj

∂ρt(q, p)

∂qj

)
, (10.15)

ρ0 ∈ Sn(N∗) ≡ {ρ : ∥ρ∥L1 = 1, ρ ≥ 0}, (10.16)

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



10.3. TRAJECTORIES AND NEWTONIAN MECHANICS 267

where H : Rs
q×Rs

p×R → R is a Hamiltonian. By using the solution of (10.15), we can

define the operator [Ψt1,t2 ]∗ : L1(Rs
q×Rs

p,m
2s) → L1(Rs

q×Rs
p,m

2s) such that:(
[Ψt1,t2 ]∗ρt1

)
(q, p) = ρt2(q, p) ∀(q, p) ∈ Rs

q×Rs
p, ∀(t1, t2) ∈ R2

≤
. (10.17)

That is, the “state’s evolution” is represented by the Schrödinger picture {[Ψt1,t2 ]∗ | (t1, t2) ∈
R2

≤
}, which is induced by Liouville’s equation (10.15) for states. And furthermore, putting

Ψt1,t2 = ([Ψt1,t2 ]∗)
∗, we get the Heisenberg picture {Ψt1,t2 | (t1, t2) ∈ R2

≤
}, which is also in-

duced by Liouville’s adjoint equation (i.e., Liouville’s equation for observables). Thus, we

get the W ∗-dynamical system S(ρ0) ≡ [S(ρ0), {Ψt1,t2 : N → N}(t1,t2)∈R2
≤
]. Also, it should

be noted that the dynamical system S(ρ0) is deterministic, i.e., each Ψt1,t2 : N → N is

(bijective) homomorphic.

It is well known that Liouville’s equation is mathematically equivalent to the following

Newton equation:

d

dt
qj(t) =

∂H

∂pj

(q(t), p(t), t),
d

dt
pj(t) = −∂H

∂qj

(q(t), p(t), t), j = 1, 2, · · · , s (10.18)

(q(0), p(0)) ∈ Rs
q×Rs

p. (10.19)

Using the solution of the Newton equation (10.18), we define the continuous map ψt1,t2 :

Rs
q×Rs

p → Rs
q×Rs

p such that:

ψt1,t2(q(t1), p(t1)) = (q(t2), p(t2)) (∀(q(t1), p(t1)) ∈ Rs
q×Rs

p). (10.20)

Thus we can get the (bijective) homomorphism Ψt1,t2 : L∞(Rs
q×Rs

p,m
2s) → L∞(Rs

q×Rs
p,

m2s) such that:

(Ψt1,t2F )(q, p) = F (ψt1,t2(q, p)) (∀(q, p) ∈ Rs
q×Rs

p,∀F ∈ L∞(Rs
q×Rs

p),∀(t1, t2) ∈ R2
≤
).

(10.21)

Of course, this Ψt1,t2 is the same as the Ψt1,t2 derived from Liouville’s equation. Since

Liouville’s equation and Newton equation are mathematically equivalent, there is a reason

to say that the time evolution is also represented by Newton equation. However, note

that the term “Newton equation” [resp. “Liouville’s equation”] is, in this book, defined

to be the equation that represents “particle’s trajectory” [resp. “time evolution of states

or observables”].
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268 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

For simplicity, we put (Ω, B, dω) = (Rs
q×Rs

p,B(Rs
q×Rs

p),m
2s). And, put (N, N∗)

= (L∞(Ω), L1(Ω)). Consider the deterministic W ∗-dynamical system S(ρ0) ≡ [S(ρ0),

{Ψt1,t2 : N → N}(t1,t2)∈R2
≤
], which is induced by Liouville’s equation (10.15) and (10.16).

Define the state space observable (or, exact observable) O ≡ (Ω,B, F ) in N
(
≡ L∞(Ω)

)
such that:

F (Ξ) = χ
Ξ

∀Ξ ∈ B, (10.22)

which is, of course, crisp. Thus, by the same arguments appearing above Definition 10.2,

we can get the trajectory observable Õ
R

+ ≡ (ΩR
+

,BR
+

, F̃
R

+) concerning the state space

observable O ≡ (Ω,B, F ). And therefore, we get the measurement ML∞(Ω)(ÕR
+ , S(ρ0))

(cf. Remark 10.3). Assume that

• a measured value ω̂ (= (ωt)t∈R
+ ∈ ΩR

+

) is obtained by ML∞(Ω)(ÕR
+ , S(ρ0)).

Note that the measured value ω̂ is precisely the “particle’s trajectory” in Definition 10.2.

Now we shall investigate the properties of the measured value ω̂ (= (ωt)t∈R
+ ∈ ΩR

+

),

that is, we shall show that the trajectory ω̂ is represented by the Newton equation (10.18)

and (10.19). Let D = {t0, t1, t2, · · · , tn} be a finite subset of R
+
, where t0 = 0 < t1 <

t2 < · · · < tn. Put Ξ̂ = ×D

t∈R
+Ξt

(
∈ BR

+)
where Ξt = Ω (∀t /∈ D). Then, we see that

• the probability that ω̂( = (ωt)t∈R
+) belongs to the set Ξ̂ = ×D

t∈R
+Ξt is given by

ρ0

(
F̃

R
+(Ξ̂)

)
=ρ0

(
F (Ξ0)Ψ0,t1

(
F (Ξt1) · · ·Ψtn−2,tn−1

(
F (Ξtn−1)

(
Ψtn−1,tnF (Ξtn)

))
· · ·

)
=ρ0

(
Πn

k=0

(
Ψ0,tk

F (Ξtk
)
))

(because each Ψtk−1,tk
is homomorphic)

=ρ0

(
Πn

k=0F (ψ−1
0,tk

(Ξtk
)
))

=
∫

Ω

(
Πn

k=0χψ−1
0,tk

(Ξtk
)(ω)

)
ρ0(ω)dω. (10.23)

Let Ξ0 be any element in B such that
∫
Ξ0

ρ0(ω)dω ̸= 0. Thus, under the hypothesis that

we know that ω0 ∈ Ξ0, i.e., ω̂(= (ωt)t∈R
+) ∈ Ξ0×ΩR+

(where R+ = (0,∞)), we can

calculate the following conditional probability:

ρ0

(
F̃

R
+(×D

t∈R
+Ξt)

)
ρ0

(
F̃

R
+(Ξ0×ΩR+)

) =

∫
Ξ0

(
Πn

k=1χψ−1
0,tk

(Ξtk
)(ω)

)
ρ0(ω)dω∫

Ξ0
ρ0(ω)dω

. (10.24)
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10.4. BROWNIAN MOTIONS 269

Thus, we see that

lim
Ξ0→{ω0}

ρ0

(
F̃

R
+(×D

t∈R
+ Ξt)

)
ρ0

(
F̃

R
+(Ξ0×ΩR+)

) =

{
1 if ω0 ∈ ∩n

k=1ψ
−1
0,tk

(Ξtk)
0 otherwise.

(10.25)

(
Though the above argument is somewhat rough from the mathematical point of view,

we can easily check it in mathematics.
)

This implies that

ωt = ψ0,t(ω0) (∀t ∈ R
+
). (10.26)

That is, the measured value ω̂ (= (ωt)t∈R
+ ∈ ΩR

+

) is the solution of the Newton equation.

Also, note that the (10.25) is independent of the choice of the initial normal state ρ0.

Summing up, we see,

• In Newtonian mechanics, the state’s evolution is represented by Liouville equation,

and the existence of the trajectory (concerning the state space observable) is al-

ways guaranteed. That is, it can be represented by the Newton equation. Also, in

quantum mechanics, the state’s evolution is represented by Schrödinger equation.

However, the existence of the trajectory is not always guaranteed.

That is,

state’s evolution particle’s trajectory

Newtonian mechanics Liouville equation Newton equation

quantum mechanics Schrödinger equation (meaningless)1

(10.27)

10.4 Brownian motions

As emphasized throughout this chapter, the concepts of “state’s evolution” and “par-

ticle’s trajectory” are completely different. This is, of course, a matter of common knowl-

edge in quantum mechanics. And moreover, we can point out that the difference is clear

in diffusion processes for classical systems. Therefore, in this section we examine diffusion

processes in SMTW ∗
. The examination will promote a better understanding of our theory.

1For the measurement theoretical model of Wilson chamber and its numerical analysis, see [37, 40].
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270 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

Put N = L∞(Rq,m) and N∗ = L1(Rq,m), where (Rq,B(Rq),m) is the 1-dimensional

Lebesgue measure space. The diffusion equation with an initial density function ρ0 at the

time t = 0 is as follows:

∂ρt(q)

∂t
=

∂2ρt(q)

∂q2
, (10.28)

ρ0 ∈ {ρ ∈ L1(Rq,m) : ∥ρ∥L1 = 1, ρ ≥ 0}. (10.29)

By using the solution of (12.28), we can define the operator [Ψt1,t2 ]∗ : L1(Rq,m) →
L1(Rq,m) such that:(

[Ψt1,t2 ]∗(ρt1)
)
(q) = ρt2(q) =

∫ ∞

−∞
ρt1(y)Gt2−t1(q − y)m(dy), (∀(t1, t2) ∈ R2

≤
) (10.30)

where Gt(q) is the Gaussian function, that is, Gt(q) = 1√
2πt

exp
[
− q2

2t

]
. The “state’s

evolution” is, of course, represented by the Schrödinger picture {[Ψt1,t2 ]∗ | (t1, t2) ∈ R2
≤
}.

For simplicity, we put (Ω,B, dω) = (Rq,B(Rq),m). And therefore, put (N,N∗) =

(L∞(Ω), L1(Ω)). Putting Ψt1,t2 = ([Ψt1,t2 ]∗)
∗, we get the Heisenberg picture {Ψt1,t2 | (t1, t2) ∈

R2
≤
}, and consequently, the W ∗-dynamical system S(ρ0) ≡ [S(ρ0), {Ψt1,t2 : N → N}(t1,t2)∈R2

≤
].

Consider the state space observable O ≡ (Ω,B, F ) in N
(
≡ L∞(Ω)

)
such as in Exam-

ple 9.4.(i). Thus, by a similar way in the previous section, we get the measurement

ML∞(Ω)(OR
+ , S(ρ0)). Assume that

• a measured value ω̂ (= (ωt)t∈R
+ ∈ ΩR

+

) is obtained by ML∞(Ω)(OR
+ , S(ρ0)).

Note that the measured value ω̂ is precisely the “particle’s trajectory” in Definition 10.2.

Also, it may be usually called a “path”.

By a similar way in the previous section, we shall investigate the properties of the

measured value ω̂ (= (ωt)t∈R
+ ∈ ΩR

+

). Let D = {t0, t1, t2, · · · , tn} be a finite subset of

R
+
, where t0 = 0 < t1 < t2 < · · · < tn. Put Ξ̂ = ×D

t∈R
+Ξt

(
∈ BR

+)
where Ξt = Ω

(∀t /∈ D). Then, by ProclaimW ∗
2, we see

• the probability that ω̂( = (ωt)t∈R
+) belongs to the set Ξ̂ ≡×D

t∈R
+Ξt is given by

ρ0

(
F̃

R
+(Ξ̂)

)
= ρ0

(
F (Ξ0)Ψ0,t1

(
F (Ξt1) · · ·Ψtn−2,tn−1

(
F (Ξtn−1)

(
Ψtn−1,tnF (Ξtn)

))
· · ·

)
=

∫
Ξ0

ρ0(ω0)
( ∫

Ξ1

(
· · · (

∫
Ξtn−1

(

∫
Ξtn

n∏
k=1

Gtk−tk−1
(ωk − ωk−1)dωn)dωn−1) · · ·

)
dω1

)
dω0.

(10.31)
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10.4. BROWNIAN MOTIONS 271

Let Ξ0 be any element in B such that
∫

Ξ0
ρ0(ω)dω ̸= 0. Suppose that we know that

ω0 ∈ Ξ0. i.e., ω̂( ≡ (ωt)t∈R
+) ∈ Ξ0×ΩR+

. Under the hypothesis, we can calculate the

following conditional probability:

ρ0

(
F̃

R
+(×D

t∈R
+Ξt)

)
ρ0

(
F̃

R
+(Ξ0×ΩR+)

) =

∫
Ξ0

ρ0(ω0)
(∫

Ξt1
· · ·

∫
Ξtn

∏n
k=1 Gtk−tk−1

(ωk − ωk−1)dωn · · · dω1

)
dω0∫

Ξ0
ρ0(ω0)dω0

.

(10.32)

And therefore, we see that

lim
Ξ0→{ω0}

ρ0

(
F̃

R
+(×D

t∈R
+Ξt)

)
ρ0

(
F̃

R
+(Ξ0×ΩR+)

) =

∫
Ξt1

· · ·
∫

Ξtn

n∏
k=1

Gtk−tk−1
(ωk − ωk−1)dωn · · · dω1. (10.33)

Thus, under the hypothesis that we know that ω̂( ≡ (ωt)t∈R
+) ∈ {ω0}×ΩR+

, the mea-

sured value ω̂( ≡ (ωt)t∈R
+) has the property like Brownian motion with the initial value

ω0. Also note that the (10.33) is independent of ρ0.

t
ω0

-

ω̂( ≡ (ωt)t∈R
+)

R
6

Remark 10.4. [Complex system theory]. Here I shall mention my opinion for the relation

between Brownian motions and “complex system theory” (or, “chaotic system theory” )

as follows:

[(i): Chaotic system theory]. It is a matter of course that Brownian motion is used

to analyze stochastic phenomena (cf. [32]). It should be noted that Brownian motion

is, from the computational point of view, generated by “pseudo-random number”. And
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272 CHAPTER 10. NEWTONIAN MECHANICS IN MEASUREMENT THEORY

moreover, it should be noted that random number generator is regarded as a kind of

chaotic equation ( cf. [19]). In this sense, we consider, from the computational point of

view, that Brownian motion analysis is regarded as a kind of chaotic equation. However,

chaotic theory (or complex system theory, cf [87]) should not be overestimated as “the

third physics (i.e., relativity theory, quantum mechanics, complex system theory)” 2.

Chaotic theory is not such a theory. This is easily seen if chaotic theory is investigated

in the framework of MT
(
in which “probability” (related to Axiom 1) is never born from

“equations” (related to Axiom 2), cf. Chapter 4 (“staying time interpretation” and not

“probabilistic interpretation”) and Remark 8.4 (Bertrand’s paradox)
)
.

[(ii): Information compression]. Newtonian mechanics may be regarded as a kind of

“information compression”. In fact, if we want to know the motion of particles, it suffices

to solve the Newtonian kinetic differential equation. Also, it should be noted that the

differential equation is, numerically, solved by iteration method (= “loop (in computer

programming)”). Thus, there is a reason to think that an iteration (= “loop”), which is

mainly related to Axiom 2, is regarded as a kind of information compression method of

“analytic function”, “pseudo-random number”, “self-similar figure (Julia and Mandelbrot

set)”, etc. In other words, any figure (or graph) treated in mathematical science is always

generated by iteration. Thus, we assert that MT is also a kind of information compression

method. That is, mathematical science always has the aspect such as “mathematical

method of information compression”.

[(iii): Butterfly effect]. “Butterfly effect” is mentioned as follows:

(♯) The flutter of a butterfly’s wings in China could, in fact, actually effect weather

patterns in New York City, thousands of miles away.

It is impossible to test the above (♯). In this sense, we do not tell whether the (♯) is true

or not. However, recall the spirit of the mechanical world view (1.12), i.e., “at any rate,

study every problem in the framework of MT”. Thus, if a certain differential equation

2This overestimation is like the proverb “It’s always darkest just beneath the lighthouse”. I have an
opinion that Einstein’s relativity theory, quantum mechanics and dynamical system theory (=DST(1.2))
are the most influential mathematical scientific theories in the 20th century, though DST is too familiar
to us. The dropping of two atomic bombs (Einstein’s relativity theory) is obviously one of the most
tragic events in World War II. Also, Kalman filter (DST) and IC technology (quantum mechanics) lead
the Apollo plan to success. This feat promoted the end of Cold War. And further, I think that this
opinion is improved in this book (i.e., “quantum theory” + “DST” =⇒ “MT”) and it is realized in Table
(1.7), in which we may assert that “relativity theory (or, TOE)” ↔ “the first physics”, and “MT” ↔“the
second physics”.
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10.5. CONCLUSIONS 273

suggests the above fact (♯), we have to agree that there is a possibility that the above (♯)

is true.

¥

10.5 Conclusions

Summing up, we conclude (cf. [43]),

state’s evolution (≈Axiom 2) particle’s trajectory(sample space)

Newtonian mechanics Liouville equation Newton equation

quantum mechanics Schrödinger equation (meaningless)

diffusion process diffusion equation stochastic differential equation3

(10.34)

Thus there is a reason to say that the state equation in DST(1.2) should be called “tra-

jectory equation”, though DST(1.2) is sometimes called “state space method”. Therefore,

in this book we say that DST(1.2) is the “sample space method”, in which the theory of

differential equations and Kolmogorov’s probability theory play essential roles.4 Thus we

can symbolically say:

“MT”
(our proposal)
←−−−−−−−−− “DST” + “statistics”

(sample space method)
(10.35)

Here we have the following problem:

• Can we propose another mathematical scientific theory for data analysis? (cf. the

third theory in Table (1.7))

I think that it is impossible to propose “the third theory” in mathematical science but

computer science. Cf. Remark 1.5.

Also, recall we are not concerned with “Newtonian mechanics” in physics (which is

represented in terms of differential geometry) but “Newtonian mechanics” in MT (which

is represented in terms of operator algebra). Thus, it should be noted that our viewpoint

(proposed in this book) is, of course, one-sided.

3Recall (1.2). It should be noted that the stochastic state equation (= stochastic differential equation)
in (1.2) is not “state equation” but “trajectory equation (i.e., the equation that represents particle’s
trajectory)”.

4I believe that “Kolmogorov’s probability space” is essentially the same as “the sample space in MT”.
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Chapter 11

Measurement error

Let Q ≡ (R, B, G) and O ≡ (R, B, F ) be respectively a crisp W ∗-observable (i.e., quantity) and a
W ∗-observable in a W ∗-algebra N such that Q and O commute. Under the assumption that O is
regarded as the approximation of Q, we define the measurement error ∆

(
MN (Q×O, S(ρ))

)
by

∆
(
MN(Q × O, S(ρ))

)
=

[∫∫
R2

|λ1 − λ2|2ρ
(
(G × F )(dλ1dλ2)

)]1/2

. (11.1)

This is also called the distance between Q and O concerning ρ. The purpose of this chapter is to
investigate the measurement error. Readers will see that the ∆

(
MN (Q × O, S(ρ))

)
is superior

to the “conventional definition” such as |“true value” −“measured value” |.

11.1 Approximate measurements for quantities

Let N be a W ∗-algebra. Let Q ≡ (R, B, G) be a crisp W ∗-observable (i.e., quantity)

in N. Let O ≡ (R,B, F ) be a W ∗-observable in N such that Q and O commute. Let Q ×
O ≡ (R2, B2, G × F ) be the product observable of Q and O. Consider the simultaneous

measurement MN (Q×O, S(ρ)). According to ProclaimW ∗
1 (9.9), the probability that the

measured value (λ1, λ2) ( ∈ R2) belong to Ξ1×Ξ2 ( ∈ B2) is given by ρ((G×F )(Ξ1×Ξ2)).

Thus, the variance of |λ1 − λ2| is given by∫∫
R2

|λ1 − λ2|2ρ
(
(G × F )(dλ1dλ2)

)
(11.2)

Here we have the following definition.

Definition 11.1. [Error (or precisely, Measurement error), cf. [44]]. Assume the above

notations. And assume the situation that we hope to approximate Q ( ≡ (R, B, G)) by

275
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276 CHAPTER 11. MEASUREMENT ERROR

O (≡ (R, B, F )), that is, O is the approximation of Q. Then the measurement error,

∆
(
MN(Q × O, S(ρ))

)
, is defined by

∆
(
MN(Q × O, S(ρ))

)
=

[∫∫
R2

|λ1 − λ2|2ρ
(
(G × F )(dλ1dλ2)

)]1/2

. (11.3)

This is also called the distance between Q and O concerning ρ (or, the error of O for Q

concerning ρ).

¥
It should be noted that every measurement is exact. Thus the above definition is based

on the following assumption:

(♯) We want to take a measurement MN(Q, S(ρ)). But it is impossible for some reason.

Thus, instead of the MN(Q, S(ρ)), we take a measurement MN(O, S(ρ)). In this

sense, we regard MN(O, S(ρ)) as the approximation of MN(Q, S(ρ)).

The following examples will promote the understanding of Definition 11.1.

Example 11.2. [(i): Gaussian observables]. Consider the exact observable OEXA ≡
(R,BR, χ

(·)) and Gaussian observable OG ≡ (R,BR, Gσ) in N ≡ L∞(R, dµ) such that:

[Gσ(Ξ)](µ) =
1√

2πσ2

∫
Ξ

e−
(x−µ)2

2σ2 dx (∀µ ∈ R ∀Ξ ∈ BR), (11.4)

(where σ2 is a variance). Then we see, for each density function ρ ( ∈ L1
+1(R, dµ)),

∆
(
MN(OEXA × OG, S(ρ))

)
=

[∫∫
R2

|λ1 − λ2|2ρ
(
(G × Gσ)(dλ1dλ2)

)]1/2

=
[∫

R2

|λ1 − λ2|2
( ∫

R

χ
dλ1

(µ)
1√

2πσ2

∫
dλ2

e−
(x−µ)2

2σ2 dx × ρ(µ)dµ
)]1/2

=σ, (11.5)

which is independent of ρ.

[(ii): Triangle observable, cf. Example 2.19]. Let ϵ be any positive number. Define the

membership function (i.e., triangle function) Zϵ : R → R such that:

Zϵ(ω) =


1 − ω

ϵ
0 ≤ ω ≤ ϵ

ω
ϵ

+ 1 −ϵ ≤ ω ≤ 0
0 otherwise .

(11.6)

Put Zϵ ≡
{
ϵk : k ∈ Z ≡ {0,±1,±2, ...}

}
. Define the W ∗-observable OT ≡ (R,BR, T

ϵ

(·))

in the commutative W ∗-algebra L∞(R, dω) such that T
ϵ

Ξ(ω) =
∑

x∈Ξ∩Zϵ
Zϵ(ω −x) (∀Ξ ∈
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11.2. THE ESTIMATION UNDER LOSS FUNCTION IN STATISTICS 277

BR, ∀ω ∈ R). This W ∗-observable OT is called a triangle observable in L∞(R, dω).

Consider the exact observable OEXA ≡ (R,BR, χ
(·)) and the triangle observable OT ≡

(R,BR, T
ϵ

(·)) in N ≡ L∞(R, dω). Then we see, for each density function ρ ( ∈ L1
+1(R, dω)),

∆
(
MN(OEXA × OT , S(ρ))

)
= ϵ

[∫
R

(ω − [ω]
G
)(1 − [ω]

G
+ ω)ρ(ω)dω

]1/2

≤ ϵ

2

where [ω]
G

is the integer such that [ω]
G
≤ ω < [ω]

G
+ 1. ¥

Example 11.3. [Self-adjoint operators]. Let A1 and A2 be commutative self-adjoint

operators on a Hilbert space H. For each i ( = 1, 2), consider the crisp observable Oi ≡
(R,BR, EAi

) in B(H) which is the spectral measure of Ai, i.e., Ai =
∫
R

λEAi
(dλ). Then,

we see that

∆
(
MB(H)(O1 × O2, S(|u⟩⟨u|))

)
=

[∫
R2

|λ1 − λ2|2
〈
u,EA1(dλ1)EA2(dλ2)u

〉]1/2

= ∥(A1 − A2)u∥2. (11.7)

¥

11.2 The estimation under loss function in statistics

Let Q ≡ (R,B, G) and O ≡ (X, F, F ) be a quantity (i.e., a crisp observable on R)

and a W ∗-observable in a W ∗-algebra N respectively. Consider the measurable map

h : X → R, and the image observable O[h] ≡ (R, B, F (h−1( · )) ) in N. This measurable

map h : X → R is called a statistic. Also assume that Q and O[h] commute. Thus, the

distance between Q and Oh (concerning ρ ∈ Sn(N∗)) is defined by ∆(MN(Q×Oh, S(ρ)) )

as in the above definition.

Now we have the following problem:

Problem 11.4. [The estimation under loss function in statistics]. Assume the above
notations. Then our present problem is as follows:

(♯) how to choose a proper image observable O[h] (i.e., O (≡ (X, F, F )) and h : X → R)
as the approximation of a quantity Q (≡ (R, B, G)).

Our interest is concentrated on the problem (♯), which is regarded as a kind of “inference”.

Note that this (♯) is entirely different from Fisher’s spirit in Chapter 5, that is, how to

infer the unknown state from the measured data obtained by a measurement.
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278 CHAPTER 11. MEASUREMENT ERROR

Of course, it is desirable that O and h in the above (♯) satisfy the following (A1) and

(A2).

(A1) (unbias condition). There exists a dense set D ( ∈ Sn(N∗)) such that:∫
R

λ
N∗
⟨ρ,G(dλ)⟩

N
=

∫
R

λ
N∗
⟨ρ, F (h−1(dλ))⟩

N
(∀ρ ∈ D)

(A2) ∆(MN(Q × O[h], S(ρ)) ) is small (where Q and O[h] commute ).

In what follows, we shall study Problem 11.4 in Example 11.5 and Problem 11.6.

Example 11.5. [Heisenberg’s uncertainty relation, cf. [31], [36], Chapter 12]. Let A1

and A2 be a position quantity and a momentum quantity respectively (i.e. A1 and A2

are self-adjoint operators on a Hilbert space H satisfying that A1A2 − A2A1 = i~, ~ is

“Plank constant” /(2π)). As mentioned before, we identify Ai with the spectral measure

Ai ≡ (R,B, Gi) in B(H), i.e., Ai =
∫
R

λGi(dλ). Since A1 and A2 do not commute, the

product observable does not exist. Therefore, consider an observable O ≡ (X, F, F ) in

B(H) and measurable maps hi : X → R, (i = 1, 2), and define the image observables

O[hi] ≡ (R,B, F (h−1
i ( · )) ≡ Fi( · )) in B(H). And furthermore, assume the conditions:

(i) There exists a set D ( ⊂ H) such that D (≡“closure on D)= {u ∈ H | ∥u∥ = 1}
and it holds that ⟨u,Aiu⟩H =

∫
R

λ⟨u, Fi(dλ))u⟩H (∀u ∈ D, i = 1, 2

(ii) Qi and O[hi] commute (i = 1, 2).

Then we get the following inequality:

∆
(
MB(H)(Q1 × O[h1], S(ρ))

)
· ∆

(
MB(H)(Q2 × O[h2], S(ρ))

)
≥ ~/2 for all ρ ∈ Tr+1(H).

(11.8)

This is just Heisenberg’s uncertainty relation, of which non-mathematical representation

was proposed by W. Heisenberg in the famous thought experiment of γ-rays microscope

(cf. [31]). This will be discussed in Chapter 12.

¥

The following problem is a main part of this section. The reader should find “estima-

tion under loss function in statistics” in the following problem.

Problem 11.6. [= Example 5.9 (Urn problem)]. Let Uj, j = 1, 2, 3, be urns that contain

sufficiently many colored balls as follows:
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11.2. THE ESTIMATION UNDER LOSS FUNCTION IN STATISTICS 279

blue balls green balls red balls yellow balls

urn U1 60% 20% 10% 10%
urn U2 40% 20% 30% 10%
urn U3 20% 20% 40% 20%

Put U = {U1, U2, U3}. By the same argument in Example 5.9, we consider the state space

Ω
(
≡ {ω1, ω2, ω3}

)
with the discrete topology, which is identified with U, that is, U ∋ Uj

↔ ωj ∈ Ω ≈ M
p
+1(Ω).

U1 ≈ ω1 U2 ≈ ω2 U3 ≈ ω3

B B B G R

B B B G Y

B B G R R

B B G R Y

B G R R Y

B G R R Y

Let Q be a quantity in C(Ω), i.e., Q : Ω (≈ M
p
+1(Ω)) → R is a real valued continuous

function on Ω. For example we may consider in what follows. Assume that the weight of a

blue ball is given by 10 (gram), and green 20, red 30 and yellow 10.
(
Thus, we can define

the map W : X → R such that W (b) = 10, W (g) = 20, W (r) = 30 and W (y) = 10.
)

Therefore, we can define the quantity Q : Ω → [0, 50] such that the average weight Q(ω1) of

the balls in the urn U1 is given by 14 (= (10·60+20·20+30·10+10·10)/100), and similarly,

Q(ω2) = 18 and Q(ω3) = 20. Define the observable O ≡ (X = {b, g, r, y, }, 2X , F(·)) in

C(Ω) by the usual way. That is,

F{b}(ω1) = 6/10 F{g}(ω1) = 2/10 F{r}(ω1) = 1/10 F{y}(ω1) = 1/10

F{b}(ω2) = 4/10 F{g}(ω2) = 2/10 F{r}(ω2) = 3/10 F{y}(ω2) = 1/10

F{b}(ω3) = 2/10 F{g}(ω3) = 2/10 F{r}(ω3) = 4/10 F{y}(ω3) = 2/10.

Now consider the iterated measurement MC(Ω)(×2
k=1 O ≡ (X2, 2X2

, ×2
k=1F ), S[∗]) where

( ×2
k=1 F )Ξ1×Ξ2(ω) = FΞ1(ω) · FΞ2(ω). Also, assume that

• the measured value (b, r) is obtained by the simultaneous measurement MC(Ω)(×2
k=1

O, S[∗]).

Now we have the following problem.
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280 CHAPTER 11. MEASUREMENT ERROR

(♯) How do we infer Q(∗) from the measured value (b, r) obtained by the simultaneous

measurement MC(Ω)( ×2
k=1 O, S[∗]) ?

¥
In what follows, we provide four answers to the above problem.

Answer 1. [Fisher’s method, cf. [44]]. Recall “[II]” in Example 5.8, in which we infer,

by Fisher’s method, that the unknown urn is U2. That is, applying Fisher’s method (cf.

Corollary 5.6), we get the conclusion as follows: Put E(ω) = F{b}(ω)F{r}(ω). Clearly it

holds that E(ω1) = 6·1/102 = 0.06, E(ω2) = 4·3/102 = 0.12 and E(ω3) = 4·2/102 = 0.08.

Therefore, there is a very reason to think that [ ∗ ] = δω2 , that is, the unknown urn is

U2. Since we inferred that [ ∗ ] = δω2 ( ↔ ω2) in Example 5.8(II), we can immediately

conclude that (or more precisely, Regression analysis II (6.48))

Q( ∗ ) = Q(ω2) = 18.

Answer 2. [Moment method] Recall “Remark” in Example 5.8, in which we infer, by the

moment method, that the unknown urn is U2. Thus, we conclude that Q(∗) = Q(U2) = 18.

Answer 3. [Bayes’ method in SMTPEP]. Next study the above problem (♯) in SMTPEP-

method (cf. §8.6.2, and Theorem 11.12 later). Thus, we assume that the [ ∗ ] is chosen

by a fair rule (e.g., a fair coin-tossing, a fair dice-throwing, etc.). Consider a statistical

measurement MC(Ω)( ×2
k=1 O, S[∗](ρ

m
0 ) ), where we assume that ρm

0 = ρm
uni, i.e., ρm

uni =

1
3

∑3
j=1 δωj

on Ω. When we get the measured value (b, r) by the measurement MC(Ω)(×2
k=1

O, S[∗](ρ
m
0 ) ), we infer, by Bayes’ method (for example, (B1) in Remark 8.14, or more

precisely, Theorem 8.13), that the new state ρm
new is

ρm
new =

1

0.06 + 0.12 + 0.08
(0.06 · δω1 + 0.12 · δω2 + 0.08 · δω3)

=
1

6 + 12 + 8
(6 · δω1 + 12 · δω2 + 8 · δω3).

Thus there is a very reason to consider that

Q( ∗ ) is approximated by
∫
Ω

Q(ω)ρm
new(dω) = 14·6+18·12+20·8

6+12+8
= 17.69 · · · .

Also, the variance σ2 is given by

σ =
[(14 − 17.69)2 · 6 + (18 − 17.69)2 · 12 + (20 − 17.69)2 · 8

6 + 12 + 8

]1/2

= 2.19...
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11.2. THE ESTIMATION UNDER LOSS FUNCTION IN STATISTICS 281

Answer 4. [The estimation under loss function in statistics, cf. [44]]. Let MC(Ω)

(×2
k=1 O, S[∗](ρ

m
0 )) and Q : Ω → [0, 50] be as in Problem 11.6. Put O = (X = {b, g, r, y},

2X , F(·)) in C(Ω) ( ≡ C({ω1, ω2, ω3})) and ρm
0 is any mixed state ∈ Mm

+1(Ω). Consider

a measure ν on Ω, for example, ν({ωj}) = 1 (j = 1, 2, 3). Define the W ∗-observable O

in L∞(Ω, ν) such that O = O, and define the normal state ρ ( ∈ L1
+1(Ω, ν)) such that

ρm
0 (B) =

∫
B

ρ(ω)ν(dω) for all B ( ⊆ Ω). Then, we can identify MC(Ω)( ×2
k=1 O, S[∗](ρ

m
0 ))

with ML∞(Ω,ν)( ×2
k=1 O, S(ρ)). Note that Q is equivalent to the crisp observable Q ≡

(R,B, GQ) in L∞(Ω, ν) such that GQ
Ξ (ω) = χ

{ω′∈Ω:Q(ω′)∈Ξ}
(ω) for all Ξ ∈ B and all ω ∈ Ω.

Define the map h : X2 → R such that:

h(x1, x2) =
1

2

(
W (x1) + W (x2)

)
(∀(x1, x2) ∈ X2 ≡ {b, g, r, y}2) (11.9)

where W (b) = 10, W (g) = 20, W (r) = 30 and W (y) = 10. Consider the image observable

(×2
k=1O)h ≡ (R,B, F̂ = (×2

k=1F )h−1(·)). Then, ∆
(
ML∞(Ω,ν)(Q × (×2

k=1O)h, S(ρ))
)
, the

distance between Q and (×2
k=1O)h concerning ρ, is calculated as

∆
(
ML∞(Ω,ν)(Q × (×2

k=1O)h, S(ρ))
)

=
[∫∫

R2

|λ1 − λ2|2ρ((GQ × F̂ )(dλ1dλ2))
]1/2

=
[ 3∑

j=1

∑
(x1,x2)∈X2

ρ(ωj)|Q(ωj) − h(x1, x2)|2F{x1}(ωj)F{x2}(ωj)
]1/2

=
[
22ρ(ω1) + 38ρ(ω2) + 38ρ(ω3)

]1/2

. (11.10)

Therefore, we see that (11.10) ≤
√

38 ≈ 6.17 for all ρ ∈ L1
+1(Ω, ν). Now we can also

answer the problem (♯) in Problem 11.6. That is, we see,

Q( ∗ ) = 1
2
(W (r) + W (b)) = (30 + 10)/2 = 20,

though it of course includes the error 6.17.

¥

The map h : Xn → R, (n = 2), in (11.9) may be chosen by the hint of “the law of large

numbers”. That is, if n is sufficiently large, the map h : Xn → R (defined by h(x1, ..., xn)

= 1
n

∑n
k=1 W (xk)) has a proper property, i.e., limn→∞ ∆

(
ML∞(Ω,ν)(Q×(×n

k=1O)h, S(ρ))
)

= 0 for all ρ ∈ L1
+1(Ω, ν). However, there are several ideas for the choice of h.

Definition 11.7. [Admissible]. Let Q ≡ (R, B, G) and O ≡ (X, F, F ) be a quantity and

W ∗-observable in a W ∗-algebra N respectively. For each i = 1, 2, consider a measurable
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282 CHAPTER 11. MEASUREMENT ERROR

map hi : X → R, and the image observable Ohi
≡ (R,B, F (h−1

i ( · )) ) in N. Also assume

that Q and Ohi
commute.

(i) When it holds that

∆(MN(Q × Oh1 , S(ρ)) ) ≤ ∆(MN(Q × Oh2 , S(ρ)) ) ∀ρ ∈ Sn(N∗), (11.11)

we say that Oh1 is better than Oh2 as the approximation of Q.

(ii) Also, Oh2 is called admissible as the approximation of Q, if there exists no h1 that

satisfies (11.11) and the following condition:

∆(MN(Q × Oh1 , S(ρ0)) ) < ∆(MN(Q × Oh2 , S(ρ0)) ) for some ρ0 ∈ Sn(N∗).
(11.12)

¥
As a well known result concerning “admissibility”, we mention the following example.

Example 11.8. [Gaussian observable and admissibility]. Let O ≡ (R, BR, Gσ) be the

Gaussian observable in N ≡ L∞(R, dµ), that is,

Gσ
Ξ(µ) =

1√
2πσ2

∫
Ξ

e−
(u−µ)2

2σ2 du (∀µ,∈ R, ∀Ξ ∈ BR). (11.13)

Consider the quantity Q : R → R such that Q(µ) = µ (∀µ ∈ R), which is identified with

the observable Q ≡ (R, BR, FQ
(·)) where FQ

Ξ (µ) = χ
Ξ
(µ). Consider the product observable

×n
k=1O ≡ (Rn, BRn ,×n

k=1G
σ) in L∞(R, dµ). Define the map h : Rn → R such that

Rn ∋ (λ1, ..., λn)
h7→ λ1+···+λn

n
∈ R. Then, it is well known (cf. [86]) that ( ×n

k=1 O)h is

admissible as the approximation of Q.

¥

11.3 Random observable

Recall the probabilistic measurement MC(Ω)(O, S[∗]([δω1 ; p]⊕ [δω2 ; 1− p])) in Example

8.1 (8.8). Here, the symbol [δω1 ; p] ⊕ [δω2 ; 1 − p] is called a “probabilistic state”. The

concept of “probabilistic state” urges us to propose the “random observable” as follows:

For simplicity, in this section we devote ourselves to the classical case (i.e., C(Ω) and

L∞(Ω, µ)).

Let O1 ≡ (X, F, F1), O2 ≡ (X, F, F2), · · · , ON ≡ (X, F, FN) be observables in C(Ω).

In a similar way in the procedures (P1) and (P2) of Example 8.1, define the “random
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11.3. RANDOM OBSERVABLE 283

observable” ⊕N
n=1[On; pn], where

∑N
n=1 pn = 1 (0 ≤ pn ≤ 1 (n = 1, 2, ..., N)). That is, we

assume that:

• To take a measurement MC(Ω)(⊕N
n=1[On; pn], S[δω ]).

(
This measurement is called a

“random measurement”.
)

⇐⇒

• To take one of {MC(Ω)(On, S[δω ]) | n = 1, 2, ..., N} according to the probabilistic rule

(p1, p2, ..., pN). That is, to take the measurement MC(Ω)(On, S[δω ]) with probability

pn.

Here, it should be noted that

• the statistical property of MC(Ω)(⊕N
n=1[On; pn], S[δω ]) is equal to that of MC(Ω)(Ô,

S[δω ]), where Ô ≡ (X.F, F̂ ) is defined by F̂ (Ξ) =
∑N

n=1 pnFn(Ξ). That is, for each

Ξ( ∈ F) and ω ( ∈ Ω),

“the probability that a measured value obtained by MC(Ω)(⊕N
n=1[On; pn], S[δω ])

belongs to Ξ”

=
N∑

n=1

pn[F (Ξ)](ω) (11.14)

= “the probability that a measured value obtained by MC(Ω)(Ô, S[δω ]) belongs

to Ξ ”,

which is easily seen by a similar argument such as stated in Example 8.1.

Again note that

(1) to take a random measurement MC(Ω)(⊕N
n=1[On; pn], S[δω ]) (11.15)

⇐⇒

to take a measurement MC(Ω)(On, S[δω ]) with probability pn (n = 1, 2, ..., N).

(2) to take a probabilistic measurement MC(Ω)(O, S[∗]( ⊕N
n=1 [δωn ; pn])) (11.16)

⇐⇒

to take a measurement MC(Ω)(O, S[δωn ]) with probability pn (n = 1, 2, ..., N).
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284 CHAPTER 11. MEASUREMENT ERROR

In the case that N = ∞. it suffices to prepare a probability space (Λ, F(Λ), ν). And,

for each λ( ∈ Λ), consider an observable Oλ ( ≡ (X, F, Fλ)) in C(Ω). Then, the random

observable ⊕N
n=1[On; pn] is generalized as

∮
Λ
Oλν(dλ)

(
≡ (X, F,

∮
Λ

Fλν(dλ))
)
.

The following example is typical (though the description is due to the W ∗-algebraic

formulation).

Example 11.9. [Gaussian observable as a random observable]. For each λ( ∈ R( ≡ Λ)),

consider an observable Oλ ( ≡ (R( ≡ X),BR, Eλ)) in L∞(R( ≡ Ω), dω) such that

[Fλ(Ξ)](ω) = χ
Ξ
(ω − λ) (∀Ξ ∈ BR( ⊆ 2X), ∀ω ∈ R( ≡ Ω),∀λ ∈ R( ≡ Λ)).

Define the probability space (R( ≡ Λ), BR, ν) such that:

ν(S) =
1√

2πσ2

∫
S

e−
λ2

2σ2 dλ (∀S ∈ BR). (11.17)

Thus, we have the random observable:∮
Λ

Oλν(dλ)
(
≡ (R( ≡ X),BR( ≡ F),

∮
Λ

Fλν(dλ))
)

(11.18)

which the probabilistic form of the Gaussian observable (R( ≡ X), BR( ≡ F), Gσ) in

L∞(R( ≡ Ω), dω) such that:

[Gσ(Ξ)](ω) =

∫
Λ

[Fλ(Ξ)](ω)ν(dλ) =

∫
Λ

χ
Ξ
(ω − λ)

1√
2πσ2

e−
λ2

2σ2 dλ

=
1√

2πσ2

∫
Ξ

e−
(x−ω)2

2σ2 dx (∀ω ∈ R( ≡ Ω) ∀Ξ ∈ BR( ⊆ 2X)), (11.19)

(Cf. Example 11.8.)

¥
Although the following problem is easy, its measurement theoretical answer is quite

important.

Problem 11.10. [Which hand is the coin under?]. The following problems (P1) and (P2)

are essentially the same.

(P1) A coin is, intentionally or unintentionally, put under my right hand or my left hand.

Suppose that you do not know which hand the coin is under, and you choose one

of my hands which you guess that the coin is under. Is it reasonable to believe that

the probability that the ball is under the hand you choose is equal to 1/2. How do

you think about it?
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11.3. RANDOM OBSERVABLE 285

my right hand my left hand

Coin

9 z? ?

Table

(P2) There are three boxes (i.e., Box 1, Box 2 and Box 3) and a ball. A ball is, intention-

ally or unintentionally, put in one box (i.e., Box 1 or Box 2 or Box 3). Suppose that

you do not know which box contains the ball, and you choose one of three boxes

which you guess the ball is in. In this case, it is often believed that the probability

that the ball is in Box 1 [resp. in Box 2; in Box 3] is 1/3 [resp. 1/3; 1/3]. How do

you think about it?

Ball

? ? ?

Box 1 Box 2 Box 3

•[The experimental answer to Problem (P1)]. We can easily say “Yes”, that is,

(A1) the probability that the ball is under the hand you choose is equal to 1/2.

In fact, it can be easily tested experimentally. For example, it suffices to ask to 1000

persons “Which hand is the coin under?”. About 500 persons will say “Right hand”,

and the other persons will say “Left hand”. In either case, about 500 persons’ guess is

hit. Thus the above (A1) is true. Although this (P1) is the easiest problem throughout

this book, what I want to say is the measurement theoretical answer mentioned in what

follows.

•[The measurement theoretical answer to Problem (P2)]. Since the two (P1) and (P2) are

essentially the same, it suffices to answer Problem (P2) from the measurement theoretical

point of view. When the conclusion is said first, we can say that:

(A2) the probability that the ball is in your chosen box is equal to 1/3.
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286 CHAPTER 11. MEASUREMENT ERROR

In what follows we shall explain it. Put Ω = {ω1, ω2, ω3}, where ω1 [resp. ω2, ω3] means

the state that the ball is in Box 1 [resp. Box 2; Box 3]. First we consider the case ω1,

that is, the ball is in Box 1.

[(i): The case ω1, that is, the ball is in Box 1]. Define three observables Oe
1 ( =

({0, 1}, 2{0,1}, F e
1 )), Oe

2 ( = ({0, 1}, 2{0,1}, F e
2 )), Oe

2 ( = ({0, 1}, 2{0,1}, F e
3 )) such that:

[F e
1 ({0})](ω1) = 0, [F e

1 ({0})](ω2) = 1, [F e
1 ({0})](ω3) = 1,

[F e
1 ({1})](ω1) = 1, [F e

1 ({1})](ω2) = 0, [F e
1 ({1})](ω3) = 0, (11.20)

[F e
2 ({0})](ω1) = 1, [F e

2 ({0})](ω2) = 0, [F e
2 ({0})](ω3) = 1,

[F e
2 ({1})](ω1) = 0, [F e

2 ({1})](ω2) = 1, [F e
2 ({1})](ω3) = 0, (11.21)

[F e
3 ({0})](ω1) = 1, [F e

3 ({0})](ω2) = 1, [F e
3 ({0})](ω3) = 0,

[F e
3 ({1})](ω1) = 0, [F e

3 ({1})](ω2) = 0, [F e
3 ({1})](ω3) = 1. (11.22)

Note that we identify the following (S1
1) and (S1

2):

(S1
1) We take a measurement MC(Ω)(O

e
1, S[δω1 ]). And we obtain a measured value 1. (Or,

we obtain a measured value 0.) (11.23)

(S1
2) We open Box 1. And we find the ball. (Or, we do not find the ball.) (11.24)

Similarly, we see the following identification:

(S23
1 ) We take a measurement MC(Ω)(O

e
2, S[δω1 ]) [resp. MC(Ω)(O

e
3, S[δω1 ])]. And we obtain

a measured value 1. (Or, we obtain a measured value 0.)

(S23
2 ) We open Box 2. [resp. Box 3.]. And we find the ball. (Or, we do not find the ball.)

Since “the state ω1” = “the case that the ball is in Box 1”, we can assume that

• the measured value obtained by MC(Ω)(O
e
1, S[δω1 ]) [resp. MC(Ω)(O

e
2, S[δω1 ]); MC(Ω)(O

e
3,

S[δω1 ])] is 1 [resp. 0; 0].

Since you have no information about the [∗], your choice is the same as the choice by a

fair coin-tossing. That is, we assume that

“decision without having information” ⇐⇒ “decision by a fair coin-tossing”, (11.25)
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11.3. RANDOM OBSERVABLE 287

which is the fundamental spirit of “the principle of equal probability” in the following

section. Thus, it is reasonable to consider that

the probability that Box 1 is opened = the probability that Box 2 is opened

=the probability that Box 3 is opened = 1/3. (11.26)

Therefore, we see that

(a) the probability that the measured value obtained by MC(Ω)( ⊕3
k=1 [Oe

k; 1/3], S[δω1 ])

is 1 [resp. 0] is given by 1/3 [resp. 2/3].

[(ii): The case ω2, that is, the ball is in Box 2]. Similarly we see that

(b) the probability that the measured value obtained by the “measurement”

MC(Ω)( ⊕3
k=1 [Oe

k; 1/3], S[δω2 ]) is 1 [resp. 0] is given by 1/3. [resp. 2/3].

[(iii): The case ω3, that is, the ball is in Box 3]. Similarly we see that

(c) the probability that the measured value obtained by the “measurement”

MC(Ω)( ⊕3
k=1 [Oe

k; 1/3], S[δω3 ]) is 1 [resp. 0] is given by 1/3. [resp. 2/3].

[(iv): The case that we do not know which box contains the ball]. By the above (a), (b)

and (c), we see that

• the probability that the measured value obtained by the “measurement”

MC(Ω)( ⊕3
k=1 [Oe

k; 1/3], S[∗]) is 1 [resp. 0] is given by 1/3 [resp. 2/3].

Note that “measured value 1 is obtained” ⇔ “open the box that contains the ball”. Thus,

we can believe that the probability that the ball is in Box 1 [resp. in Box 2; in Box 3] is

1/3 [resp. 1/3 ; 1/3].

[Remark]. Recall BMT (in §8.6). Then, the system in Problem (P2) is clearly represented

by S[∗]((νu))bw, cf. §8.6.1. Here, νu({ωk}) = 1/3 (k = 1, 2, 3). However, in the above

argument, we conclude that the “probability” that the ball is in Box 1 [resp. in Box 2; in

Box 3] is 1/3 [resp. 1/3; 1/3]. Therefore, we have the following question:

• Is the system represented by S[∗](νu) (as well as S[∗]((νu))bw)?

This will be discussed in the following section. ¥
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288 CHAPTER 11. MEASUREMENT ERROR

11.4 The principle of equal probability

Consider a measurement MC(Ω)(O ≡ (X, F, F ), S[∗]), where Ω is finite, i.e., Ω ≡
{ω1, ω2, ..., ωN}. There may be several definitions of “Having no information about the

[∗]”. As mentioned in §8.6, in this book we introduce three definitions of “Having no

information about the [∗]” such as:
(a). iterative likelihood function method in §5.6,
(b). SMTPEP in SMT in this section and §11.4,
(c). BMT in §8.6.

We want to change S[∗]((νu))bw (belief weight) to S[∗](νu) (statistical state). This will be

done according to the spirit (11.25), that is,

“decision without having information” ⇐⇒ “decision by a fair coin-tossing”,

which assures that the principle of equal probability holds. This is the purpose of this

section.

Let Ω be a finite set, i.e., Ω = {ω1, ω2, ..., ωN}. A map ϕ : Ω → Ω is said to be ergodic,

if it is a bijection and if it holds that Ω = {ϕn(ω) | n = 0, 1, ..., N − 1} for any ω ( ∈ Ω).

Also, a homomorphism Φ : C(Ω) → C(Ω) is said to be ergodic, if there exists an ergodic

bijection ϕ : Ω → Ω such that

(Φf)(ω) = f(ϕ(ω)) (∀f ∈ C(Ω), ∀ω ∈ Ω). (11.27)

Theorem 11.12. [The principle of equal probability (=“PEP”), SMTPEP method].

Consider a measurement MC(Ω)(O ≡ (X, F, F ), S[∗]), where Ω is finite, i.e., Ω ≡ {ω1, ω2, ...,ωN}.
And consider the measurement MC(Ω)( ⊕N−1

n=0 [ΦnO; 1/N ], S[∗]) (where Φ : C(Ω) → C(Ω)

is ergodic), which is called an unintentional random measurement.1 Then we see

MC(Ω)( ⊕N−1
n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒

identification
MC(Ω)(O, S[∗]( ⊕N

n=1 [δωn ; 1/N ])) (11.28)

and

MC(Ω)(O, S[∗]( ⊕N
n=1 [δωn ; 1/N ]))

probabilistic form←−−−−−−−−−−−−−−−−−−−−−→
statistical form

MC(Ω)(O, S[∗](νu)) (11.29)
(=(8.9))

1Also, it is called a “completely random measurement”, “coin-tossing measurement”, “no information
measurement”.
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11.4. THE PRINCIPLE OF EQUAL PROBABILITY 289

where νu = 1
N

∑N
n=1 δωn . That is, we can assert that:

MC(Ω)( ⊕N−1
n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒

identification
MC(Ω)(O, S[∗](νu)). (11.30)

Proof. Let ω ∈ Ω. Then we see that:

to take an unintentional random measurement MC(Ω)( ⊕N−1
n=0 [ΦnO; 1/N ], S[δω ])

⇐⇒

to take a measurement MC(Ω)(Φ
nO, S[δω ])

with probability 1/N , (n = 1, 2, ..., N)

⇐⇒

to take a measurement MC(Ω)(O, S[δϕn(ω)]) with probability 1/N

(n = 0, 1, 2, ..., N − 1)

⇐⇒ (Note that Ω = {ϕn(ω) | n = 0, 1, ..., N − 1}.)

to take a measurement MC(Ω)(O, S[δωn ]) with probability 1/N , (n = 1, 2, ..., N)

⇐⇒

to take a probabilistic measurement MC(Ω)(O, S[∗]( ⊕N−1
n=0 [δωn ; 1/N ]))

⇐⇒

to take a measurement MC(Ω)(O, S[∗](νu)).

Thus we see that:

MC(Ω)( ⊕N−1
n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒

identification
MC(Ω)(O, S[∗](νu)). (11.31)

Problem 11.13. [Monty Hall problem, cf.[33]].

The Monty Hall problem is as follows (cf. Problem 5.12, Remark 5.13, Problem 8.8) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

(C) The host knows the fact that the probability that the car was set behind the

k-th door (i.e., “number k”) is given by pk (k = 1, 2, 3), for example, p1 = 3/7,

p2 = 1/7, p3 = 3/7. But you do not know this fact.
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290 CHAPTER 11. MEASUREMENT ERROR

You pick a door (strictly speaking, you pick a door at random), say number 1, and

the host, who knows what’s behind the doors, opens another door, say “number 3”,

which has a goat. He says to you, “Do you want to pick door number 2?” Is it to

your advantage to switch your choice of doors?

? ? ?

Door Door Door

Number 1 Number 2 Number 3

[Answer]. Put Ω = {ω1, ω2, ω3}, where ω1 [resp. ω2, ω3] means the state that the car

is behind the door number 1 [resp. the door number 2, the door number 3]. Define the

observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 2

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0, (11.32)

Thus, we have the unintentional random measurement MC(Ω)(⊕2
n=0[Φ

nO; 1/3], S[∗]) (where

Φ : C(Ω) → C(Ω) is ergodic). Theorem 11.12 says that

MC(Ω)( ⊕2
n=0 [ΦnO; 1/3], S[∗]) ⇐⇒ MC(Ω)(O, S[∗](νu)) (11.33)

where νu({ω1}) = νu({ω2}) = νu({ω3}) = 1/3. Thus, it suffices to consider the statistical

measurement MC(Ω)(O, S(νu)). Here, note that

• By the statistical measurement MC(Ω)(O, S[∗](νu)), you obtain a measured value 3,

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,

the posttest state νpost ( ∈ Mm
+1(Ω)) is given by

νpost =
F ({3}) × νu〈
νu, F ({3})

〉 . (11.34)

2Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P)
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11.4. THE PRINCIPLE OF EQUAL PROBABILITY 291

That is,

νpost({ω1}) = 1/3, νpost({ω2}) = 2/3, νpost({ω3}) = 0, (11.35)

and thus, you should pick door number 2.

¥
Remark 11.14. [ Four answers to Monty Hall problem]. In this book four answers to the

Monty Hall problem are presented in Problem 5.12, Remark 5.13, Problem 8.8, Problem

11.13. However, I believe that the Monty Hall problem in Problem 11.13 is the most

natural.

¥
Problem 11.15. [The problem of three prisoners, cf. Problem 8.10 and Remark 8.11].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free

and the other two were to be executed. But he did not know who was the one to

be spared. To the jailer who did know, A said, “Since two out of the three will

bee executed, it is certain that either B or C will be, at least. You will give me

no information about my own chances if you give me the name of one man, B or

C, who is going to be executed.” Accepting this argument after some thinking, the

jailer said, “C will be executed.” Thereupon A felt happier because now either he

or C would go free, so his chance had increased from 1/3 to 1/2. This prisoner’s

happiness may or may not be reasonable. What do you think?

W J A B C- -
“C will be executed”

(Q) (Continued from the above (P)). There is a woman, who was proposed to by the

three prisoners A, B and C. She listened to the conversation between A and the

jailer. Thus, assume that she has the same information as A has. Then, we have

the following problem:
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292 CHAPTER 11. MEASUREMENT ERROR

(♯) Whose proposal should she accept?

[Answer to (P)]. Let Ω (≡ {ωa, ωb, ωc}) and O ≡ (X ≡ {xA, xB, xC}, 2{xA,xB ,xC}, F ) be

as in Problem 8.10. Since A has no information, the unintentional random measure-

ment MC(Ω)(⊕2
k=0[Φ

kO; 1/3], S[∗](ν0)) (where Φ : C(Ω) → C(Ω) is ergodic) is considered.

Theorem 11.12 asserts the following identification:

MC(Ω)(⊕2
k=0[Φ

kO; 1/3], S[∗]) ⇐==⇒
identification

MC(Ω)(O, S[∗](ν0)) (11.36)

where ν0 ( ∈ Mm
+1(Ω)) is defined by

ν0({ωa}) = 1/3, ν0({ωb}) = 1/3, ν0({ωc}) = 1/3. (11.37)

Thus, we can assume that the (P) in the above is the same as the (P) in Problem 8.10.

Therefore, we get that

νpost({ωa}) =
ν0({ωa})

2
ν0({ωa})

2
+ ν0({ωb})

= 1/3, νpost({ωb}) =
ν0({ωb})

ν0({ωa})
2

+ ν0({ωb})
= 2/3,

νpost({ωc}) = 0. (11.38)

Therefore, we conclude that

• the prisoner’s happiness is not reasonable. That is because ν0({ωa}) = 1/3 =

νpost({ωa}).

[Answer to (Q)]. In the above (11.38), we see that

νpost({ωa}) = 1/3, νpost({ωb}) = 2/3, νpost({ωc}) = 0. (11.39)

Thus, we conclude that

• she should choose the prisoner B. That is because

νpost({ωc}) = 0 < νpost({ωa}) = 1/3 < νpost({ωb}) = 2/3. (11.40)

¥
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Chapter 12

Heisenberg’s uncertainty relation

Quantum mechanics is surely one of the most successful theories in all science. In fact, most of
the Nobel prizes of physics and chemistry are due to quantum mechanics. Also, as recent topics
(particularly, related to measurements), we see quantum computer [80], quantum cryptography
[91], quantum teleportation [10], etc. Although these are quite interesting and promising, in this
chapter, we devote ourselves to Heisenberg’s uncertainty relation, which is the most fundamental
in quantum mechanics.

Heisenberg’s uncertainty relation (cf. [31]).

(i) The particle position q and momentum p can be measured “simultaneously”, if the “errors”
∆(q) and ∆(p) in determining the particle position and momentum are permitted to be
non-zero.

(ii) Moreover, for any ϵ > 0 , we can take the above “approximate simultaneous” measurement
of the position q and momentum p such that ∆(q) < ϵ (or ∆(p) < ϵ ).

(iii) However, the following Heisenberg’s uncertainty relation holds:

∆(q) · ∆(p) ≥ ~
2
, (12.1)

for all “approximate simultaneous” measurements of the particle position and momentum.

However, it should be noted that some ambiguous terms (i.e., “approximate simultaneous”, “error”)
are included in the above statement, Thus, we believe that it is not a scientific statement but a
“catch phrase” that was used to promote the paradigm shift from classical mechanics to quantum
mechanics. Thus, in this last chapter1 we try to describe this uncertainty relation precisely in
terms of mathematics and further to derive it in the framework of the W ∗-algebraic formulation
of MT. For this, we first give the mathematical definitions of “∆(q)” (or “∆(p)”) and “approximate
simultaneous measurement”, etc. in terms of MT.

1Every result mentioned in this chapter was published in [36], which was the oldest result in our study
of “measurement theory”. That is, our research of “measurement theory” starts from the paper [36]. On
the other hand, the philosophical assertion mentioned in Chapter 1 is the latest result in our study. In
this sense, the progress of our research is symbolically summarized as

“quantum” (physics)
(in Chapter 12)

−→ “classical” (engineering)
(in Chapters 2∼11)

−→ “philosophical” (epistemology)
(in Chapter 1)

.

293
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294 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

12.1 Introduction

Although the uncertainty relation (discovered by Heisenberg in 1927) has a long his-

tory, the various discussions about its interpretations are even now continued. Mainly

there are two interpretations of uncertainty relations. One is the statistical interpreta-

tion. By repeating the exact (i.e. the “error” ∆(q) = 0) measurements of the position q of

particles with same states, we can obtain its average value q̄ and its variance var(q). Also,

by repeating the exact (i.e. the “error” ∆(p) = 0) measurements of the momentum p of

the same particles, we can similarly get its average value p̄ and its variance var(p). From

the simple mathematical deduction, we can obtain the following uncertainty relation:

[var(q)]
1
2 · [var(p)]

1
2 ≥ ~

2
, (12.2)

where ~ =“Plank’s constant”/2π. This is the statistical aspect of the uncertainty relation.

The mathematical derivation of the uncertainty relation (12.2) was proposed by Kennard

in 1927 (or more generally, Robertson 1n 1929). Cf. [54, 73]. Thus, this inequality (12.2)

is called Robertson’s uncertainty relation.

On the other hand, Heisenberg’s uncertainty relation is rather individualistic. Most

physicists will agree that the content of Heisenberg’s uncertainty relation is roughly as

stated in the following proposition (though it includes some ambiguous sentences as well

as some ambiguous words, i.e. “approximate simultaneous” and “error”).

Proposition 12.1. [Heisenberg’s uncertainty relation, cf. [31]].2

(i) The particle position q and momentum p can be measured “approximately” and

“simultaneously”, if the “errors” ∆(q) and ∆(p) in determining the particle position

and momentum are permitted to be non-zero.

(ii) Moreover, for any ϵ > 0 , we can take the “approximate simultaneous” measurement

of the position q and momentum p such that ∆(q) < ϵ (or ∆(p) < ϵ ).

2It may be usually considered that the (12.2) is the mathematical representation of the (12.3). How-
ever, it is not true. In fact, in [84], J. von Neumann pointed out the difference between Robertson’s
uncertainty relation (= (12.2)) and Heisenberg’s uncertainty relation (= (12.3)).
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12.1. INTRODUCTION 295

(iii) However, the following Heisenberg’s uncertainty relation holds:

∆(q) · ∆(p) ≥ ~
2
, (12.3)

for all “approximate simultaneous” measurements of the particle position and mo-

mentum.

¥

It should be noted that the above “proposition (= Heisenberg’s assertion)” is am-

biguous, that is, it is not a scientific statement but a “catch phrase” that was used to

promote the paradigm shift from classical mechanics to quantum mechanics. In fact, the

above “proposition” is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation), cf. §12.7.

Several authors have contributed to the problem to deduce Heisenberg’s uncertainty

relation. In [2] (Ali and Emach, 1974), [3] (Ali and Prugovec̆ki, 1977), these were done by

means of the concept of (generalized) observable which has been developed by E.B. Davies

[17] (cf. Definition 9.3 for B(V )). Hence, a certain part of this problem has been already

solved. In particular, the statements (i) and (ii) in the above Proposition 12.1 were de-

duced satisfactorily. However, concerning the statement (iii), there still seems to be some

questions. The mathematical formulation and derivation of the Heisenberg’s uncertainty

relation (iii) (in the above Proposition 12.1) was proposed by M. Ozawa [67], S. Ishikawa

[36] independently. We believe that this is the final version of Heisenberg’s uncertainty

relation concerning measurement errors. Thus, in this chapter we shall introduce this

formulation and derivation of the above Proposition 12.1.

Remark 12.2. [(i): A classical understanding of Heisenberg’s uncertainty relation].

Let us explain the classical understanding of Heisenberg’s uncertainty relation (which is

essentially equal to the thought experiment of γ-rays microscope (cf. [31])). In order

to know the position q(t0) and momentum p(t0) of a particle A at time t0, it suffices to

measure the position q(t0) of a particle A at time t0 (i.e., light L1 is irradiated at the

particle at time t0), and continuously (i.e., after δ seconds), measure the position q(t0 +δ)

at time t0 + δ. That is because (q(t0), p(t0)(≡ mdq
dt

(t0))) is approximately calculated by

(q(t0),
m(q(t0+δ)−q(t0))

δ
).
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296 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

-

q(t0)

q1(t0 + δ)

1

-
q(t0 + δ)

-

Light L1

[a]. However, if we want to know the exact position q(t0) (i.e., if we want ∆q ≈ 0), the

wavelength λ of the light L1 must be short (i.e., the energy (=
“Plank constant” ×“lightspeed”

λ
)

of the light L1 must be large), and therefore, the particle A is strongly perturbed. Thus,

the position of the particle A at time t0 + δ will be changed to q1(t0 + δ). Thus we observe

that the momentum of the particle A at time t0 is equal to m(q1(t0+δ)−q(t0))
δ

, which is away

from p(t0)(≡ mdq
dt

(t0) ≈ m(q(t0+δ)−q(t0))
δ

) (i.e., ∆p is large).

[b]. Also, if we want to know the exact momentum p(t0) (i.e., if we want ∆p ≈ 0),

the wavelength λ of the light L1 must be long, and therefore, the particle A is weakly

perturbed. Although the position of the particle A at time t0 + δ will be changed to

q1(t0 + δ), it is almost the same as q(t0 + δ). Thus we observe that the momentum of

the particle A at time t0 is equal to m(q1(t0+δ)−q(t0))
δ

, which is near p(t0)(≡ mdq
dt

(t0) ≈
m(q(t0+δ)−q(t0))

δ
) (i.e., ∆p is small) if δ is large. However it should be noted that ∆q is large

since the wavelength λ of the light L1 is long.

[c]. Therefore, ∆p ≈ 0 and ∆q ≈ 0 are not compatible, that is, the inequality “∆p · ∆q >

constant” always holds. Although this explanation is, of course, rough, there is something

thought-provoking in the above argument.

[(ii): EPR-experiment [22]]. Let A and B be particles with the same masses m. Consider

the situation described in the following figure:

�

A

-

B

where “the velocity of A” = −“the velocity of B”. The position qA of the particle A can be

measured, and moreover, the velocity of vB of the particle B can be measured. Thus, we
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12.2. EXAMPLE DUE TO ARTHURS-KELLEY 297

can conclude that the position and momentum of the particle A are respectively equal to

qA and −mvB. Is this contradictory to Heisenberg’s uncertainty relation? This question

is significant though their (i.e. Einstein, Podolosky and Rosen ) interest is concentrated

on “the reality of physics”.

¥

12.2 Example due to Arthurs-Kelley

Here, we mainly consider the following identification:

L2(R, dx) ∋ u
(∥u∥L2(R,dx)=1, u≈eiθu)

←→
identification

|u⟩⟨u| ∈ Trp
+1(L

2(R, dx)).

We first introduce Robertson’s uncertainty relation, which generally seems to be under-

stood (or, misunderstood) as the mathematical representation of Heisenberg’s uncertainty

relation. By repeating the exact (i.e. the “error” ∆(q) = 0) measurements of the position

q of particles with same states, we can obtain its average value q̄ and its variance var(q).

Also, by repeating the exact (i.e. the “error” ∆(p) = 0) measurements of the momentum

p of the same particles, we can similarly get its average value p̄ and its variance var(p).

A simple calculation shows:

q̄ =

∫
R

x
∣∣∣u(x)

∣∣∣2dx and p̄ =

∫
R

u(x)
[ ~d

idx
u(x)

]
dx

(
=

∫
R

p
∣∣∣ũ(p)

∣∣∣2dp
)

(12.4)

where ũ is the Fourier transform of u,
(
that is, ũ(p) =

√
~
2π

∫
R

u(x)e−i~xpdx
)
. And

further, we see,

var(q) =

∫
R

|x − q̄|2
∣∣∣u(x)

∣∣∣2dx =

∫
R

|x|2
∣∣∣u(x)

∣∣∣2dx − q̄2,

var(p) =

∫
R

|p − p̄|2
∣∣∣ũ(p)

∣∣∣2dp =

∫
R

| ~d

idx
u(x)|2dx − p̄2. (12.5)

Immediately after Heisenberg’s discovery (=“Proposition 12.1”, 1927), Kennard, by a

simple calculation, showed the following uncertainty relation:

[var(q)]
1
2 · [var(p)]

1
2 ≥ ~

2
. (12.6)

(=(12.2))

(cf. Lemma 12.13 later). Of course, it is clear that there is a great gap between Heisen-

berg’s uncertainty relation (12.3) and Kennard’s uncertainty relation (12.6).
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298 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

Next we shall introduce the nice idea by Arthurs-Kelly [7], that is, a certain approx-

imate simultaneous measurement of the position q and the momentum p of a particle A

in one dimensional real line R, which has a state function u(x) ( ∈ L2(R), ∥u∥L2(R) = 1).

Note that the position observable Q( ≡ x) and the momentum observable P ( ≡ ~d
idx

)

do not commute, that is,

QP − PQ = i~
(
̸= 0

)
. (12.7)

Therefore, any simultaneous measurement of the position observable x and the momentum

observable ~d
idx

for a particle “A” can not be realized. However, Arthurs-Kelly’s idea is

excellent as follows: We first prepare another particle “B” with the state u0(y) such that:∫
R

y
∣∣∣u0(y)

∣∣∣2dy =

∫
R

u0(y)
[ ~d

idy
u0(y)

]
dy = 0 (12.8)

for example, u0(y) = 1
(π~)1/4 exp( − y2

2~). Further we regard these two particles “A” and

“B” as a “particle C” in two dimensional Euclidean space R2 with the state u(x)u0(y)

( ∈ L2(R2), ∥u · u0∥L2(R2) = 1). Now consider the self-adjoint operators (x − y) and

~∂
i∂x

+ ~∂
i∂y

in L2(R2), which commute, that is, it holds that:

(
~∂

i∂x
+

~∂

i∂y
)(x − y) = (x − y)(

~∂

i∂x
+

~∂

i∂y
) (12.9)

That is because we can easily calculate:

[(
~∂

i∂x
+

~∂

i∂y
)(x − y)]f(x, y)

=
~
i
f(x, y) + x

~∂

i∂x
f(x, y) − y

~∂

i∂x
f(x, y) + x

~∂

i∂y
f(x, y) − ~

i
f(x, y) − y

~∂

i∂y
f(x, y)

=[(x − y)(
~∂

i∂x
+

~∂

i∂y
)]f(x, y).

Thus the simultaneous measurement of observables (x − y) and ~∂
i∂x

+ ~∂
i∂y

for a “particle

C” (= “A” + “B”) can be realized. Moreover, we can easily calculate these expectations

as follows: ∫∫
R2

u(x)u0(y)
[
(x − y)u(x)u0(y)

]
dxdy =

∫
R

x
∣∣∣u(x)

∣∣∣2dx (12.10)

and ∫∫
R2

u(x)u0(y)
[
(

~∂

i∂x
+

~∂

i∂y
)u(x)u0(y)

]
dxdy =

∫
R

u(x)
[ ~d

idx
u(x)

]
dx. (12.11)

By the reason that the equalities (12.10)= q̄ and (12.11)= p̄ hold, we may say that
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12.3. APPROXIMATE SIMULTANEOUS MEASUREMENT 299

(♯) An “approximate simultaneous measurement” of the position observable Q( ≡ x)

and the momentum observable P ( ≡ ~d
idx

) can be realized.

Here, the variances varasm(q) and varasm(p) in the approximate simultaneous measure-

ment of the position q and the momentum p of a particle “C” are given respectively

by:

varasm(q) =

∫∫
R2

[(x − y)u(x)u0(y)
]2

dxdy −
∣∣∣ ∫∫

R2

u(x)u0(y)
[
(x − y)u(x)u0(y)

]
dxdy

∣∣∣2
=

∫
R

∣∣∣xu(x)
∣∣∣2dx −

∣∣∣ ∫
R

x
∣∣∣u(x)

∣∣∣2dx
∣∣∣2 +

∣∣∣ ∫
R

∣∣∣yu0(y)
∣∣∣2dy

∣∣∣2 (12.12)

and

varasm(p) =

∫
R

∣∣∣ ~d

idx
u(x)

∣∣∣2dx −
∣∣∣ ∫

R

u(x)
[ ~d

idx
u(x)

]
dx

∣∣∣2 +
∣∣∣ ∫

R

u(y)
[ ~d

idy
u0(y)

]
dy.

(12.13)

Hence, we can get, by the arithmetic-geometric inequality and the well-known uncer-

tainty relation (Robertson uncertainty relation, cf. Lemma 12.13 later), the following

simultaneous uncertainty relation;

[varasm(q)]1/2 · [varasm(p)]1/2

=2

[ ∫
R

∣∣∣xu(x)
∣∣∣2dx −

∣∣∣ ∫
R

x
∣∣∣u(x)

∣∣∣2dx
∣∣∣2]1/4

×

[∣∣∣ ∫
R

∣∣∣yu0(y)
∣∣∣2dy

∣∣∣]1/4

×

[∫
R

∣∣∣ ~d

idx
u(x)

∣∣∣2dx −
∣∣∣ ∫

R

u(x)
[ ~d

idx
u(x)

]
dx

∣∣∣2]1/4

×

[∣∣∣ ∫
R

u0(y)
[ ~d

idy
u0(y)

]
dy

∣∣∣2]1/4

≥~. (12.14)

This is Arthurs-Kelly’s idea. We believe that Arthurs-Kelly’s discovery (12.14) is the first

great step to the understanding of Heisenberg’s uncertainty relation.

12.3 Approximate simultaneous measurement

Since our main purpose in this chapter is to describe Proposition 12.1 in terms of

mathematics and further to prove it, we must clarify the ambiguous words (i.e., “approxi-

mate simultaneous”, “error”) in Proposition 12.1. For this, we prepare several definitions

in this section.
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300 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

According to the well-known spectral representation theorem (cf. [92]), there is a

bijective correspondence of a crisp observable (Rn,BRn , E) in B(H) to an n-tuple (A1,

..., An) of commutative (unbounded) self-adjoint operators on H such that Ai =
∫
Rn λi

E(dλ1...dλn). That is,

(A1, A2, ..., An)
(commutative self-adjoint operators on H)

←→
Ai=

R

Rn λiE(dλ1...dλn)
(Rn, BRn , E)

(crisp observable in B(V ))

(12.15)

In particular, we frequently identify a crisp observable (R,BR, E) in B(H) with a (un-

bounded) self-adjoint operator A
(

=
∫
R

λ E(dλ)
)

on H.

Note that ProclaimW ∗
1 (9.9)

(
or, AxiomW ∗

1 (9.11)
)

says as follows:

[♯] Let O ≡ (Rn, BRn , F ) be an observable in B(H). And consider a measurement

MB(H)(O ≡ (Rn, BRn , F ), S[ρu]), where ρu = |u⟩⟨u|. When we take a measurement

MB(H)(O ≡ (Rn, BRn , F ), S[ρu]), the probability that the measured value λ( ∈ Rn)

belongs to a set Ξ ( ∈ BRn) is given by

⟨u, F (Ξ)u⟩H
(

= tr[ρuF (Ξ)]
)
. (12.16)

Therefore, the expectation E
[
MB(H)(O, S[ρu])

] (
≡

(
E(i)

[
MB(H)(O, S[ρu])

])n

i=1

)
of the

measured value obtained by the measurement MB(H)(O ≡ (Rn, BRn , F ), S[ρu]) is given

by

E(i)
[
MB(H)(O, S[ρu])

]
=

∫
Rn

λi⟨u, F (dλ1 · · · dλn)u⟩H i = 1, 2, ..., n, (12.17)

where ρu = |u⟩⟨u|. Further, its variance var
[
MB(H)(O, S[ρu])

] (
≡

(
var(i)

[
MB(H)(O,

S[ρu])
])n

i=1

)
is given by

var(i)
[
MB(H)(O, S[ρu])

]
=

∫
Rn

∣∣∣λi − E(i)
[
MB(H)(O, S[ρu])

]∣∣∣2⟨u, F (dλ1 · · · dλn)u⟩H (12.18)

=

∫
Rn

|λi|2⟨u, F (dλ1 · · · dλn)u⟩H −
∣∣∣ ∫

Rn

λi⟨u, F (dλ1 · · · dλn)u⟩H
∣∣∣2 (12.19)
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12.3. APPROXIMATE SIMULTANEOUS MEASUREMENT 301

(i = 1, 2, ..., n).

We begin with the following definition.

Definition 12.3. Let H be a Hilbert space with the inner product ⟨·, ·⟩H .

(1). A triplet Ôtnsr
H⊗K = (K, s, (X, F, F̂ )) is called a “tensor observable” (or precisely,

“tensor represented observable”) in B(H ⊗ K), if it satisfies the following conditions (i)

and (ii):

(i) K is a Hilbert space and s is an element in K such that ∥s∥ = 1,

(ii) (X, F, F̂ ) is a crisp observable in B(H ⊗K), where H ⊗K is a tensor Hilbert space

with the inner product ⟨·, ·⟩H⊗K .

(2). Let (X, F, F ) be any observable in B(H). A tensor observable Ôtnsr
H⊗K = (K, s, (X, F,

F̂ )) is called a realization of the observable (X, F, F ) in tensor Hilbert space H ⊗K, if it

holds that

⟨u ⊗ s, F̂ (Ξ)(u ⊗ s)⟩H⊗K = ⟨u, F (Ξ)u⟩H (∀u ∈ H, ∀Ξ ∈ F). (12.20)

¥
The following proposition is essential to our argument.

Proposition 12.4. [Holevo [34]]. Let (X, F, F ) be an observable in B(H). Then, there

exists a tensor observable Ôtnsr
H⊗K = (K, s, (X, F, F̂ )) that is the realization of (X, F, F ),

that is, it holds that

⟨u ⊗ s, F̂ (Ξ)(u ⊗ s)⟩H⊗K = ⟨u, F (Ξ)u⟩H (u ∈ H, Ξ ∈ F). (12.21)

Conversely any crisp observable (X, F, F̂ ) in B(H ⊗ K) and any s( ∈ K, ∥s∥K = 1) give

rise to the unique observable (X, F, F ) in B(H) satisfying (12.21).

¥
We shall use the following notations.

Notation 12.5. [Domain]. Let A
(

=
∫
R

λ EA(dλ), the spectral representation of A
)

be a (unbounded) self-adjoint operator on H. Then, we define the Dom(A), the domain

of A, by

Dom(A) := {u ∈ H :

∫
R

|λ|2⟨u,EA(dλ)u⟩ < ∞}.
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302 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

Let O ≡ (Rn, BRn , F ) and Ôtnsr
H⊗K = (K, s, (Rn,BRn , F̂ )) be an observable and a tensor

observable in B(H) and in B(H ⊗ K) respectively. Then, we define that

[O]mar
(k) := (R,BR, [F ]mar

(k) ) (it will be called the kth marginal observable of O) ,

where

[F ]mar
(k) (Ξ) := F (R × · · · × R︸ ︷︷ ︸

k − 1 times

×Ξ × R × · · · × R︸ ︷︷ ︸
n − k times

) (∀Ξ ∈ BR)

Further, define that

Dom([O]mar
(k) )

(
≡ Dom([F ]mar

(k) )
)

:= {u ∈ H :

∫
Rn

|λk|2⟨u, F (dλ1...dλn)u⟩ < ∞},

Dom([Ô]mar
(k) )

(
≡ Dom([F̂ ]mar

(k) )
)

:= {v̂ ∈ H ⊗ K :

∫
Rn

|λk|2⟨v̂, F̂ (dλ1...dλn)v̂⟩H⊗K < ∞},

Dom⊗s([Ô
tnsr
H⊗K ]mar

(k) )
(
≡ Dom⊗s([F̂ ]mar

(k) )
)

:= {u ∈ H :

∫
Rn

|λk|2⟨u ⊗ s, F̂ (dλ1...dλn)(u ⊗ s)⟩H⊗K < ∞}, (12.22)

where Dom([O]mar
(k) ) (or Dom([Ô]mar

(k) )) is called the k-th domain of O (or Ô).

¥
Now we have the following main definition.

Definition 12.6. [Approximate simultaneous observable]. Let A1, ..., An be (unbounded)

self-adjoint operators in H. An observable O
ASO

[Al]
n
l=1

≡ (Rn,BRn , F ) in B(H) is called the

approximate simultaneous observable of A1, ..., An, if it satisfies the following conditions

(i) (domain condition) for each i (= 1, 2, ..., n), Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) ∩ Dom(Ai) is dense

in H

(ii) (unbias condition) for each i (= 1, 2, ..., n),

⟨u,Aiu⟩ =

∫
R

λ⟨u, [F ]mar
(i) (dλ)u⟩, (u ∈ Dom([O

ASO

[Al]
n
l=1

]mar
(i) ) ∩ Dom(Ai)). (12.23)

¥
Remark 12.7. [1]. As seen later (cf. Lemma 12.14(iii)), it holds that Dom([O

ASO

[Al]
n
l=1

]mar
(i) )

⊆ Dom(Ai) holds. Thus, Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) ∩ Dom(Ai) = Dom([O

ASO

[Al]
n
l=1

]mar
(i) )
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12.3. APPROXIMATE SIMULTANEOUS MEASUREMENT 303

[2]. There is a very reason to assume the following condition (iii) or (iv) instead of the

above (i).
(
(iii) and (iv) are stronger than (i), more precisely, (iv) =⇒ (iii) =⇒ (i).

)
(iii) (self-adjointness) for each i (= 1, 2, ..., n), Ai is essentially self-adjoint on

Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) ∩ Dom(Ai),

or

(iv) (commutative condition) for each i (= 1, 2, ..., n), Ai

(
=

∫
R

λ Ei(dλ)
)

and [O
ASO

[Al]
n
l=1

]mar
(i)

commute.

Although each of (i), (iii) and (iv) has merit and demerit respectively, the physical meaning

of the (iv) is the clearest. (Continued on Remark 12.12.)

[3]. Also, see the condition (i) in Example 11.5. This condition is equivalent to

• the formula (12.23) holds on a dense set ∩n
i=1

(
Dom([O

ASO

[Al]
n
l=1

]mar
(i) ∩ Dom(Ai)

)
.

¥
Definition 12.8. [Approximate simultaneous tensor observable]. Let A1, ..., An be (un-

bounded) self-adjoint operators in H. A tensor observable ÔASTO
[Al]

n
l=1

= (K, s, (Rn, BRn , F̂ ))

is called an approximate simultaneous tensor observable of A1, ..., An, if ÔASTO
[Al]

n
l=1

= (K, s,

(Rn,BRn , F̂ )) satisfies the following conditions:

(i) (domain condition) for each i (= 1, 2, ..., n), Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar
(i) ) ∩ Dom(Ai) is

dense in H

(ii) (unbias condition) for each i (= 1, 2, ..., n),

⟨u,Aiu⟩ =

∫
Rn

λi⟨u ⊗ s, F̂ (dλ1 · · · dλn)(u ⊗ s)⟩ (12.24)

(u ∈ Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar
(i) ) ∩ Dom(Ai), ).

¥
The relation between O

ASO

[Al]
n
l=1

and ÔASTO
[Al]

n
l=1

is characterized by the following proposition.

Proposition 12.9. Let A1, ..., An be (unbounded) self-adjoint operators in H.
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304 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

(i) Let ÔASTO
[Al]

n
l=1

≡ (K, s, (Rn,BRn , F̂ ) be an approximate simultaneous tensor observable

of A1, ..., An in H. Then, there exists an approximate simultaneous observable

O
ASO

[Al]
n
l=1

≡ (Rn,BRn , F ) such as ÔASTO
[Al]

n
l=1

is a realization of O
ASO

[Al]
n
l=1

.

(ii) Let O
ASO

[Al]
n
l=1

≡ (Rn,BRn , F ) be an approximate simultaneous observable of A1, ..., An

in H. Then, there exists a approximate simultaneous tensor observable ÔASTO
[Al]

n
l=1

≡ (K, s, (Rn,BRn , F̂ ) such as it is a realization of O
ASO

[Al]
n
l=1

.

(iii) Let O
ASO

[Al]
n
l=1

≡ (Rn,BRn , F ) be an approximate simultaneous observable of A1, ..., An

in H. Let ÔASTO
[Al]

n
l=1

≡ (K, s, (Rn, BRn , F̂ ) be an approximate simultaneous tensor

observable of A1, ..., An in H. And assume that ÔASTO
[Al]

n
l=1

is a realization of O
ASO

[Al]
n
l=1

.

Then, for each i ( = 1, 2, ..., n),

Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) = Dom⊗s([Ô

ASTO
[Al]

n
l=1

]mar
(i) ) ⊆ Dom(Ai). (12.25)

Proof. The statement (i) is trivial. Also the statement (ii) and the equality “=” in

(12.25) immediately follow from Proposition 12.4. Also, the inclusion “⊆” in (12.25) is

proved in Lemma 12.14(iii) later.

Definition 12.10. [Uncertainty] Let A1, ..., An be (unbounded) self-adjoint operators on

a Hilbert space H.

[I]. Let O
ASO

[Al]
n
l=1

= (Rn,BRn , F ) ) be an approximate simultaneous observable of A1, . . . , An.

(i). Then, the uncertainty

(
∆

O
ASO
[Al]

n
l=1

(Ai, u)

)n

i=1

of O
ASO

[Al]
n
l=1

for a state u (∥u∥H = 1) is

defined by

∆
O

ASO
[Al]

n
l=1

(Ai, u) =

∫
Rn

λ2
i ⟨u, F (dλ1 · · · dλn)u⟩ −

∫
R

λ2⟨u, Ai(dλ)u⟩ (12.26)

(u ∈ H such that ∥u∥ = 1 ),

where (12.26) should be interpreted that ∆
O

ASO
[Al]

n
l=1

(Ai, u) = ∞ for u /∈ Dom([F ]mar
(i) ) (cf.

Dom([F ]mar
(i) ) ⊆ Dom(Ai) in (12.25)).

(
“∆

O
ASO
[Al]

n
l=1

(Ai, u) ≥ 0” will be shown in Theorem

12.15 later.
)

(ii). Also the i-th variance var(i)[O
ASO

[Al]
n
l=1

, u] is defined by

var(i)[O
ASO

[Al]
n
l=1

, u] =

∫
Rn

|λi − ⟨u,Aiu⟩|2⟨u, F (dλ1 · · · dλn)u⟩H (12.27)
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12.3. APPROXIMATE SIMULTANEOUS MEASUREMENT 305

(i = 1, 2, ..., n),

[II] Let ÔASTO
[Al]

n
l=1

= (K, s, (Rn,BRn , F̂ ) ) be an approximate simultaneous tensor observable

of A1, . . . , An.

(i). Then, the uncertainty

(
∆

bOASTO
[Al]

n
l=1

(Ai, u)

)n

i=1

of ÔASTO
[Al]

n
l=1

for a state u (∥u∥H = 1) is

defined by

∆
bOASTO

[Al]
n
l=1

(Ai, u) =

∫
Rn

λ2
i ⟨u ⊗ s, F̂ (dλ1 · · · dλn)(u ⊗ s)⟩ −

∫
R

λ2⟨u,Ai(dλ)u⟩ (12.28)

(u ∈ H such that ∥u∥ = 1 ),

where (12.28) should be interpreted that ∆
bOASTO

[Al]
n
l=1

(Ai, u) = ∞ for u /∈ Dom⊗s([F̂ ]mar
(i) )

(cf. Dom⊗s([F̂ ]mar
(i) ) ⊆ Dom(Ai) in (12.25)).

(
“∆

bOASTO
[Al]

n
l=1

(Ai, u) ≥ 0” will be shown in

Theorem 12.15 later.
)

(ii). Also the i-th variance var(i)[Ô
ASTO
[Al]

n
l=1

, u] is defined by

var(i)[Ô
ASTO
[Al]

n
l=1

, u] =

∫
Rn

|λi − ⟨u,Aiu⟩|2⟨u ⊗ s, F̂ (dλ1 · · · dλn)(u ⊗ s)⟩H⊗K (12.29)

(i = 1, 2, ..., n).

¥
Proposition 12.11. Let A1, ..., An be (unbounded) self-adjoint operators on a Hilbert

space H. Assume that ÔASTO
[Ai]ni=1

= (K, s, (Rn, BRn , F̂ )) is a realization of O
ASO

[Ai]ni=1
=

(Rn,BRn , F ). Let u ∈ H (∥u∥H = 1). Then it holds that

∆
O

ASO
[Al]

n
l=1

(Ai, u) = ∆
bOASTO

[Al]
n
l=1

(Ai, u) (12.30)

and

var(i)[O
ASO

[Al]
n
l=1

, u] = var(i)[Ô
ASTO
[Al]

n
l=1

, u]. (12.31)

Proof. This immediately follows from Definition 12.10.

Remark 12.12. [Continued from Remark 12.7]. Again note that, if the commuta-

tive condition (iv) in Remark 12.7 is assumed in the Definition 12.10, we can define

∆
(
MB(H)(Ai × [O

ASO

[Al]
n
l=1

]mar
(i) , S(ρu))

)
, the distance between Ai and [O

ASO

[Al]
n
l=1

]mar
(i) , cf. Defi-

nition 11.1. And further we see that

∆
(
MB(H)(Ai × [O

ASO

[Al]
n
l=1

]mar
(i) , S(ρu))

)
(“error” defined in Definition 11.1)

= ∆
O

ASO
[Al]

n
l=1

(Ai, u)

(“uncertainty” defined in Definition 12.10)

(12.32)
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306 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

Thus, in this case, the physical meaning of “uncertainty” is clear.

¥

12.4 Lemmas

In this section, we shall prepare some Lemmas.

Lemma 12.13. [Robertson’s uncertainty relation]. Let A1 and A2 be any symmetric

operators on a Hilbert space H. Then, it holds that[
∥A1u∥2 − |⟨u,A1u⟩|2

]1/2

·
[
∥A2u∥2 − |⟨u,A2u⟩|2

]1/2

≥ 1

2
|
〈
A1u,A2u

〉
−

〈
A2u, A1u

〉
|

(12.33)

for all u ∈ Dom(A1) ∩ Dom(A2) .

Proof. Using Schwartz inequality, we see

|⟨A1u,A2u⟩ − ⟨A2u,A1u⟩|

=|
〈
A1u − ⟨u,A1u⟩u,A2u − ⟨u, A2u⟩u

〉
−

〈
A2u − ⟨u,A2u⟩u,A1u − ⟨u,A1u⟩u

〉
|

≤2
[
∥A1u∥2 − |⟨u,A1u⟩|2

]1/2

·
[
∥A2u∥2 − |⟨u,A2u⟩|2

]1/2

. (12.34)

Lemma 12.14. Let A1, · · · , An be any (unbounded) self-adjoint operators in a Hilbert

space H. Let (K, s, (Rn,BRn , F̂ ) be an approximate simultaneous tensor observable

for A1, · · · , An. Put Âk =
∫
Rn λkF̂ (dλ1dλ2 · · · dλn)

(
≡

∫
R

λ[F̂ ] = (i)mar(dλ)
)

(k =

1, 2, ..., n). Then, the following equalities (i) ∼ (iii) hold

(i)

⟨v, Aku⟩ = ⟨v ⊗ s, Âi(u ⊗ s)⟩ =

∫
R2

λk⟨v ⊗ s, F̂ (dλ1dλ2 · · · dλn)(u ⊗ s)⟩ (12.35)

for all u ∈ Dom⊗s(Âk) and all v ∈ H (k = 1, 2, ..., n),

(ii) ∫
Rn

λiλj⟨u ⊗ s, F̂ (dλ1dλ2 · · · dλn)(u ⊗ s)⟩

= ⟨Âi(u ⊗ s), Âj(u ⊗ s)⟩
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12.4. LEMMAS 307

= ⟨Aiu,Aju⟩ + ⟨(Âi − Ai ⊗ I)(u ⊗ s), (Âj − Aj ⊗ I)(u ⊗ s)⟩ (12.36)

for all i ̸= j and all u ∈ Dom⊗s(Âi) ∩ Dom⊗s(Âj),

(iii)

∫
R2

|λk|2⟨u ⊗ s, F̂ (dλ1dλ2 · · · dλn)(u ⊗ s)⟩

= ∥Âk(u ⊗ s)∥2 = ∥Aku∥2 + ∥(Âk − Ak ⊗ I)(u ⊗ s)∥2 ≥ ∥Aku∥2 (12.37)

for all u ∈ Doms(Âk) (k = 1, 2, ..., n). Thus, it holds that, for each i ( = 1, 2, ..., n),

Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) = Dom⊗s([Ô

ASTO
[Al]

n
l=1

]mar
(i) ) ⊆ Dom(Ai). (12.38)

Proof. First we prove (i). Fix k ∈ {1, 2}. We can see that, for any v, u ∈ Dom⊗s(Âk).

⟨v, Aku⟩

=
1

4
{⟨(v + u), Ak(v + u)⟩ − ⟨(v − u), Ak(v − u)⟩

− i⟨(v + iu), Ak(v + iu)⟩ + i⟨(v − iu), Ak(v − iu)⟩}

=
1

4
{⟨(v + u) ⊗ s, Âk((v + u) ⊗ s)⟩ − ⟨(v − u) ⊗ s, Âk((v − u) ⊗ s)⟩

− i⟨(v + iu) ⊗ s, Âk((v + iu) ⊗ s)⟩ + i⟨(v − iu) ⊗ s, Âk((v − iu) ⊗ s)⟩}

= ⟨v ⊗ s, Âk(u ⊗ s)⟩

= ⟨v ⊗ s,

∫
Rn

λkF̂k(dλ1dλ2 · · · dλn)(u ⊗ s)⟩ =

∫
Rn

λk⟨v ⊗ s, F̂k(dλ1dλ2 · · · dλn)(u ⊗ s)⟩.

(12.39)

Since Dom⊗s(Âk) is dense in H, we see that

⟨v, Aku⟩ = ⟨v ⊗ s, Âk(u ⊗ s)⟩ =

∫
Rn

λk⟨v ⊗ s, Âk(dλ1dλ2 · · · dλn)(u ⊗ s)⟩ (12.40)

for all u ∈ Dom⊗s(Âk) and all v ∈ H. This completes the proof of (i).

Next, we prove (ii). Without loss of generality, we put i = 1 and j = 2. Let u be any

element in Dom⊗s(Â1) ∩ Dom⊗s(Â2). Then, we see, by the above (i), that∫
Rn

λ1λ2⟨u ⊗ s, F̂ (dλ1dλ2 · · · dλn)(u ⊗ s)⟩

= ⟨
∫

Rn

λ1F̂ (dλ1dλ2 · · · dλn)(u ⊗ s),

∫
Rn

λ2F̂ (dλ1dλ2 · · · dλn)(u ⊗ s)⟩
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308 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

= ⟨Â1(u ⊗ s), Â2(u ⊗ s)⟩

= ⟨(Â1 − A1 ⊗ I)(u ⊗ s) + (A1u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s) + (A2u ⊗ s)⟩

= ⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩

+ ⟨(Â1 − A1 ⊗ I)(u ⊗ s), A2u ⊗ s⟩

+ ⟨A1u ⊗ s, (Â2 − A2 ⊗ I)(u ⊗ s)⟩ + ⟨A1u ⊗ s, A2u ⊗ s⟩

= ⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩

+ ⟨Â1(u ⊗ s), A2u ⊗ s⟩ − ⟨A1u,A2u⟩

+ ⟨A1u ⊗ s, Â2(u ⊗ s)⟩ − ⟨A1u,A2u⟩ + ⟨A1u,Au⟩

= ⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩ − ⟨A1u,A2u⟩

+

∫
Rn

λ2⟨A1u ⊗ s, F̂ (dλ1dλ2)(u ⊗ s)⟩ +

∫
Rn

λ1⟨F̂ (dλ1dλ2)(u ⊗ s), A2u ⊗ s⟩

= ⟨A1u,A2u⟩ + ⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩. (12.41)

Hence, the proof of (ii) is completed. Also, the proof of (12.37) is carried out just in

a similar way. Lastly, we can easily see that (12.37) implies (12.38) since we see that

Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) = Dom⊗s([Ô

ASTO
[Al]

n
l=1

]mar
(i) ) in (12.25).

Now we have the following theorem, which is one of our main results.

Theorem 12.15. Let ÔASTO
[Al]

n
l=1

= (K, s, (Rn, BRn , F̂ ) ) be a realization of an approxi-

mate simultaneous tensor observable O
ASO

[Al]
n
l=1

= (Rn,BRn , F̂ ) of A1, . . . , An. Put Âi =∫
R

λ[F̂ ]mar
(i) (dλ). Then, we see that

∆
bOASTO

[Al]
n
l=1

(Ai, u) =∆
O

ASO
[Al]

n
l=1

(Ai, u) =

∫
R

λ2⟨u, [F ]mar
(i) (dλ)u⟩ −

∫
R

λ2⟨u,Ai(dλ)u⟩

=∥Âi(u ⊗ s)∥2 − ∥Aiu∥2 (12.42)

=∥(Âi − Ai ⊗ I)(u ⊗ s)∥2 (∀u ∈ H such that ∥u∥ = 1 (12.43)

Proof. It immediately follows from Lemma 12.14.

12.5 Existence theorem

Now we shall mention the following theorem, which assures the existence of an ap-

proximate simultaneous tensor observable of arbitrary observables A1, ..., An. For two

observables A1 and A2, the similar theorem was proved by P. Busch, et al. [15, 14].
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12.5. EXISTENCE THEOREM 309

Theorem 12.16. [Cf.[36]] Let A1, ..., An be (unbounded) self-adjoint operators on a

Hilbert space H. Let a1, ..., an be any positive numbers such that
∑n

i=1(1 + ai
2)−1 = 1.

Then, we see,

(i) there exists an approximate simultaneous tensor observable ÔASTO
[Al]

n
l=1

≡ (K, s, (Rn,BRn ,

F̂ )) of A1, ..., An such that:

∆
bOASTO

[Al]
n
l=1

(Ai, u) = ai∥Aiu∥ (u ∈ Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar
(i) ) i = 1, 2, ..., n). (12.44)

and equivalently,

(ii) there exists an approximate simultaneous observable O
ASO

[Al]
n
l=1

≡ (Rn, BRn , F ) of

A1, ..., An such that:

∆
O

ASO
[Al]

n
l=1

(Ai, u) = ai∥Aiu∥ (u ∈ Dom([O
ASO

[Al]
n
l=1

]mar
(i) ) i = 1, 2, ..., n). (12.45)

Proof. By Proposition 12.11, it suffices to prove (i). Put K = Cn = {z = (z1, ..., zn) :

zi ∈ C (i = 1, 2, ..., n)}, i.e., the n-dimensional Hilbert space with the norm ∥z∥n =

[Σn
i=1|zi|2]1/2. Put e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0) , ...., en = (0, 0, ..., 1) ∈ Cn. Put

s = e1. And put Pi : Cn → Cn, (i = 1, 2, ..., n), a projection such that Piei = ei, Piek =

0(k ̸= i), that is, Pi = |ei⟩⟨ei|. Put bi = (1 + ai
2)1/2 and Bi = bi

2Ai (i = 1, 2, ..., n).

Consider the spectral representations

Ai =

∫
R

λEAi
(dλ), Bi =

∫
R

λEBi
(dλ), 0 =

∫
R

λE0(dλ) in H

and

Pi =

∫
R

λECn

Pi
(dλ), I =

∫
R

λECn

I (dλ) in Cn.

Note that EAi
(d(λ/bi

2)) = EBi
(dλ). Define the unitary operator Û : H ⊗ Cn → H ⊗ Cn

by Û = I ⊗ U where a unitary operator U on Cn satisfies that Ue1 = Σn
i=1ei/bi. And

define the crisp observable (R,BR, Ê
bAi

) in B(H ⊗ Cn) by

Ê
bAi

(dξ) = Û∗[EBi
(dξ) ⊗ Pi + E0(dξ) ⊗ (I − Pi)]Û (i = 1, 2, ..., n). (12.46)

Since Ê
bA1

, ..., Ê
bAn

commute, we can define a crisp observable (Rn, BRn , Ê
bA) in B(H⊗Cn)

such that:

Ê
bA(dξ1dξ2...dξn) =

n∏
i=1

Ê
bAi

(dξi). (12.47)
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310 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

Now, we shall show that the tensor observable Ôtnsr
H⊗K = (Cn, e1, (Rn, Bn, Ê

bA)) is an ap-

proximate simultaneous tensor observable of A1, ..., An. Put Âi =
∫
Rn ξi Ê

bA (dξ1dξ2...dξn)

(i = 1, ..., n). Then we see that,∫
Rn

|ξi|2⟨u ⊗ e1, Ê bA(dξ1dξ2...dξn)(u ⊗ e1)⟩

=

∫
R

|ξi|2⟨u ⊗ e1, Ê bAi
(dξi)(u ⊗ e1)⟩

=

∫
R

|ξi|2⟨u ⊗ e1, [(I ⊗ U∗)
(
EBi

(dξi) ⊗ Pi + E0(dξi) ⊗ (I − Pi)
)
(I ⊗ U)](u ⊗ e1)⟩

=

∫
R

|ξ|2⟨u,EBi
(dξ)u⟩ · ⟨e1, U

∗PiUe1⟩

=

∫
R

|ξ|2⟨u,EBi
(dξ)u⟩ · ⟨Σn

j=1

ej

bj

, PiΣ
n
k=1

ek

bk

, ⟩

= |bi|−2

∫
R

|λ|2⟨u,EBi
((dλ)u⟩ = |bi|2

∫
R

|λ|2⟨u,EAi
(dλ)u⟩. (12.48)

Hence, Dom⊗s(Âi) = Dom(Ai) (where s = e1 ). Similarly we see∫
Rn

ξi⟨u ⊗ e1, Ê bA(dξ1dξ2...dξn)(u ⊗ e1)⟩

= |bi|−2

∫
R

λ⟨u,EBi
((dλ)u⟩ =

∫
R

λ⟨u,EAi
(dλ)u⟩. (12.49)

Thus, ÔASTO
[Al]

n
l=1

satisfies the condition (ii) in Definition 12.6. Also, noting that I(dλ) =

I(1 ∈ dλ), = 0(1 /∈ dλ), we also see that, for each i (i = 1, 2, ..., n) and Ξk ∈ B,

Ê
bAi

(Ξ1) · (EAi
(Ξ2) ⊗ I)

= (I ⊗ U∗)
(
EBi

(Ξ1) ⊗ Pi + E0(Ξ1) ⊗ (I − Pi)
)
(I ⊗ U)(EAi

(Ξ2) ⊗ I)

= (EAi
(Ξ2) ⊗ I)(I ⊗ U∗)

(
EBi

(Ξ1) ⊗ Pi + E0(Ξ1) ⊗ (I − Pi)
)
(I ⊗ U)

= (EAi
(Ξ2) ⊗ I) · Ê

bAi
(Ξ1). (12.50)

So, Âi and Ai ⊗ I commute since Âi =
∫
R

ξ E
bAi

(dξ) and Ai ⊗ I =
∫
R

ξ (EAi
(dξ) ⊗ I).

Hence, Âi − Ai ⊗ I on Dom(Âi) ∩ Dom(Ai ⊗ I) has the unique self-adjoint extension

[Âi − Ai ⊗ I], which has the spectral representation

[Âi − Ai ⊗ I] =

∫
R2

(ξ1 − ξ2)Ê bAi
(dξ1)(EAi

(dξ2) ⊗ I). (12.51)

Then, we see that

∥[Âi − Ai ⊗ I](u ⊗ e1)∥2 (12.52)
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12.6. UNCERTAINTY RELATIONS 311

=

∫
R2

|ξ1 − ξ2|2⟨u ⊗ e1, E bAi
(dξ1)(EAi

(dξ2) ⊗ I)(u ⊗ e1)⟩

=

∫
R

|ξ|2⟨u ⊗ e1, E bAi
(dξ1)(u ⊗ e1)⟩

− 2

∫
R2

ξ1ξ2⟨u ⊗ e1, E bAi
(dξ1)(EAi

(dξ2) ⊗ I)(u ⊗ e1)⟩

+

∫
R

|ξ2|2⟨u ⊗ e1, (EAi
(dξ2) ⊗ I)(u ⊗ e1)⟩

= (|bi|2 − 2 + 1)

∫
R

|ξ|2⟨u, EAi
(dξ)u⟩

= |ai|2∥Aiu∥2, (12.53)

which implies that Dom⊗s([Âi −Ai ⊗ I]) = Dom(Ai) (where s = e1 ) and ∆
bOASTO

[Al]
n
l=1

(Ai, u)

= ai∥Aiu∥. Therefore, the proof of theorem is completed.

Remark 12.17. In the above proof, the following statements were also proved:

(i) Âi and Ai ⊗ I commute, so Âi − Ai ⊗ I on Dom(Âi) ∩ Dom(Ai ⊗ I) has a unique

self-adjoint extension [Âi − Ai ⊗ I] (i = 1, 2),

(ii) Dom⊗s(Âi) = Dom⊗s([Âi − Ai ⊗ I]) = Dom(Ai) (i = 1, 2).

Thus the commutative condition (iv) in Remark 12.7 is satisfied.

¥

12.6 Uncertainty relations

Now we propose the following theorem, which is our main result in this chapter.

We believe that this theorem is the final version of Heisenberg’s uncertainty relation

concerning measurement errors.

Theorem 12.18. [Heisenberg’s uncertainty relation, cf. [36, 67]]. Let A1 and A2 be any

(unbounded) self-adjoint operators on a Hilbert space H. Then, we see,

(i) for any approximate simultaneous tensor observable ÔASTO
[Al]

2
l=1

≡ (K, s, (R2,BR2 , F̂ ))

of A1 and A2, the following inequality holds:

∆
bOASTO

[Al]
2
l=1

(A1, u) · ∆
bOASTO

[Al]
2
l=1

(A2, u) ≥ 1

2
|⟨A1u,A2u⟩ − ⟨A2u,A1u⟩| (12.54)

Sample PDF File (Low Resolution Printing)
Mathematical Foundations of Measurement Theory © 2006 Shiro Ishikawa,  Keio University Press Inc.

Sample PDF File (Low Resolution Printing)
For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/For Clear Printing, See  http://www.keio-up.co.jp/kup/mfomt/
Sample PDF File (Low Resolution Printing)



312 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

for all u ∈ H such that ∥u∥ = 1, where the left hand side of (12.54) is defined by

∞ if ∆
bOASTO

[Al]
2
l=1

(Ai, u) = ∞ for some i,

and equivalently,

(ii) for any approximate simultaneous observable O
ASO

[Al]
2
l=1

≡ (R2,BR2 , F ) of A1 and A2,

the following inequality holds:

∆
O

ASO
[Al]

2
l=1

(A1, u) · ∆
O

ASO
[Al]

2
l=1

(A2, u) ≥ 1

2
|⟨A1u,A2u⟩ − ⟨A2u,A1u⟩| (12.55)

for all u ∈ H such that ∥u∥ = 1, where the left hand side of (12.55) is defined by

∞ if ∆
O

ASO
[Al]

2
l=1

(Ai, u) = ∞ for some i.

Proof. By Proposition 12.11, it suffices to prove (i). Put Âi =
∫
R2 λiF̃ (dλ1dλ2)

(i = 1, 2). Let u ∈ D(A1) ∩ D(A2). If u /∈ Dom⊗s(Âi) for some i, we see, by the

definition of the uncertainty, that ∆
bOASTO

[Al]
2
l=1

(Ai, u) = ∞, so (12.55) clearly holds. Hence,

it is sufficient to prove (12.55) for u ∈ Dom⊗s(Â1)∩Dom⊗s(Â2). Let u be any element in

u ∈ Dom⊗s(Â1) ∩ Dom⊗s(Â2). We see, by the part (ii) of Lemma 12.14, that

⟨A1u,A2u⟩ + ⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩

=

∫
R2

λ1λ2⟨u ⊗ s, F̃ (dλ1dλ2)(u ⊗ s)⟩

= ⟨A2u,A1u⟩ + ⟨(Â2 − A2 ⊗ I)(u ⊗ s), (Â1 − A1 ⊗ I)(u ⊗ s)⟩ (12.56)

from which, we get, by Schwarz inequality, that

1

2
|⟨A1u,A2u⟩ − ⟨A2u,A1u⟩|

=
1

2
|⟨(Â1 − A1 ⊗ I)(u ⊗ s), (Â2 − A2 ⊗ I)(u ⊗ s)⟩

− ⟨(Â2 − A2 ⊗ I)(u ⊗ s), (Â1 − A1 ⊗ I)(u ⊗ s)⟩|

≤ ∥(Â1 − A1 ⊗ I)(u ⊗ s)∥ · ∥(Â2 − A2 ⊗ I)(u ⊗ s)∥. (12.57)

Hence (by Theorem 12.15), the proof is completed.

The following theorem was first discovered by Arthurs and Goodman [6]. However we

did not know their discovery in the preparation of [36].

Theorem 12.19. [Approximate simultaneous uncertainty relation, cf [6]]. Let A1 and

A2 be any (unbounded) self-adjoint operators on a Hilbert space H. Then, we see,
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12.6. UNCERTAINTY RELATIONS 313

(i) for any approximate simultaneous tensor observable ÔASTO
[Al]

2
l=1

= (K, s, (R2,BR2 , F̂ ),

) of (A1, A2), the following inequality holds:

(var[ÔASTO
[Al]

2
l=1

, u]1)
1/2 · (var[ÔASTO

[Al]
2
l=1

, u]2)
1/2 ≥ |⟨A1u,A2u⟩ − ⟨A2u,A1u⟩| (12.58)

for all u ∈ H such that ∥u∥ = 1, where the left hand side of (12.58) is defined by ∞
if var[ÔASTO

[Al]
2
l=1

, u]mar
(i) = ∞ for some i, also the right hand side of (12.58) is defined

by ∞ if u /∈ Dom(A1) ∩ Dom(A2),

and equivalently

(ii) for any approximate simultaneous observable O
ASO

[Al]
2
l=1

= (R2,BR2 , F̂ ) of (A1, A2),

the following inequality holds:

(var[O
ASO

[Al]
2
l=1

, u]1)
1/2 · (var[O

ASO

[Al]
2
l=1

, u]2)
1/2 ≥ |⟨A1u,A2u⟩ − ⟨A2u,A1u⟩| (12.59)

for all u ∈ H such that ∥u∥ = 1, where the left hand side of (12.59) is defined by ∞
if var[ÔASTO

[Al]
2
l=1

, u]mar
(i) = ∞ for some i, also the right hand side of (12.59) is defined

by ∞ if u /∈ Dom(A1) ∩ Dom(A2).

Proof. By Proposition 12.11, it suffices to prove (i). Put Âi =
∫
R2 λiF̂ (dλ1dλ2)

(i = 1, 2). If u /∈ Dom⊗s(Âi) for some i, we see, by the definition of the variance, that

var[ÔASTO
[Al]

2
l=1

, u]mar
(i) = ∞, so, (12.58) clearly holds. Hence, it is sufficient to prove (12.58)

in the case that u ∈ Dom⊗s(Â1) ∩ Dom⊗s(Â2). Let u be any element in Dom⊗s(Â1) ∩
Dom⊗s(Â2). Then, we see, by (iii) in Lemma 12.14, that

var[ÔASTO
[Al]

2
l=1

, u]mar
(i) = ∥Âi(u ⊗ s)∥2 − |⟨u ⊗ s, Âi(u ⊗ s)⟩|2 (12.60)

=∥Aiu∥2 + ∥(Âi − Ai ⊗ I)(u ⊗ s)∥2 − |⟨u,Aiu⟩|2

≤2(∥Aiu∥2 − |⟨u,Aiu⟩|2)1/2 · ∥(Âi − Ai ⊗ I)(u ⊗ s)∥ (i = 1, 2), (12.61)

therefore, by Lemma 12.13 and Theorem 12.18 we get,

var[ÔASTO
[Al]

2
l=1

, u]1 · var[ÔASTO
[Al]

2
l=1

, u]2

≥ 4(∥A1u∥2 − |⟨u,A1u⟩|2)1/2 · (∥A2u∥2 − |⟨u,A2u⟩|2)1/2

· ∥(Â1 − A1 ⊗ I)(u ⊗ s)∥ · ∥(Â2 − A2 ⊗ I)(u ⊗ s)∥

≥ |⟨A1u,A2u⟩ − ⟨A2u,A1u⟩|2. (12.62)
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314 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

Hence, the proof is completed.

Now we have the following corollary.3

Corollary 12.20. [Uncertainty relations concerning a pair of conjugate observables]. Let

A1 and A2 be a pair of conjugate observables in a Hilbert space H.

(i: cf. [7]) There exists an approximate simultaneous observable O
ASO

[Al]
2
l=1

= (R2, BR2 .F

) of A1 and A2. Thus, we can take an approximate simultaneous measurement

MB(H)(O
ASO

[Al]
2
l=1

, S[|u⟩⟨u|]).

(ii: cf. [36]) For any positive number ϵ and any k(= 1, 2), there exists an approximate

simultaneous observable O
ASO

[Al]
2
l=1

= (R2,BR2 .F ) of A1 and A2 such that:

∆
O

ASO
[Al]

2
l=1

(Ak, u) ≤ ϵ∥Aku∥H (∀u ∈ H such that ∥u∥ = 1),

(iii: cf. [36, 67]) (Heisenberg’s uncertainty relation) However the following inequality

holds

∆
O

ASO
[Al]

2
l=1

(A1, u) · ∆
O

ASO
[Al]

2
l=1

(A2, u) ≥ ~/2 (12.63)

for all u ∈ H (∥u∥H = 1),

(iv: cf. [6]) The following inequalities hold: (approximate simultaneous uncertainty

relation)

(var[O
ASO

[Al]
2
l=1

, u]1)
1/2 · (var[O

ASO

[Al]
2
l=1

, u]2)
1/2 ≥ ~ (12.64)

for all u ∈ H (∥u∥H = 1).

Proof. Note that ⟨A1u,A2u⟩ − ⟨A2u,A1u⟩ = i~ (u ∈ Dom(A1) ∩ Dom(A2), ∥u∥H

= 1). Then, the above assertions (i) and (ii) are consequences of Theorem 12.16. Also,

the above assertions (iii) and (iv) are respectively consequences of Theorem 12.18 and

Theorem 12.19.

3There are other uncertainty relations, For the recent variants, see [68].
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12.7 EPR-experiment and Heisenberg’s uncertainty

relation

Now we have the complete form of Heisenberg’s uncertainty relation as Corollary 12.20.

To be compared with Corollary 12.20, we should note that the conventional Heisenberg’s

uncertainty relation (= Proposition 12.1) is ambiguous. Wrong conclusions are sometimes

derived from the ambiguous statement (= Proposition 12.1). For example, in some books

of physics, it is concluded that EPR-experiment (Einstein, Podolosky and Rosen [22])

contradicts with Heisenberg’s uncertainty relation. That is,

(I) Heisenberg’s uncertainty relation says that the position and the momentum of a

particle can not be measured simultaneously and exactly.

On the other hand,

(II) EPR-experiment says that the position and the momentum of a certain “particle” can

be measured simultaneously and exactly.

Thus someone may conclude that the above (i) and (ii) includes a paradox, and therefore,

EPR-experiment contradicts with Heisenberg’s uncertainty relation. Of course, this is a

misunderstanding. This “paradox” was solved in [36]. Now we shall explain the solution

of the paradox.

[Concerning the above (I)] Put H = L2(Rq). Consider two-particles system in

H ⊗ H = L2(R2
(q1,q2)). In the EPR problem, we, for example, consider the state us

( ∈ H ⊗ H = L2(R2
(q1,q2)))

(
or precisely, |us⟩⟨us|

)
such that:

us(q1, q2) =

√
1

2πϵσ
e−

1
8σ2 (q1−q2−a)2− 1

8ϵ2
(q1+q2−b)2 · eiϕ(q1,q2) (12.65)

where ϵ is assumed to be a sufficiently small positive number and ϕ(q1, q2) is a real-valued

function. This is the quantum form of EPR-experiment in Remark 12.2(ii). Let A1 :

L2(R2
(q1,q2)) → L2(R2

(q1,q2)) and A2 : L2(R2
(q1,q2)) → L2(R2

(q1,q2)) be self-adjoint operators

such that

A1 = q1, A2 =
~∂

i∂q1

. (12.66)

Then, Corollary 12.20 (i) says that there exists an approximate simultaneous observable

O
ASO

[Al]
2
l=1

= (R2, BR2 .F ) of A1 and A2. Thus we can take an approximate simultaneous
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measurement MB(H)(O
ASO

[Al]
2
l=1

, S[|us⟩⟨us|]). And thus, the following Heisenberg’s uncertainty

relation (= Corollary 12.20 (iii)) holds,

∆
O

ASO
[Al]

2
l=1

(A1, us) · ∆O
ASO
[Al]

2
l=1

(A2, us) ≥ ~/2 (12.67)

[Concerning the above (II)] However, it should be noted that, in the above situation

we assume that the state us is known before the measurement. In such a case, we may

take another measurement as follows: Define the self-adjoint operators Â1 : L2(R2
(q1,q2)) →

L2(R2
(q1,q2)) and Â2 : L2(R2

(q1,q2)) → L2(R2
(q1,q2)) such that

Â1 = b − q2, Â2 = A2 =
~∂

i∂q1

(12.68)

Note that these operators commute. Therefore,

(♯) we can take an exact simultaneous measurement of Â1 and Â2 (for the state us).

And moreover, we can easily calculate as follows (cf. Definition 11.1 and Remark 12.12).

∆
(
MB(H)(A1 × Â1, S(ρus))

)
= ∥Â1us − A1us∥

=
[ ∫∫

R2

∣∣∣((b − q2) − q1)

√
1

2πϵσ
e−

1
8σ2 (q1−q2−a)2− 1

8ϵ2
(q1+q2−b)2 · eiϕ(q1,q2)

∣∣∣2dq1dq2

]1/2

=
[ ∫∫

R2

∣∣∣((b − q2) − q1)

√
1

2πϵσ
e−

1
8σ2 (q1−q2−a)2− 1

8ϵ2
(q1+q2−b)2

∣∣∣2dq1dq2

]1/2

=
√

2ϵ, (12.69)

and

∆
(
MB(H)(A2 × Â2, S(ρus))

)
= ∥Â2us − A2us∥ = 0. (12.70)

Thus we see

∆
(
MB(H)(A1 × Â1, S(ρus))

)
· ∆

(
MB(H)(A2 × Â2, S(ρus))

)
= 0. (12.71)

Since ϵ ( > 0) can be taken sufficiently small, the above measurement (♯) is superior to

the approximate simultaneous measurement MB(H)(O
ASO

[Al]
2
l=1

, S[|us⟩⟨us|]).
(
Here, S[|us⟩⟨us|]

is identified with S(|us⟩⟨us|) since |us⟩⟨us| is a pure state.
)

However it should be again

noted that, the measurement (♯) is made from the knowledge of the state us.
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12.7. EPR-EXPERIMENT AND HEISENBERG’S UNCERTAINTY RELATION 317

[(I) and (II) are consistent, cf. [36] ] The above conclusion (12.71) does not contra-

dicts with Heisenberg’s uncertainty relation (12.67), since the measurement (♯) is not an

approximate simultaneous measurement of A1 and A2.

¥
In the above arguments, note that Theorem 12.19 (approximate simultaneous un-

certainty relation) is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation). That is because the concept “error” (or

“uncertainty”) is not explicit in Theorem 12.19.
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HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIK

CDEFG<qDrPBAPsptuv HIIIIIIIIJIIIIIIIIK
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